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Abstract
Autonomous mobile robots that operate in environments with people are expected to be able to deal with human proxemics
and social distances. Previous research investigated how robots can approach persons or how to implement human-aware
navigation algorithms. However, experimental research on how robots can avoid a person in a comfortable way is largely
missing. The aim of the current work is to experimentally determine the shape and size of personal space of a human passed
by a robot. In two studies, both a humanoid as well as a non-humanoid robot were used to pass a person at different sides
and distances, after which they were asked to rate their perceived comfort. As expected, perceived comfort increases with
distance. However, the shape was not circular: passing at the back of a person is more uncomfortable compared to passing at
the front, especially in the case of the humanoid robot. These results give us more insight into the shape and size of personal
space in human–robot interaction. Furthermore, they can serve as necessary input to human-aware navigation algorithms for
autonomous mobile robots in which human comfort is traded off with efficiency goals.

Keywords Personal Space · Human–Robot Proxemics · Human-Aware Navigation

1 Introduction

Currently, many autonomous mobile robots still operate in
environments without people. As robot tasks are extending to
human environments, they will share the space in which they
work with humans. Current examples include mobile robots
with a dedicated task that concerns humans, such as museum
tour guides [17] or robots that care for the elderly [5]. These
kinds of robots obviously encounter humans when perform-
ing their tasks. Additionally, it is also important to take robots
in a more industrial context into account [25]. For example,
autonomous guided vehicles (AGVs) in a warehousing envi-
ronment performing pick-and-place tasks also are likely to
encounter humans.
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When mobile robots operate in the same environment as
humans, they first and foremost need to be safe [40]. This is
usually regulated by limiting the speed and optimizing the
sensing capabilities of the mobile robots, to avoid collisions.
Apart from physical safety, people also need to feel safe and
comfortable in the proximity of the robot. For example, the
robot might be moving safely, but people can still feel dis-
comfort or lack trust in the behaviour of the robot [21]. To
prevent this, it is important that robots take the comfort of
humans into account when planning their paths and navi-
gating through an environment. If people feel comfortable
around robots, it can be considered more likely that robots
will be accepted in human environments, which affects the
added value of robots. For this to happen, robots should
take social rules into account and respect socially acceptable
distances [27]. In this paper, we aim to experimentally inves-
tigate these distances. A seemingly straightforward approach
is to implement how humans distance themselves from each
other, which is called proxemics.

1.1 Human Proxemics

Proxemics is the field of research in psychology that studies
how people utilise the physical space around them and posi-
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(a) Circular (b) More space at
the front

(c) More space at
the back

(d) Elliptical (e) Asymetrical

Fig. 1 Different representations of personal space. a Circular shape [11,14], bMore space at frontal zone [3,13], cMore space at rear zone [4,28],
d Elipsical shape [15], e Assymetrical shape [10]. Picture based on [32]

tion themselves with respect to each other [11]. An important
concept in proxemics is personal space. Humans subcon-
sciously take the personal space of other humans into account
when navigating an environment and having social interac-
tions [20]. It causes discomfort if the distance between two
people does not match the kind of interaction that they have
[12].

Hall [11] described personal space as a set of concentric
circles. Based on observations and interviews, he recognized
four different circular zones, all suitable for different kinds of
interactions. The closest zone is the intimate zone (≤ 45 cm),
which is meant for intimate interactions, such as embracing,
wrestling, or whispering. The personal zone (45–120 cm) is
for interactions at arm’s length, two people can still touch fin-
gers if they extend their arms. Most interactions take place
in the social zone (120–350 cm), which is used for having a
conversation. The furthest zone is called the public zone (>
350 cm) and this is used for public speaking. Hall acknowl-
edged that the distances of these zones are highly dependent
on cultures and individuals.

More recent work agrees with the notion of Hall that per-
sonal space is circular [14]. This was tested by approaching
participants both in a real and in a virtual environment. How-
ever, there have been other findings on the shape of personal
space. Others have found a non-circular shape, claiming that
people need more frontal space [3,13]. This was tested both
by approachingparticipants in a real-world environment [13],
and by letting participants approach virtual humans (embod-
ied virtual agent) [3].A possible explanation of these findings
is that the possibilities of actions that we can perform (e.g.,
walking, grabbing, and pointing), usually extend towards the
front. The explanation can also be found in socialmoderators,
like eye contact. Bailenson and colleagues [3] found that in
conditions where the moving gaze of a virtual human tracks
the approaching participant, the participant will keep a larger
interpersonal distance to the front of the virtual human. These
results are in line with the Equilibrium Theory [2] which
poses that factors such as interpersonal distance and eye con-
tact exist in an equilibrium of intimacy. If people make eye
contact, the interpersonal distance should be larger to prevent

the interaction from becoming too intimate.When there is no
eye contact, for example, when approaching someone from
the back, interpersonal distances can be smaller [1].

In other studies, researchers found the opposite result;
i.e. people needing more space behind them [4,28]. In both
studies, participants were approached by the experimenter.
Needing more space in the back is explained in these stud-
ies by having fewer sensory inputs behind a person. In front,
people can use vision to orient themselves. In the back people
cannot use vision, which gives them less information on the
location and activity of a person. Less information means
that people will be more uncertain about the location and
activity of a person, which can make them feel less safe or
uncomfortable.

All of the models presented above are considering peo-
ple that stay in their original position. If people are walking
around in the environment, it makes sense to also take into
account their direction of motion. In several potential field
models, usually based on mathematical assumptions, repre-
sentations of people depend on their motion direction. In the
Social Force Model [15], for example, the path of people
is modeled using forces: attracting forces from their tar-
get position and repulsive forces from other people in the
environment. These forces are modeled in their direction of
motion and the accompanying function has the shape of an
ellipse, which creates a fourth possibility of the shape of per-
sonal space, next to circular or more space at the frontal or
rear zone (see Fig. 1).

So far, all the possible shapes of personal space that
we discussed were left–right symmetrical, but some stud-
ies suggest that personal space may be asymmetrical [6,10].
Gerin-Lajoie et al. [10] asked participants to bypass an obsta-
cle (both in a real and in a virtual environment) and observed
that people usually kept a smaller distance to the obstacle at
their dominant hand side. The same shape can be observed in
traffic. In [6] it was found that in places where traffic drives at
the right side of the road, pedestrians also usually pass other
people at the right side of the corridor or sidewalk. This could
indicate that people requiremore personal space at their right.
However, this contradicts the findings of [10], assuming that
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for most people the right-hand side is their dominant side.
This could be explained, by the fact that passing at the right-
hand side is the usual social convention, but if there is no
clear rule or task and people are allowed to choose freely,
they are comfortable with less space at their dominant side.

It could be that the differences in shapes of personal space
between the studies described above can be explained by
differences in research methods. In testing the shape of per-
sonal space the participant can be either the approacher or
the one who is approached, the person can be considered
static or dynamic and the environment can be virtual or real.
However, the method does not always predict the shape that
will be found, because similar methods, such as approach-
ing a person in a real-world environment, can give different
results [13,14,28].

In Fig. 1, five different shapes of personal space are visu-
alized. It appears to be largely unclear which shape is the
best representation of comfort zones of humans. The shape
of personal space seems to depend on a variety of contex-
tual and interactional variables, including the task content,
the speed and direction of movement of the interactants, and
the presence or absence of strong social cues, such as mutual
gaze. However, more studies will be required to disentangle
these factors, and to assess their individual and combined
contributions to the shape and size of personal space over
time and in different contexts.

1.2 Human–Robot Proxemics

It is not immediately obvious that human proxemics also
applies to robots, especially when they are not humanoid.
This means that we have to determine how comfortable
people are with different distances between themselves and
robots. Most research in this area has been done for robots
with a dedicated social task, such as care robots. Several stud-
ies have investigated the relationship between personal space
and perceived comfort, with differing results [32].

Walters et al. [41,42] performed several studies where a
robot approached a human, or vice versa. They found that
about 40 percent of their participants were comfortable with
an approach distance in the intimate zone as defined by Hall
(< 45 cm). The authors explained this finding by hypothesiz-
ing that these participants did not regard the robot as a social
entity. As a result, they would not mind a close distance.
Other participants in their sample preferred regular approach
distances comparable to interactions with humans, in the per-
sonal or social zone of Hall (around 120 cm). This means that
the approach distance seems to depend on personal prefer-
ences. A later study demonstrated an opposite effect. Torta
et al. [39] had a small humanoid robot approach senior par-
ticipants and asked them to stop the robot at a comfortable
distance for interaction. They found much larger distances

than usual for human interactions, ranging from 160 to 180
cm.

The studies described above differed on several aspects:
type of robot, the user group, and the behaviour of the robot.
Proxemic preferences concerning a robot approaching a per-
son seem to depend on a variety of factors, so it is important
to take the precise context into account [19]. For example,
the behaviour and perceived skills of the robot determine
how close the robot is allowed to come [26]. When it appears
as if the robot cannot understand a person unless it is close
enough, people will take this into account when determining
an appropriate distance. Also, the activity and personality of
the user [33,39] influences on proxemic preferences. Among
others, this shows that the precise shape and size of personal
space of humans with respect to robots depends on the par-
ticular type of interaction.

Most of the studies described above focus on approaching
a person. However, in many practical applications, robots do
not have to directly interact with people, for example, when
they are cleaning the floor [9]. Theywill merely avoid a colli-
sionwith a person, butwhile doing that, they also need to take
human comfort into account. There are some experimental
studies on comfortable passing distances [27,29], where the
main results are that larger distances relate to higher comfort
levels and that passing side (left compared with right) has no
effect on comfort. If we look at passing at the back or front
of persons, Lichtenthaeler et al. [22] investigated appropri-
ate and comfortable crossing strategies. According to these
results, stopping was the most natural strategy for crossing
paths with a human. Lo et al. [23] compared crossing strate-
gies and found that the strategy where the robot accelerated
or deviated from its path was perceived as most comfortable.
To the best of our knowledge, the difference in level of com-
fort between passing in front or in back of a humanwas never
studied.

1.3 Human-aware Navigation

If a robot needs to navigate around people, possibly prox-
emics rules for interactions do not hold [24]. Much work
has been done on how to incorporate humans in a navi-
gational model. This specific field of study is known as
human-aware navigation [21] and the focus is on path plan-
ning in an environment where humans are present. There
are several possibilities for a human-aware navigation algo-
rithm, for example using deep learning to recognize human
activities [38], (inverse) reinforcement learning of pedestrian
behaviour [16,31] or using a cost map to represent a person
in a navigational framework.

An example of the latter option is the Human-Aware
Motion Planner [36,37]. With this motion planner, robots are
expected to move safely, reliably and in a socially acceptable
manner around humans. People are represented by a cost
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function that prevents robots from coming too close to them.
Furthermore, robots are expected to be as visible as possible
to humans. This means that they will choose a path in front
of the human over a path behind the human. Also, a surprise
effect is prevented, by preventing the robot from appearing
in view of a human too sudden, when passing an obstacle. In
this model, humans are considered to be non-moving.

In research by Satake et al. [34] the movement of peo-
ple is taken into account by predicting a person’s walking
behaviour. From this walking behaviour the robot assesses
whether a person is willing to interact with the robot. After
navigating to this person, the robot attracts the person’s atten-
tion and starts a conversation. Kirby and colleagues [18] also
considered people to be moving entities and therefore they
modeled people with a personal space that extends towards
the front. In this framework, social conventions, such as keep-
ing to the right of a hallway, are taken into account.

In another work [7], also the perceived actions of humans
are taken into account. A person is represented by a Gaus-
sian function in a cost map that depends on the perceived
action: i.e. walking means larger space needed in front of
the person. Similar approaches are taken by Papadakis et al.
[30], where humans can indicate a passing side for the robot
using a gesture, which is detected by the robot and taken
into account when planning the path. Furthermore, humans
in conversation will be recognized as such, which prevents
the robot from interrupting the conversation, but rather plan
a path around the humans.

Summing up, human-aware navigation methods always
include people as a unique entity, other than obstacles. They
differ in whether people can be moving or not and whether
human behaviour is taken into account. The goal of human-
aware navigation is to let the robot plan a suitable path
around the person. To test the comfortability and efficiency
of a human-aware navigation framework comparable meth-
ods are used. In all frameworks described above, humans are
represented in a specific way, taking their motion, visual field
or actions into account. However, there is little to no research
investigating the appropriate shape and size of personal space
of a person that is passed by a robot. Therefore it is impor-
tant to validate or investigate the human representations in
navigation frameworks.

1.4 Research Aims

The aim of the current study is to experimentally deter-
mine the shape and size of personal space of a person when
the robot is passing by. Since personal space is related to
(dis)comfort [12], we focus on perceived comfort to indicate
the shape and size of personal space. We expect perceived
comfort to increase with distance between robot and human.
Based on a similar study on robot proxemics [27] we also
expect no difference between the left and right side of a

person. Many sources on human proxemics assume that
the shape of personal space is roughly circular [11,14]. We
explicitly test this by including passages in front and at the
back of a person.

To test our expectations we used a controlled environ-
ment in which a robot passes people at different sides (left,
right, front or back) and distances to be able to give an indi-
cation of the shape and size of personal space. After each
passing people indicate their feelings of comfort. We did
two experiments, one with a humanoid robot and one with a
non-humanoid robot, to be able to compare the results in dif-
ferent contexts. Furthermore, using different robots we can
distinguish between robot-specific results and more general
results.

2 Method

To test our hypotheses, we conducted two similar experi-
ments. Study A involved a humanoid robot and study B a
non-humanoid robot.

2.1 Participants and Design

For both studies participants were sampled from the partic-
ipant database at Eindhoven University of Technology. A
large part of this database consists of students at the same
university but there are also some working or retired people
from the Eindhoven region registered. All the participants
in the current study had little to no experience with robots,
limited to vacuum cleaner robots at home and participating
in other experiments involving robots.
Study A Twenty participants (8 males and 12 females, Mage

= 28.1, SDage = 16.9, range: 17–82) participated in study A
with a 4 (passing side: front, back, left or right) x 3 (passing
distance: 50, 70 or 90 cm) x 2 (starting position: clockwise or
counter-clockwise) within-subjects design. All participants
experienced all 24 trials, as visualized in Fig. 2a. The robot
started in one of these 24 locations and passed the person,
standing in the middle of the lab. Passing distances were
measured from the center of the human to the center of the
robot. The starting position variable indicates from which
starting point the robot passed by for any given side of pas-
sage. Starting point clockwise indicates that the robot moved
in a clockwise fashion. For example, when passing in front,
it started on the left (FCW), and when passing on the right,
it started in front (RCW) and so on. Similarly, counterclock-
wise indicates that the robot moved in the opposite direction.
The order in which the trials occurred was semi-random,
which means that the first trial of the robot was random and
afterwards the passing distances would either decrease or
increase at the same passing side, during which the robot
would alternate between a clockwise or counter-clockwise
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RR

(a) Study A: Humanoid robot

R

(b) Study B: Non-humanoid robot

Fig. 2 Experimental set-up for a study A and b study B. The codes
around the figure represent the 24 different starting locations of the
robot. The first letter represents the passing side (Left (L), Right (R),
Back (B), Front (F)), the next set of letters the starting position (clock-
wise (CW) or counter-clockwise (CC)) and the number the distance in
cm (50, 70 or 90 in study A and 60, 80 or 100 in study B). The figures
are scaled, as are the dimensions of the two robots that are used

pattern. After three trials in the same direction, a new direc-
tion was tested.
Study B Twenty-one participants (6 males and 15 females,
Mage = 33.0, SDage = 15.7, range: 20–66) participated in
studyB.Noneof themhadparticipated in studyA.Thedesign
was similar to study A. The passing distances were all 10 cm
larger (60, 80 or 100 cm) because the robot used in study B
is approximately 20 cm broader than the robot used in study
A, as shown in Fig. 2b. Since passing distance represents
center-to-center distance, this means that the clearance was

Fig. 3 Picture of experimental set-up for a study A and b study B, in
which the robots used are shown. In study A the Pepper robot (Soft-
bank Robotics) was used, in study B a custom-made AGV was used.
Participants were standing on indicated footsteps

comparable across both studies. The randomization of the
order of the trials was identical to study A.

2.2 Materials andMeasurements

In study A we used the Pepper robot (Softbank Robotics),
which is shown in Fig. 3a. This robot has the following
dimensions (L: 425 mm, W: 480 mm, H: 1210 mm). The
speed of the robot during the experiment was set to 0.35 m/s,
as this was the default setting for the Pepper robot and the
robot exhibited no explicit social cues (e.g., eye contact) dur-
ing passing. In study Bwe used a custom-made Autonomous
Guided Vehicle (AGV). This robot has the following dimen-
sions (L: 730 mm, W: 650 mm, H: 900 mm). The speed of
this robot was also set to 0.35 m/s to be able to compare the
robots and there were no explicit social cues during passing.

After each trial participants were asked to answer one
question: “How comfortable were you with the passing of
the robot?”. They answered this question on a 7-point scale,
ranging from ‘not at all’ to ‘very much’.

2.3 Procedure

The procedure was the same in both studies. Participants
entered the lab and signed an informed consent form. After
this, theywere instructed to stand in themiddle of the roomon
the indicated footsteps (shown in Fig. 3). They were allowed
to look around, as long as they kept their shoulders straight
as much as possible (to prevent them from looking back).
Next, the robot passed them. Participants were instructed to
stand still on the two oval shapes that were taped to the floor.
After each trial participants walked to a computer in the lab to
rate the perceived comfort of the previous passing. This was
repeated 24 times. After the last trial they answered questions
on demographics and their shoulder width and waist circum-
ference were measured. At the end, they were thanked for
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(a) Study A: Humanoid robot (b) Study B: Non-humanoid robot

Fig. 4 Comfort ratings for each passing distance, passing side and starting position for study A (a) and study B (b). Error bars represent standard
errors

their participation. The total experiment lasted 30 minutes
for which participants were paid e5, or e7 for people that
needed to travel.

3 Results

Before testing our hypothesis we checked whether any of
our demographic variables (age, gender, nationality), had a
significant effect on comfort levels. Results of the Spearman
correlation show a small but significant positive correlation
of age on comfort (r(984) = 0.13, p < .0001). This effect
shows that older people are more likely to give higher per-
ceived comfort values. We did not have enough spread in
ages, nor did we have specific expectations on effects of age.
Therefore, it is currently unclear how this effects originates.
The other demographic variables show no significant differ-
ence for comfort.

3.1 Comparing Comfort Levels

The results of study A and B are presented together to aid
comparison. Participants’ average shoulder width was simi-
lar between study A (M = 41.6 cm, SE = 0.78 cm) and study
B (M = 41.1 cm, SE = 0.76 cm). The average waist circum-
ference was larger in study A (M = 82.7 cm, SE = 2.39 cm)
compared to study B (M = 78.3, SE = 4.34 cm), but not sig-
nificantly so (p = 0.39, t(39) = 0.88). Thus, we can compare
the findings of both studies without adjusting for distance.

We conducted a repeated measures Analysis of Variance
(rANOVA) to test whether comfort was significantly influ-
enced by our three predictors, distance (50, 70 or 90 cm),
passing side (front, back, left or right) and starting posi-

tion (clockwise or counter-clockwise). The average values
of comfort across all the different conditions of both studies
are visualized in Fig. 4.

In study A we found a significant effect of distance on
comfort (F(2,42) = 164.55, p < .0001, η2 = 0.43). This
means that if the distance between the human and robot is
greater, perceived comfort is higher. In addition, there was
a significant effect of passing side on comfort (F(3,42) =
27.26, p < .0001, η2 = 0.16). Perceived comfort was highest
in the front (M = 5.47, SD = 1.60), and lowest in the back (M
= 4.19, SD = 1.47). Perceived comfort was similar between
the left (M = 4.69, SD = 1.71) and the right (M = 4.94, SD
= 1.70).

Between distance and passing side, we found a small but
significant interaction effect (F(6,42) = 3.63, p = .002, η2

= 0.05). For passing at the back comfort increased less with
distance compared to the other passing sides. Another small
significant interaction effect was found between passing side
and starting position (F(3,42) = 6.51, p = .0003, η2 = 0.04).
This finding is most clearly visible for a distance of 70 cm
(seeFig. 4a).When comparing comfort between left and right
there is a clearly visible difference between the clockwise and
counter-clockwise starting position. This represents the robot
starting from the front compared to coming from the back of
the person. In both cases, comfort is higher when the robot
starts at the front. There were no other significant effects in
study A.

In study Bwe also found a significant effect of distance on
comfort (F(2,43) = 84.16, p < .0001, η2 = 0.27). Similar to
study A, perceived comfort increased with distance, but the
effect appears to be smaller than in study A. We also found
a small significant effect of passing side (F(3,43) = 4.12,
p = .007, η2 = 0.03) on comfort. Again, similar to study A
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(a) Study A: Humanoid robot

(b) Study B: Non-humanoid robot

Fig. 5 Perceived comfort as a function of the minimal passing distance
for study A (a) and study B (b). The points (shape symbols) represent
the average comfort level indicated per condition. The colored lines rep-
resent fits of the inverted Gaussian per passing side. Error bars represent
standard errors

perceived comfort was highest when passing in the front (M
= 5.36, SD = 1.70), and lowest in the back (M = 4.87, SD =
1.75). Perceived comfort was similar between left (M = 4.97,
SD = 1.69) and right (M = 5.05, SD = 1.82). There were no
other significant effects or interaction effects in study B. In
Fig. 4, both studies show a similar trend for a distance of 80
cm: a small preference for the robot starting at the front of
the person. However, in study B this interaction effect is not
significant (F(3,43) = 1.85, p = .19)

Comparing the results of study A and study B on comfort
values we see that the overall perceived comfort was a little
higher for the non-humanoid robot (M = 5.06, SD = 1.75)
than for the humanoid robot (M = 4.82, SD = 1.68). Compar-
ing the averages of perceived comfort in the different passing

Table 1 Fitted parameter values of Equation 1, for all passing sides and
both studies. θ corresponds to the polar angle of the passing side. a0 and
σ are parameters of the fitted inverted Gaussian (indicated in Equation
1) and also the standard errors (SE) of these fit parameters are given.
All parameters are significant with p < .001

Passing side θ Study a0 SEa0 σ SEσ

Right 0 A 6.15 0.62 47.25 4.85

B 5.39 0.55 46.14 5.75

Front π/2 A 6.15 0.41 41.51 3.29

B 5.62 0.44 44.13 4.55

Left π A 6.04 0.76 49.52 6.01

B 5.39 0.53 47.21 5.50

Back 3π/2 A 3.92 0.31 35.65 4.15

B 4.58 0.37 39.11 4.97

sides, the only significant difference between the different
studies is found for passing at the back (t(244) = −3.25, p =
.001, Cohen’s d = 0.042). Perceived comfort was higher for
the non-humanoid robot (M = 4.87, SD = 1.75) than for the
humanoid robot (M = 4.19, SD = 1.47). However, because
both studies consist of different groups of participants, it is
more reliable to compare the fits between the studies, which
we will do in the next subsection.

3.2 Fitting a Relationship Between Distance and
Comfort

To quantify the differences in comfort, we fitted an inverted
Gaussian that relates distance to comfort. This shape was
previously found to fit very well in our previous work [27].
This particular function was chosen over a second-order
polynomial because a polynomial would have a maximum
and extrapolating beyond the measured range would lead to
insensible results. Additionally, an inverted Gaussian can be
described with only two parameters. The inverted Gaussian
is given by:

C = 1 + a0(1 − exp(− d2

2σ 2 )), (1)

where C stands for perceived comfort, d represents passing
distance, σ is the width and a0 is the height of the inverted
Gaussian. For the results of both studieswefitted this inverted
Gaussian for all passing sides (left, right, front and back).
Based on a least-squares regression, significant fit values
were found for all parameters. The resulting graphs are shown
in Fig. 5, and the parameters are shown in Table 1.

Comparing Fig. 5a and b, we notice that the resulting
graphs are very similar for both robots. Using t-tests, we
checked whether any of the parameters mentioned in Table
1 differed significantly between study A and study B, which
was not the case (all t’s < 1.33, all p’s > 0.18). The only

123



568 International Journal of Social Robotics (2022) 14:561–572

Fig. 6 Perceived comfort as a function of the passing distance
(expressed in lateral clearance) for the data of Paccheriotti et al. [29],
Neggers et al. [27], study A and study B. The points (shape symbols)
represent the average comfort level indicated per condition per study.
The black line represents a combined fit. Error bars represent standard
errors

noticeable difference between Fig. 5a and b is shown in the
function for the back of the robot. For the humanoid robot
the difference between the other three passing sides and the
back passing side is larger for greater distances, while this is
not visible for the non-humanoid robot.

To investigate whether the function we use is a good rep-
resentation of the relation between distance and comfort, we
plotted the current data in the same Figure as our previous
data [27] and also included similar data of Paccheriotti et al.
[29]. The result is shown in Fig. 6. In this Figure, the distance
shown is the lateral clearance: the distance between the edge
of the person and the edge of the robot. Since in these studies
three different robots were used with different dimensions
(PeopleBot in [29], Pepper robot in [27] and in study A and
a custom-made AGV in study B) center-to-center distance
correspond to different clearances. It is clear that all studies
show the same relation, albeit that the perceived comfort lev-
els of Paccherotti et al. [29] are a little higher compared to
Neggers et al. [27], and the results of study A and B are a
little lower. Otherwise, the pattern of the data is very similar
suggesting that the combined fit is an accurate description of
the relation between distance and comfort.

3.3 Creating a Personal SpaceModel

We used the fitted inverted Gaussian as shown in Fig. 5 to
create a personal space model for both robots used in study A
and study B. For this, we created a contour plot that depicts
the shape and size of personal space. To do so, the polar coor-
dinates (r , θ ) of the closest point of passage are computed.
The value of r represents the closest passing distance d (Eq.

Fig. 7 Schematic overview of distance d and angle θ . Distance d rep-
resents the center-to-center distance between the human and the robot
at the closest point of passage, angle θ represents the polar angle of this
point. All possible angles are mentioned in Table 1

(c) a
0 
of study A (d) a

0 
of study B

(a)     of study Aσ (b)     of study Bσ

Fig. 8 Interpolation of parameters σ and a0, using a discrete Fourier
analysis to be able to calculate comfort values inbetween the four pass-
ing sides. Dots represent the fitted parameters, lines represent the result
of the Fourier analysis. Error bars represent standard errors

1). The value of θ represents the polar angle of the closest
point of passing. The meaning of these values is shown in
Fig. 7. This means that passing on the right corresponds to a
θ value of 0. Passing at the front, left and back correspond to
θ values of π/2, π and 3π/2 respectively. The angles of the
four directions that we tested are also indicated in Table 1.

The parameters of the inverted Gaussian differ for each
value of θ (side of passage). To interpolate between our four
passing sides, we used a discrete Fourier analysis to be able
to calculate the comfort value in-between the four directions.
The resulting periodic functions of the Fourier analysis are
shown in Fig. 8. In this Figure two cycles of the functions are
shown, however, the functions wrap around after one cycle
(e.g., θ = 2π represents the same location as θ = 0). For
more information on the discrete Fourier analysis see [8].

Using the parameters found in the Fourier analysis, we can
plot a comfort value for each location in the surroundings of
a person. The resulting contour plots are shown in Fig. 9.
These contour plots can be used to depict both shape and
size of personal space. The shape is clearly visible, in both
contour plots it is clear that comfort is lower at the back of
a person. The size of personal space depends on the task
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(a) Study A: Humanoid robot

(b) Study B: Non-humanoid robot

Fig. 9 Shape of personal space for study A (a) and study B (b). The
values indicate comfort level on the associated contour. The arrow rep-
resents a human with the front directed to the top of the figure. Axes
represent the position in centimetres from the center of the human

constraints. If in a certain context, robot efficiency is more
important than human comfort, a lower level of comfort may
be considered acceptable, e.g., 3.80, as shown in Fig. 9. This
will result in the robot being able to pass close by a human,
to increase its efficiency. On the contrary, if human comfort
is more important, a higher level can be chosen, e.g., 5.55,
as shown in Fig. 9. In this case, the size of personal space
is bigger and the robot will keep more distance to a person.
Furthermore in the latter case also the shape is different.With
a comfort level of 3.80 the shape is rather circular, but with
a comfort level of 5.55 it is elongated at the back.

4 Discussion

When robots are navigating in human environments, they
need to be able to represent the personal space of humans

correctly. In the current study,we experimentally investigated
the shape and size of the personal space of an individual
who is passed by a robot. To study this, both a humanoid
robot as well as a non-humanoid robot passed participants
in a lab at different distances and sides. After each passage,
participants were asked to indicate their perceived comfort.
Results indicated that comfort increasedwith distance,which
is in line with our earlier work [27] and consistent with [29].
Furthermore, especially in the case of the humanoid robot,
passing at the back of a person feels less comfortable than
passing at the front, whichmakes the shape of personal space
not circular, contrary to what we expected. Furthermore, the
humanoid robot coming from the back is perceived as less
comfortable compared to coming from the front.

We did not find a difference between passing on the left
and right of a person, which matches our previous find-
ings [27]. Although several studies report a preferred side
or an asymmetrical shape of personal space [6,10,39], we
did not find it here. Assuming our participants were mostly
right-handed and were used to keeping right in traffic, a
preferred side would be easy to understand. The apparent
absence of a difference between comfort on the left or right
might be explained by the context of the current experiment.
Task constraints are able to supersede social conventions or
preferences [18] and since the current task was very straight-
forward, it could be that there is no clear preference.

We fitted the results with an inverted Gaussian, and
showed that this function is a good fit for the relation between
distance and comfort. The results of different studies (the cur-
rent study, [27] and [29]) can all be described by the same
function. The only difference is that for the results of our
earlier work [27] and the work of Pacchierotti et al. [29]
comfort seems to be a little higher overall than for the current
results. This may be due to the differences in study design.
In our earlier work [27] and the work of Pacchierotti et al.
[29] participants were walking in a hallway while passing
the robot. In the current study, participants were asked to
stand still on the indicated footsteps. It could be that walk-
ing gave them more feeling of freedom to avoid the robot
and therefore they rated lower distances as more comfort-
able. Additionally, the set-up of our earlier study [27] and the
study of Pacchierotti et al. [29] also differed, in the aspect
that the robot actively took a greater distance to the person
while passing in [29], while in our earlier work [27], the
robot drove along the same line. It appears as if the first
option is more comfortable, looking at Fig. 6. Overall, we
argue that the invertedGaussian captures the relation between
comfort and distance rather well, but the quantitive num-
bers of comfort seem to depend on context, e.g. were people
moving or not, and did the robot actively diverge from its
path.

We used this function to create a contour plot of the shape
of personal space. Since passing at the back is less comfort-
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able, the resulting shape is not circular. The shape of personal
space that we found in the current study roughly matches the
findings of previous research in human proxemics [4,28]. It
was indicated that people preferred to have more space at
the back. Clearly, people cannot use vision at the back. This
makes it harder to determine where the robot currently is
and where it is going. We think that this can also explain
the findings of the current study. Some participants indicated
that they were uncomfortable because they heard the robot
and even felt the floor vibrate as it passed behind them, but
they could not see where it was or where it was going. Pre-
sumably visual feedback and predictability are important for
perceived comfort.

Another possible explanation of this finding is that people
were focusedon the robot because their task in the experiment
was to rate their perceived comfort with the passing of the
robot. If people would be distracted or mentally occupied
with a different task, it might be that they would not even
notice that the robot passed them at the back. Additionally,
if this would be the case, passing at the front could even be
more uncomfortable because of a surprise effect when they
suddenly notice the robot in their visual field while being
distracted [37].

Incorporating the current findings in the Human-Aware
Motion Planner [37] is relatively straightforward. In this
motion planner a robot needs to choose a path in front of
a human over a path behind a human to avoid an undesir-
able surprise effect. Their representation of humanproxemics
in a cost map can easily be related to the personal space
model obtained in our current work. Our results can also
assist other human-aware navigation methods in how to rep-
resent humans in a cost map when planning an efficient
route from A to B. The contour plot of human comfort
that we created (see Fig. 9) can be used to represent non-
moving humans. A lot of path planners use cost maps to
plan an acceptable and efficient path. This cost map can be
used in a trade-off between human comfort and robot effi-
ciency, using different sizes of personal space dependent on
context-related task constraints. For future research, it would
be interesting to compare the cost map obtained in current
study with pedestrian data acquired in the real world [31], to
see whether the findings hold for people navigating amongst
each other.

If we compare the findings of the humanoid robot with the
non-humanoid robot it appeared more uncomfortable when
the humanoid robot passes at the back than when the non-
humanoid does this. A possible explanation of this finding
could be that the humanoid robot is regarded as more social
than the non-humanoid robot. Intrusion of another social
actor in your personal space causes discomfort, while it is
not an issue to stand close to a non-social obstacle. Presum-
ably, something similar applies if the robot is moving. In
other research where a moving robot approached people and

some people let it come as close as possible, the same expla-
nation was given [41]. However, this does not explain why
this difference is mainly visible when the robot passes a per-
son at the back, so further research is necessary to investigate
this phenomenon.

Except for the difference in the back, the results of the
humanoid and the non-humanoid robot are very comparable.
This suggests that these results could also apply to other
robots.

4.1 Limitations and FutureWork

Our work is part of a larger research programme where
we are systematically measuring and modelling human
responses to dynamically navigating robots present in the
environment around the human.Asmany variables are simul-
taneously at play, experimental approaches require drastic
simplifications of corresponding real-life situations in order
to ensure methodological rigor. The traditional trade-off
between experimental control and ecological validity also
holds for research in social robotics.

Additionally, some participants in our study had some
experience with robots in other experiments, which can
impact the results. However, it is likely that all people are
going to encounter robots more often in the future. There-
fore, we have to take people with all kinds of experience
levels into account and for that we believe the current par-
ticipant sample to be representative. In future studies, it is
good to take experience with robots and other individual dif-
ferences explicitly into account.

In the current work, the participant stood on a fixed spot.
In real life, the robot will likely mostly encounter humans
in dynamic situations, e.g., when they need to cross paths or
pass or overtake each other. In the current results, we see that
people require more space at the back. However, it stands
to reason that when a human is walking forwards, it is also
important that they have enough space at the front. We are
planning to validate the shape and size of personal space we
found in the current research with moving humans in future
research. An extra benefit of this would be that it enables us
to include behavioural measures like the walking path of the
humans, next to subjective measures like a questionnaire.

Another interesting aspect is to investigate movement
speed of the robot. Currently both the humanoid and the
non-humanoid robot had a relatively slow movement speed
(0.35 m/s). In early research, it was found that people start to
feel uncomfortable when a robot moves faster than the aver-
age speed for humans (1 m/s) [35]. Future research could
investigate how the movement speed of the robot relates to
the shape and size of personal space, especially when the
robot has a higher speed than humans.
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4.2 Conclusion

In the current study the shape and size of personal space of
a person who is being passed by a robot were determined,
both for a humanoid and non-humanoid robot. Results show
that perceived comfort increases with distance. There is no
difference in comfort if we compare the left and the right
side of a person, but people are less comfortable with robots
that pass them at the back. This results in a cost map that is
non-circular and extends at the back. This cost map hardly
differs for the humanoid and non-humanoid robot.We expect
that the shape of our cost map for static people is similar for
many robots. The size will probably depend on contextual
factors. The insights gained in the current research can serve
as an input for path planning algorithms for implementing
human-aware navigation.
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