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Abstract
Trust in automation, ormore recently trust in autonomy, has received extensive research attention in the past three decades. The
majority of prior literature adopted a “snapshot” view of trust and typically evaluated trust through questionnaires administered
at the end of an experiment. This “snapshot” view, however, does not acknowledge that trust is a dynamic variable that can
strengthen or decay over time. To fill the research gap, the present study aims to model trust dynamics when a human interacts
with a robotic agent over time. The underlying premise of the study is that by interacting with a robotic agent and observing
its performance over time, a rational human agent will update his/her trust in the robotic agent accordingly. Based on this
premise, we develop a personalized trust prediction model and learn its parameters using Bayesian inference. Our proposed
model adheres to three properties of trust dynamics characterizing human agents’ trust development process de facto and thus
guarantees high model explicability and generalizability. We tested the proposed method using an existing dataset involving
39 human participants interacting with four drones in a simulated surveillance mission. The proposed method obtained a root
mean square error of 0.072, significantly outperforming existing prediction methods. Moreover, we identified three distinct
types of trust dynamics, the Bayesian decision maker, the oscillator, and the disbeliever, respectively. This prediction model
can be used for the design of individualized and adaptive technologies.

Keywords Trust in automation · Human–robot interaction · Human-automation interaction · Bayesian inference

1 Introduction

The use of autonomous and robotic agents to assist humans is
expanding rapidly. Robots have been developed for various
application domains such as urban search and rescue (USAR)
[1], manufacturing [2], and healthcare [3]. For example,
an in-home robot can be used to improve the coordination
of patient communication with care providers and to assist
the patient with medication management. In order for the
human–robot team to interact effectively, the human should
establish appropriate trust toward the robotic agents [4–7].

Humans’ trust in automation, or more recently trust in
autonomy, has received extensive research attention in the
past three decades. The diverse interest has generated mul-

B X. Jessie Yang
xijyang@umich.edu

Yaohui Guo
yaohuig@umich.edu

1 Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, MI, USA

tiple definitions of trust as a belief, attitude, and behavior
[6]. In this paper, we use the definition by Lee and See [8]:
Trust is the “attitude that an agent will help achieve an indi-
vidual’s goals in situations characterized by uncertainty and
vulnerability” (see [6,9,10] for discussions on the definitions
of trust and see [11–13] for examples using the Lee and See’s
definition).

Despite the research effort, existing research faces two
major challenges. First, the majority of prior literature
adopted a “snapshot” view of trust and typically evalu-
ated trust at one point, usually at the end of an experiment
(Fig. 1). The static snapshot approach, however, does not
fully acknowledge that trust is a dynamic variable that can
strengthen and decline over time. With few exceptions (e.g.
[14–21]), we have little understanding of a human agent’s
trust formation and evolution process after repeated interac-
tions with a robotic agent [7,20]. Second, trust in automation
is usually measured by questionnaires administered to the
human agents. This approach introduces operational chal-
lenges, especially in high-workload and time-critical set-
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Fig. 1 The static “snapshot” view versus the dynamic view of trust.
At time t, both agents have the same level of trust. However, their trust
dynamics are different

tings, because the human agent may not have the resource or
time to report trust periodically.

To address the two challenges, we develop a computa-
tional model that does not depend on repeatedly querying the
human interacting with a robotic agent. Instead, this model
infers a human’s trust at any time by analyzing the robotic
agent’s performance history.Wemodel a human agent’s tem-
poral trust using a Beta distribution and learn its parameters
using Bayesian inference based on the history of the robotic
agent’s performance. This formulation adheres to threemajor
properties of trust dynamics found in prior empirical stud-
ies: Trust at the present moment is significantly influenced
by the trust at the previous moment [15]; Negative expe-
riences with autonomy usually have a greater influence on
trust than positive experiences [18,21]; A human agent’s
trust will stabilize over repeated interactions with the same
autonomous agent [20]. We test the proposed method using
an existing dataset involving 39 human participants inter-
acting with four drones in a simulated surveillance task.
Results demonstrate that the proposed model significantly
outperforms existing models [15,19]. On top of its superior
performance, the proposed model has another two signifi-
cant advantages over existing trust inference models. As the
proposed formulation adheres to human agents’ trust for-
mation and evolution process de facto, it guarantees high
model explicability and generalizability. Additionally, the
proposed model is not based on the collection of human
agents’ physiological information, which could be difficult
to collect.

The remaining of the article is organized as follows. Sec-
tion 2 reviews the relevant literature on trust dynamics and
prediction models. Section 3 formulates the trust prediction
problem. Section 4 describes the proposed model and Sect. 5
describes the dataset. Section 6 presents and discusses the
prediction results of the proposedmodel. Section 7 concludes
the study and suggests future research.

2 Background

Asdescribed in Sect. 1, themajority of prior literature on trust
in automation adopted a “snapshot” view and typically eval-
uated trust at the end of an experiment. More than two dozen
factors have been identified to influence one’s “snapshot”
trust in automation. These factors can be broadly categorized
into three groups: individual (i.e., the truster) factors, system
(i.e., the trustee) factors and environmental factors. Examples
of individual factors are human’s culture and age [22–24].
System factors include robot’s reliability [25,26], level of
autonomy [27], adaptivity [28] and transparency [29], timing
and magnitude of robotic errors [9,30], and robot’s physi-
cal presence [31], vulnerability [32], and anthropomorphism
[33]. Environmental factors include multi-tasking require-
ments [34] and task emergency [35].

This “snapshot” view, however, does not acknowledge
that trust can strengthen or decay due to moment-to-moment
interaction with autonomy. Only few studies emphasized the
dynamic nature of trust and examined how trust changes as a
human agent interactswith a robotic agent over time [14–21].

Manzey et al. [18] noted two feedback loops in the human
agent’s trust adjustment process, namely a positive and a
negative feedback loop. The positive loop is triggered by
experiencing automation success, and the negative loop by
experiencing automation failure. The negative feedback loop
exerts a stronger influence on trust adjustment than the pos-
itive feedback loop [15,21]. In addition, Lee and Moray
[15] proposed an auto-regressive moving average vector
(ARMAV) time series model of trust which calculated trust
at the present moment t as a function of trust at the pre-
vious moment t − 1, task performance, and the occurrence
of automation failures. Yang et al. [20] examined how trust
in automation evolved as an average human agent gained
experience interacting with robotic agents. Results of their
study showed that the average human agent’s trust in automa-
tion stabilized over repeated interactions, and this process
can be modeled using a first-order linear time-invariant
dynamic system. The above-mentioned studies provide valu-
able insight into the trust dynamics of an average human
agent. More recent studies used a data-driven approach to
model trust dynamics. In this approach, trust is considered as
information internal to the human that is not directly observ-
able but can be inferred from other observable information
[19]. For example, Hu et al. [14] proposed to predict trust as a
dichotomy, i.e., trust/distrust, by analyzing the human agent’s
electroencephalography (EEG) and galvanic skin response
(GSR) data. Similarly, Lu and Sarter [17] proposed the
use of eye-tracking metrics including fixation duration and
scan path length to infer the human’s real-time trust. Their
follow-up study [16] used threemachine learning techniques,
logistic regression, k-nearest neighbors (kNN), and random
forest to classify the human’s real-time trust level. Instead
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of using physiological signals, Xu and Dudek [19] built
an online probabilistic trust inference model based on the
dynamic Bayesian network framework, treating the human
agent’s trust as a hidden variablewhichwas estimated by ana-
lyzing the autonomy’s performance and the human agent’s
behavior. In [19] the trust dynamics of each individual human
agent was modeled. The above mentioned data-driven meth-
ods provided insights on how to predict a human’s real-time
trust by analyzing other observable information. However,
they were subject to two limitations. First, some of them
depend on using physiological sensors such as EEG and eye-
tracking devices, which could be intrusive or be sensitive to
noises [14,16,17]. Second, as none of the existing models
fully considered the empirical results showing how human
agents adjust their trust de facto, the resulting models could
be limited in model explicability and generalizability.

3 Problem Statement

In the present study, we aim to propose a personalized trust
prediction model to predict each individual human agent’s
trust dynamics when s/he interacts with a robotic agent over
time. In this section, we formulate the trust prediction prob-
lem mathematically.

We consider a scenario where a robotic agent is going to
work with a new human agent on a series of tasks. We denote
the robot’s performance on the i th task as pi ∈ {0, 1}, where
pi = 1 indicates a success and pi = 0 indicates a failure. The
reliability of the robotic agent, r ∈ [0, 1], is defined as the
probability that the robot can succeed in the task. We assume
that the robot has the same reliability while working with
the new human agent. At time i , after observing the robot’s
performance pi , the new human agent will update his or her
current trust ti ∈ [0, 1] according to the robot’s performance
history {p1, p2, . . . , pi }, where ti = 1means the new human
agent completely trusts the robotic agent and ti = 0 means
s/he does not trust it at all.

We assume that before the new human agent, the robotic
agent has worked with k other old human agents, and each
of the old human agents finished n tasks. Each old human
agent reported his or her trust at the end of each task, so
his or her trust history T j = {t j1 , . . . , t jn } and the robot’s

performance history P j = {p j
1 , . . . , p

j
n} are fully available,

j = 1, 2, . . . , k.
Before performing a real task, the new human agent

receives a training session consisting of l tasks (see Fig. 2).
In the training session, the new human agent reports his or
her trust after every task. After the training session, the new
agent is to perform real tasks, during which s/he can choose
whether to report his or her trust in the robotic agent at their
own discretion.

Human operator reports trust 
a�er every interac�on

Personalized Training Real Tasks

Human operator reports 
trust occasionally

Fig. 2 The new human agent receives a training session before per-
forming the real tasks. During the training, the agent reports his or her
trust after every interaction. When performing the real tasks, the agent
reports his or her trust occasionally at their own discretion

The objective of the trust prediction problem is to pre-
dict the new human agent’s trust tm after s/he finishes the
mth task, based on the robot’s performance history Pm =
{pi |i = 1, 2, 3, . . . ,m}, trust history during the training ses-
sion T t

m = {ti |i = 1, 2, 3, . . . , l}, occasionally reported trust
T o
m = {ti |i ∈ Om, Om ⊂ {l + 1, l + 2, . . . ,m − 1}}, and

the data T j and P j from the k old agents, j = 1, 2, . . . , k.
Here, Om is an indicator set: Om = Om−1 ∪ {m − 1} if the
user choose to report his trust after the m − 1th task, oth-
erwise Om = Om−1. We define trust history at time m as
Tm = T o

m ∪ T t
m .

This formulation applies to any interaction scenarios
wherein the human and the robotic agent are interacting
with each other repeatedly and the human can observe the
robotic agent’s task performance over time. For example, a
newly purchased in-home robot reminds an elderly adult of
an upcoming monthly medical check-up. The elderly adult
does not double-check the calendar and shows up at the doc-
tor’s office. Until then s/he finds out that the appointment has
been re-scheduled by the doctor but the robot has not updated
the calendar due to an error. Such a situation is considered a
task failure by the robotic agent, and will most likely lead to
a trust decrement. After the elderly adult interacts with the
robot many times, s/he will probably have a more calibrated
trust toward the robot and may not blindly follow the robot’s
monthly reminders anymore.

4 Personalized Trust PredictionModel

In this section, we summarize the major empirical findings
on trust dynamics. After that, we introduce the proposedBeta
distributionmodel and explain how it adheres to the empirical
findings. Finally,wedescribe theBayesian frameworkweuse
to infer the model’s parameters.

4.1 Major Empirical Findings on Trust Dynamics

Based on the studies reviewed in Sect. 2, a desired trust pre-
diction model should adhere to three properties:
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1. Trust at the present moment i is significantly influenced
by trust at the previous moment i − 1 [15].

2. Negative experiences with autonomy usually have a
greater influence on trust than positive experiences [18,
21].

3. A human agent’s trust will stabilize over repeated inter-
actions with the same autonomous agent [20].

4.2 Personalized Trust PredictionModel

We use Beta distribution to model a human agent’s temporal
trust, for three reasons. First, Beta distribution, defined on the
interval [0, 1], is consistent with the bounded self-reported
trust. Other distributions, e.g., Gaussian distribution, could
be unbounded. Second, Beta distribution fits the exploration-
exploitation scheme and can be useful in a reinforcement
learning scenario. Third, more importantly, the Beta distri-
bution formulation adheres to the three properties in Sect. 4.1.

We use Bayesian inference to calculate the parameters
defining the Bata distribution, because it provides better
explainability compared to other machine learning methods,
such as neural networks. Also, Bayesian inference provides
a belief instead of point estimation of trust so it incorporates
uncertainty. Moreover, Bayesian inference can leverage the
population-wise prior for calculating model parameters for
each individual human agent.

After the robotic agent completes the i th task, the human
agent’s temporal trust ti follows a Beta distribution:

ti ∼ Beta(αi , βi ) (1)

The predicted trust t̂i is calculated by the mean of ti

t̂i = E(ti ) = αi

αi + βi
(2)

αi and βi are updated by

αi =
{

αi−1 + ws, if pi = 1

αi−1, if pi = 0

βi =
{

βi−1 + w f , if pi = 0

βi−1, if pi = 1

(3)

where pi is the performance of the robot on the i th task. αi

and βi are the parameters of the Beta distribution and ws

and w f are the gains due to the human agent’s positive and
negative experiences with the robotic agent. In other words,
a success of the robot causes an increase in αi by ws and
a failure of the robot causes an increase in βi by w f . The
superscript s stands for success and f stands for failure.

Next we explain how the model adheres to the three prop-
erties of trust dynamics. First, it is clear in Eq. (3) that the

Region where failures
have larger impact on trust

50 100 150 200 250 300
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Fig. 3 In thewhite region, the robot agent’s failurewould have a greater
impact on trust than the robot agent’s success. Here we set w f = 50
and ws = 20

present trust is influenced by the previous trust, which sat-
isfies the first property. Second, we calculate the difference
between trust increment caused by the robot agent’s success
and trust decrement caused by the robot agent’s failure at
time i :

(t̂i |pi=1 − t̂i−1) − (t̂i−1 − t̂i |pi=0)

= 1

D

(
wsβi−1

D + ws
− w f αi−1

D + w f

) (4)

where D = αi−1 + βi−1.
If αi−1 and βi−1 are close, Eq. (4) indicates that the robot

agent’s failure will lead to a greater trust change compared
to the robot agent’s success when w f > ws . More precisely,

when α
β

> ws D+wsw f

w f D+wsw f , the robotic agent’s failures will have
a greater impact. An example is shown in Fig. 3. Within the
white region the robot agent’s failure would lead to a larger
trust change. In Sect. 5we show thatw f > ws is true formost
human agents, such that the second property will be satisfied
when the value of ws and w f are appropriately chosen.

We assume the robot has a constant reliability r . After
n tasks, the robot accomplishes ns tasks and fails n f tasks.
Then

ti ∼ Beta(α0 + nsws, β0 + n f w f ) (5)

When n → ∞, tn will be a point mass distribution centered
at

α0 + nsws

α0 + β0 + n f w f + nsws
= rws

rws + (1 − r)w f
(6)
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which is a constant and it means trust stabilizes with repeated
interactions. Therefore, the proposedmodel satisfies the three
properties of trust dynamics.

To infer the model’s parameters, after the mth trial, and
given the robot’s performance history Pm =
{p1, p2, . . . , pm}, we determine trust Tm = {t1, t2, . . . , tm}
by the parameter set

θ =
{
α0, β0, w

s, w f
}

(7)

Personalizing the trustmodel for the new human agentmeans
finding the best θ for him or her. Here, we use themaximum a
posteriori estimation (MAP) to estimate θ , which is to maxi-
mize the posterior of θ , given the robotic agent’s performance
Pm , trust history Tm and robot reliability r . First, we have

P(θ | Pm, Tm, r)

∝ P(Pm, Tm, r | θ) P(θ)

= P(Tm | θ, Pm, r) P(Pm, r | θ) P(θ)

= P(Tm | θ, Pm) P(Pm | r , θ) P(r | θ) P(θ)

= P(Tm | θ, Pm) P(Pm | r) P(r) P(θ)

∝
∏
ti∈Tm

Beta(ti ;αi , βi ) · P(θ)

(8)

Then

θ = argmax
θ

P(θ | Pm, Tm, r)

= argmax
θ

∏
ti∈t

Beta(ti ;αi , βi ) · P(θ)

= argmax
θ

∑
ti∈Tm

log(Beta(ti ;αi , βi )) + log P(θ)

(9)

The above equation shows that θ will be updated only when
the human agent provides a new trust report. As P(θ) is
unknown, the model needs to learn P(θ) first. This prior can
be estimated by the empirical distribution of the parameters
of the k old human agents who have previously worked with
the same robotic agent. The parameter θ j of agent j is esti-
mated via the maximum likelihood estimation (MLE):

θ j = argmax
θ

P(T j | θ, P j )

= argmax
θ

n∏
i=1

Beta(t ji ;α
j
i , β

j
i )

(10)

where α
j
i , β

j
i , i = 1, 2, . . ., are determined by Eq. (3).

Fig. 4 Dual-task environment in the simulation testbed. The two images
show displays from the simulation testbed for the tracking (left) and
detection (right) tasks respectively. Participants could access only one
of the two displays at a time, and could switch between them

5 Experiment and Dataset

In this section, we describe the experiment and dataset used
to test our proposed model.

We use the dataset in Yang et al. [20]. Participants in the
study had an average age of 24.3 years (SD= 5.0 years) with
normal or corrected-to-normal vision and without reported
color vision deficiency.

All participants performed a simulated surveillance task
with four drones. Each participant performed two tasks
simultaneously (Fig. 4): controlling four drones using a joy-
stick and detecting potential threats in the images captured
by the drones. The participant was able to access only one
task at any time and had to switch between the controlling
and the detection tasks.

The drones were able to detect potential threats. They
would report ‘danger’ when a threat was detected. Due to
environmental noises, the threat detectionwas imperfect. The
system reliability of the drones was set as 70, 80, and 90%
according to the signal detection theory (SDT) [36,37]. There
were four states considering the drones’ detection results and
the true states of the world: hits, misses, false alarms, and
correct rejections. As the drones cannot detect the threats
perfectly, there is uncertainty involved in the task. For this
particular experiment, a more contextualized definition of
trust is a person’s attitude that the drones will help him or her
achieve his or her goal in the surveillance mission.

The participants had two practice sessions to practice
using a joystick. The two practice sessions consisted of
a 30-trial block of the tracking task and an 8-trial block
of both the tracking and the detection tasks. Hits, misses,
false alarms, and correct rejections were illustrated during
the 8-trial block. Then the participant completed the subse-
quent experimental block of 100 trials. The experiment lasted
approximately 60 min with a 5-minute break at the halfway
point. After each trial, participants reported their perceived
reliability of the drones, trust in automation, and confidence.
Each participant received compensation (a $10 base) plus a
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bonus (up to $5). The compensation scheme was determined
from a pilot study, incentivizing participants to performwell.

6 Results and Discussion

In the present study, we use data from the 39 participants who
received binary detection alerts.We use the participants’ self-
reported trust and the drones’ detection performance data
according to the problem statement in Sect. 3. To fully exploit
the dataset, we use the leave-one-out method to evaluate the
proposed model. In each run, we select one participant as the
new human agent and consider the remaining 38 participants
as the old agents who previously worked with the drones.
The trust history of the old agents and the robotic agent’s
performance history are fully available for estimating P(θ);
for the new human agent, we assume s/he performs l trials
during the personalized training session and thereafter when
performing the real tasks s/he reports his or her trust every
q trials. In other words, after the new human agent’s mth
trial, where m > l, we predict his or her trust tm toward the
robotic agent given his or her personalized training trust his-
tory T t

m = {ti |i = 1, 2, 3, . . . , l}, the occasionally reported
trust feedback T o

m = {ti |i = l+q, l+2q, l+3q, . . . , i < m},
as well as the data T j and P j from the old agents.

6.1 Estimation of P(�)

We use Eq. 10 to estimate P(θ). Due to the small size of
the dataset, we assume α0, β0, w

s, w f are independent. We
learn the prior distribution of the four parameters usingMLE.
Figure 5 shows the empirical distributions of α0, β0, ws, w f .
Comparing the distributions of α0 and β0 shows that α0 has
a larger mean than β0, which indicates that the participants
in the experiment generally have a positive attitude toward
the robotic agent. Comparing the distributions of ws and
w f shows that in general w f > ws , which indicates most
detection failures cause larger trust changes than detection
successes.

6.2 Prediction Results and Performance
Comparisons

Figure 6 shows the prediction results for all the 39 partic-
ipants. The proposed model successfully captures the trust
dynamics for many participants.

We compare the proposed model with two existing trust
prediction models. We use root mean square error (RMSE)
to evaluate the difference between the predicted value and
the ground truth. The smaller the RMSE, the more accurate
the prediction.

The two models are the online probabilistic trust infer-
ence (Optimo) model [19] and the auto-regression moving

Fig. 5 Learned distribution of ws , w f , α0, and β0

Table 1 mean and standard deviation (SD) of the RMSE values of the
three models

RMSE
Mean SD

Proposed method 0.072 0.053

ARMAV 0.101 0.052

Optimo 0.139 0.080

average vector (ARMAV) [15] model. We do not compare
our model with [14] or with [16], because our dataset lacks
physiological data. Since the Optimo and the ARMAVmod-
els use different sets of variables, we modify them so all
three models use the robot’s performance history, but not
other behavioral variables (e.g., human agent’s intervention
behaviors [19]).

For each participant h, we calculate his or her RMSEusing
each prediction model g.

RMSEg
h =

√∑100
i=l+1

(
ti − t̂ gi

)
100 − l

(11)

where ti is the self-reported trust, t̂
g
i is the predicted trust cal-

culated using method g (i.e., our proposed model, ARMAV,
and Optimo), and l is the length of the personalized training
session.

The RMSE for each trust prediction model is calcu-
lated as the average of all the 39 participants: RMSEg =
1
39

∑39
h=1 RMSEg

h . Table 1 details the mean and standard
deviation of the RMSE values of the three models.

To compare the performance of the three trust predic-
tion models, we conduct a repeated-measure Analysis of
Variance (ANOVA), followed by pairwise comparisons with
Bonferroni adjustments. The omnibus ANOVA reveals a sig-
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Fig. 6 Trust prediction result for all participants under leave-one-out setting. X axis: trial number; Y axis: trust value. Blue curve: ground truth;
red curve: predicted trust. The number in each plot is each participant’s ID. (Color figure online)

Fig. 7 Mean and standard error (SE) of RMSE for the three models.
The error bar indicates the standard errors

nificant difference among the threemodels (F(2, 76)= 21.64,
p < .001). Pairwise comparisons reveals that our proposed
model significantly outperforms ARMAV with a medium-
large effect size (t(39) = 3.9, p < .001, Cohen’s d = 0.63),
and Optimo with a large effect size (t(39) = 5.7, p < .001,
Cohen’s d = 0.91). Figure 7 compares the three models.

The superior performance of our proposed model could
have been due to two reasons: First, the proposed method
captures the nonlinearity of trust dynamics, that trust sta-
bilizes over repeated interaction with the same autonomous
agent. In other words, the effect on trust due to a success
or a failure from the robotic agent changes as the interac-
tion experience changes. While the first task failure from
the robotic agent may cause trust to decline substantially, a
robotic task failure after the human agent gains more expe-
rience may not. On the contrary, the ARMAV and Optimo

models employ a linear rule for updating the predicted trust.
It is clear in Fig. 6 that most participants’ trust varies at the
start of the experiments and then stabilizes as more trials are
completed. Second, although the three models define trust on
a bounded interval [0, 1], only our proposed method guaran-
tees the predicted value to be bounded. The predicted trust
value from ARMAV or Optimo needs to be truncated if it
exceeds the defined boundary.

6.3 Effects of Trust Report Gap and Training
Duration

Since ws, w f , α0, and β0 are learned from the dataset, the
only tunable parameters are the trust report gap q and the
number of personalized trials l. Thus it is necessary to under-
stand the effects of the two parameters on the prediction
results of our proposed method.

To examine the effect of varying trust report gaps, we
set the training duration l = 10 and vary the trust report
gap q = 2, 5, 10 and 25. The average and SD of RMSE
across the 39 participants are 0.059± 0.050, 0.064± 0.052,
0.072 ± 0.053, and 0.085 ± 0.062 respectively. The effect
of using different trust report gaps is illustrated further by
using the data of one participant. Figure 8a shows that as the
trust report gap increases from 2 to 25, the deviance from the
ground truth and the predicted values increases accordingly.
Since the model parameters are updated when a new trust
feedback is available, there are “jumps” on the prediction
curve when the human agent chooses to report his or her
trust after the training period. If the trust report gap is too
wide, such as 25, the prediction accuracy is heavily harmed.
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Fig. 8 Prediction results with increasing trust report gaps q from 2 to
25. Training duration l is fixed at 10

This suggests that we need to carefully select the trust report
gap such that the trust prediction accuracy can be maintained
without disturbing the human agent extensively during real
tasks.

To examine the effect of using different training duration,
we vary the training duration l = 5, 10, 20, 40 while fixing
the trust report gap q at 10. The average RMSE across the 39
participants 0.076 ± 0.079, 0.072 ± 0.053, 0.071 ± 0.051,
and 0.068± 0.052 respectively (Fig. 9). This result suggests
that the prediction error decreases with a longer personalized
training session.

6.4 Three Types of Trust Dynamics

Detailed investigation of Fig. 6 reveals the existence of dif-
ferent types of trust dynamics. To further investigate them,we
performk-means clustering [38].Wefind thatwhilemost par-
ticipants’ trust can be accurately predicted by the proposed
method, some participants’ self-reported trust significantly
deviates from the predicted values. Moreover, four partici-
pants almost always reported very low trust in the experiment
(participants 7, 16, 19, 21 in Fig. 6). Therefore, we select the
RMSE and the average log trust as two features for the clus-
tering analysis. RMSE measures how close the participant’s

Fig. 9 Prediction results with increasing training durations l from 5 to
40. Trust report gap q is fixed at 10

trust dynamics follows the properties described in Sect. 4.1.
Average log trust, defined by

∑n
i=1 log ti/n, can separate the

participants who almost always report zero trust.We normal-
ize the features across participants and determine the number
of clusters by the elbow rule [39], which is a commonly
used heuristic to select the number of clusters. Figure 10
shows the three types trust dynamics and Fig. 11 shows the
clustering analysis process. The first type is the Bayesian
rational decision maker, shown in Fig. 10a. A Bayesian deci-
sion maker’s trust dynamics follows the three properties that
trust is dynamic, changes according to the robotic agent’s
performance, and stabilizes over repeated interactions. The
second is the oscillator, shown in Fig. 10b whose tempo-
ral trust significantly fluctuates. The third is the disbeliever,
shown in Fig. 10c, whose trust in the robotic agent is con-
stantly low. The different types of trust dynamics may be
related to each human agent’s individual characteristics, such
as their propensity to trust autonomy [12].

7 Conclusion

We proposed a personalized trust prediction model that
adheres to three properties of trust dynamics characterizing
human agents’ trust development process de facto. Trust was
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Fig. 10 Three types of trust dynamics when human and autonomous agents interact over 100 interactions. Trust at time i is normalized (trusti ∈
[0, 1]). Blue curve indicates the human agent’s reported trust (ground truth). Red curve indicates the predicted trust. (Color figure online)

Fig. 11 Clustering of participants based on their trust dynamics

modeled by a Beta distribution with performance-induced
parameters. The parametric model learned the prior of the
parameters from a training dataset. When predicting the tem-
poral trust of a new human agent, the model estimated the
posterior of its parameters based on the interaction history
between the human agent and the robotic agent. The model
was tested using an existing dataset and significantly outper-
formed existing models. On top of the superior performance,

the proposed model has another two significant advantages
over existing trust inference models. As the proposed formu-
lation adheres to human agents’ trust formation and evolution
process de facto, it guarantees high model explicability and
generalizability. Additionally, the proposed model does not
depend on the collection of human agents’ physiological
information, which could be intrusive and difficult to col-
lect.

The proposed trust model complements the subjective
measures of trust and can be applied to design adaptive
robots. Accurately predicting trust in real time is the first step
in designing robotic agents that can adapt to human agents’
trust. For example, if a home companion robot detects an
unexpected decline in trust by its human owner, the robot can
adopt specific trust recovery strategies to regain the owner’s
trust.

The results should be viewed in light of the following lim-
itations: First, the proposed model assumes that the robotic
agent’s ability is constant across all the interactions. Sec-
ond, it assumes the parameters are independent of each
other. Third, the proposed model assumes that the robotic
agent’s performance is dichotomous and immediately avail-
able after a task. Fourth, each participant in the experiment
had 100 interaction episodes with the robotic agent in a
relatively short period of time. To address the four limita-
tions, further research is needed to test whether the proposed
method would work for situations where a robotic agent
learns and improves over time.The independence assumption
can be removed once a larger dataset is available. Another
promising future research direction is to examine how the
proposed model should be modified for situations wherein
the robotic agent’s performance consists of multiple levels
(e.g., extremely good, good, neutral, bad, extremely bad) or
the agent’s performance results are delayed. Further research
is also needed to validate the proposed method with longer
interaction episodes and to examine relationships between
participants’ individual characteristics and their trust dynam-
ics.
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