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Abstract
As social robots become more popular, so arises the need for these social agents to operate in environments involving multiple
users. The robot control systems that govern these multi-party interactions require to be evaluated both from the technical and
social standpoints. This paper presents the methodology, setup and results for experiment involving the social robot EMYS
participating in multi-party interaction where pairs of participants interacted with the robot in a trivia questions game lead
by the robot . In total 32 people, 16 pairs, interacted with the robot twice, which resulted in 32 interactions and 64 filled
questionnaires. The developed robot’s multi-party interaction system was evaluated both in terms of performance and user
assessment. The results show that the robot adhering to human turn-taking social norms reduced the number of occurring
conversational errors, which improved the communicative performance from 51.5% to 80.5%, in addition, it made the robot
perceived as more communicative, cooperative and fitting user expectations by up to 3 points on a 7 point scale. In addition,
the study on repeated interactions revealed that user perception of the robot is affected by subsequent interactions, which can
be of consequence in future experiments. This first impression caused lasting effect between 1 and 2 points on user assessment
of several robot’s aspects, even when contradicted by objective performance measurement of the robot’s actual behavior.

Keywords Social robot · Human–robot interaction · Multi-party interaction · Robot control · User assessment

1 Introduction

In the last decade social robots have been receiving growing
interest by the scientific community, partners in the industry
and finally, the end-users of the robots. Social robots have
successfully been placed in the roles of personal assistants
and helpers [15,16], however, as of late their social environ-
ment is expanding and social robots are encountering more
situations where there is a need to interact with multiple users
simultaneously. Such examples include a robot participating
in a discussion involving several users [28], mediation [19]
and participating in a social game either as a player [39] or
as a host [7].

One of the core requirements for a social robot is the abil-
ity to use natural communication in the interaction with the
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user [8]. Within the human–robot interaction (HRI) commu-
nity there tends to be a division between external and internal
aspects of interaction [4]. The external aspects focus on user
reaction and assessment of selected features of the robot, such
as its morphology or personality, as well as the expression
of emotions and intentions, both verbally and non-verbally
[2,3,57,59,60]. The research on internal aspects focuses on
sensory perception, modeling and control/decision making
in the context of interpersonal interaction and its surround-
ings, natural language processing and machine learning. This
research usually focuses on the implementation of a proof of
concept scenario in a limited environment and evaluation
of its performance [21,27]. The goal is to understand social
norms regulating human–human interaction and communi-
cation through modeling, as well as to verify whether these
principles have a comparable application in human–robot
interaction. Examples of such studies are the topics of the
robot’s touch and embodiment [13,30,46,63], personal space
and proxemics [36,55,61,62], and turn-taking [8,11,29,51],
the last one being the subject of this paper.

In this paper we present a developed multi-party inter-
action system and its verification through an experimental
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Fig. 1 The robotic expressive head EMYS [26]

scenario that involves a social robot EMYS (Fig. 1) host-
ing a game of trivia questions for its users. The system is
verified from the perspective of performance evaluation and
user opinion assessment. Furthermore, the impact of repeated
interactions with the robot on user assessment was studied.

Robotic head EMYS (Emotive headY System) [24,26]
was used as experimental platform. This robot was cho-
sen due to its appearance, expressive abilities and well-
documented software. EMYS’s appearance was the designed
in a way that would allow him to bypass the problem of
uncanny valley (stating that humanoids that appear almost,
but not exactly, like real human beings elicit feelings of eeri-
ness and revulsion in observers [35]), while still maintaining
the ability to express human-like emotions [25]. The ability to
move its head, eyes and eyelids allows EMYS to engage users
through gaze, which is an important turn-taking cue for multi-
party interaction. The robot had been successfully used in
multiple experimental scenarios involving empathic robotic
tutors [10,12], closing the mind-body loop [42], adapting
the principles and practices of animation for robots [41] and
long-term interactions [15].

2 RelatedWork

Not many robots can autonomously participate in turn-
taking, even less can do so in a multi-party setting. This
sections describes the turn-taking phenomenon, the turn-
taking cues are used by social robots, as well as examples of
robots operating autonomously in multi-party interactions. It
shows that robots operating in multi-party settings are rarely
evaluated simultaneously both in terms of performance and

user assessment. Moreover, it was found that neither turn-
taking nor multi-party interactions were evaluated through
repeated interactions.

In human–human interaction turn-taking occurs naturally.
Studies have revealed that general rules of turn-taking seem
to be universal [31,47], with relatively small differences
across cultures and languages [52]. The rules of turn-taking
organize the conversation into turns, during which one of the
participants has the right to speak while the others agree to
listen. The number of speakers, as well as the length of turns,
can vary. The speakers jointly regulate the flow of conversa-
tion in order to minimize both the gaps between turns and the
overlap. Natural turn-taking is highly efficient and robust, as
it works just as well without visual contact. Less than 5% of
the conversation involves two or more simultaneous speak-
ers (the modal overlap is less than 100 ms long), while the
modal gap between turns is only around 200 ms [32]. Various
turn-taking cues are used to signal the intents of the partici-
pants, depending on the available channels of communication
[14,38]. Conversational analysis [50] recognizes gaze as one
of the most important turn-taking cues for multi-party inter-
action and an indicator of listeners attention.

In case of social robots, most commonly used turn-
taking used are pauses, prosody, gaze direction and body
positioning. Mutlu [37] showed that a robot can impose a con-
versational role on participants by shifting attention via gaze
during an interaction. Bruce et al. [9] showed that actively
turning to human interaction partners significantly increases
their willingness to interact. These studies used silence and
gaze to facilitate turn-taking behavior, while the robot was
teleoperated by the researchers.

Ideally the social robot should be autonomous, however,
many HRI studies use the Wizard-of-Oz method [22] in
exploratory experiments, in which the social situations are
too complex or unpredictable for autonomous robot. In such
cases the autonomous robot control system is replaced by a
human operator, unbeknown to the participants of the exper-
iment. Multi-party HRI studies that follow this approach
involve the topics of building the speech corpus used in such
interactions [53], modeling the role of the gaze as a turn-
taking signal [1] or recognizing gaze patterns for different
conversational roles (speaker, addressee, side-participant)
[20]. It is vital that the knowledge gained in this fashion
should be used to develop autonomous robots [44].

As of yet, there are not many robots outfitted to autonom-
ously interact with human groups, despite that this type of
interaction occurs rather frequently for humans. To provide a
background we discuss below three examples of autonomous
human–robot interaction in a multi-party context.

Kondo et al. [28] study the impact of robot’s gestures on
the user interaction assessment and the duration of interac-
tion in multi-party conditions. The experiments involved an
autonomous android robot in a large number (1662 people)
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of short interactions (under a minute). It was shown that
the use of non-verbal communication through gesticulation
increases the length of interaction up to twofold and make
the users assess the the robot more favorably. Noteworthy in
these experiment is the open nature of the interaction with
the robot. In contrast, there is no defined task for the robot
to accomplish and there is no interaction between users due
to the short duration of these meetings, therefore, while the
environment is considered as multi-party, the interactions are
almost exclusively two-sided.

The work of Pereira et al. [39] explores building social
presence for artificial opponents. An autonomous social robot
is placed into the role of a board-game opponent for three
people during a game of risk. The study focuses on user
assessment and the perception of the robot. As a result it
presents guidelines for designing socially present opponents.
According to the authors, such agent should be embodied,
use verbal and non-verbal communication, show emotions,
have social memory (history of previous games), and sim-
ulate social roles (like motivator, rival or helper) during the
game. While usually the multi-party human–robot interac-
tion involves a cooperative scenario, this work is exceptional
in that it presents multi-party turn-taking in a situation of
conflicting goals of conversation participants.

Bohus and Horvitz developed a multi-party interaction
system for a virtual agent [5,6]. The research focuses on facil-
itating multi-party dialog through gaze, gestures and speech
with two and three users. The proposed verbal and non-verbal
cues affect the success rate of the action of releasing the
floor to a selected user over different dialog contexts (ques-
tion, confirmation, etc.) In some specific cases noticeable
improvements were reported, for example for verbal confir-
mations within interactions involving two participants and
the system, the participant to whom the system had released
the floor was the first to speak in 86.2% of the cases. In an
other paper [7] a subjective user assessment of the system
rated it within 4.5–5.0 on a 7-point Likert scale, however no
comparison to any control condition was presented.

Other noteworthy research include: the effects of robot
moderation in a team collaborative game, in which the
robot influenced the trade-off between social cohesion of the
group and the task performance [49], robot controlling the
level of engagement between main and side-participants in a
four-party setting [34], facilitating inter-group trust through
exhibition of vulnerable behavior [54], building relationships
and facilitating with children through praise, competition
encouragement, sympathy, stimulation [48]. Recent work
[18] indicates how human–robot interaction can be affected
by factors such as group presence, cohesiveness and group
social norms. The above studies show that social robots are
taking up more active roles in group interaction and start
to influence the behaviors of the individuals, as well as the
group altogether.

In conclusion, multi-party HRI studies involving an
autonomous robot rarely provide simultaneous performance
evaluation and user assessment, as was the case in [7]. The
reports either focus solely on user assessment [28,39,58]
or on performance evaluation of some multi-party interac-
tion component, e.g. gaze and lip movement detection [43],
user engagement classification [17], addressee detection and
selection [33]. In contrast, the study presented in this paper
utilizes both behavioral and survey measures to provide an
interdisciplinary evaluation of multi-party interaction sys-
tem.

Regarding repeated human–robot interaction, Jones and
Schmidlin [23] explain the importance of understanding HRI
beyond participants first impressions. Złotowski et al. [64]
show that repeated interactions with a robot can reduce the
uncanny valley effect in the perception of the robot. The
repeated exposure to the robot can improve robot’s likeability
and reduce its eeriness. Robins et al. [45] present the effect of
long-term repeated human–robot interaction on the children
with autism. Over time children got accustomed to the robot
reporting more emotional significance and meaning to the
experiences with the robot. However, no studies regarding
the effects of repeated interactions has been found, neither
in the case of human–robot turn-taking, nor in the case of
multi-party HRI.

To summarize, the goals of the study presented in this
paper were to:

– use an autonomous social robot,
– develop an interaction system for EMYS that acts in

accordance with human multi-party turn-taking norms,
– evaluate this interaction system both in terms of perfor-

mance and user assessment,
– compare the results with the basic EMYS interaction sys-

tem,
– quantify the effect of first impression in the context of

robot multi-party turn-taking behavior.

3 Methodology

The main purpose of this study was to verify the interaction
system developed for a social robot to participate in multi-
party interaction. Three research questions are considered in
this paper:

RQ1 How does the robot’s adhering to human turn-taking
norms impact its performance, measured in percentage of
correct turn-exchanges, in terms of multi-party communica-
tion?

RQ2 How does the robot’s adhering to human turn-taking
norms impact the user assessment of the robot in terms of
multi-party communication?

123



696 International Journal of Social Robotics (2019) 11:693–707

RQ3 How does repeated interactions with the robot influence
its performance and user assessment?

In this section we describe the proposed multi-party inter-
action system and present the design for the experiment.

3.1 Multi-party Interaction System

A multi-party interaction system was developed to extend
the abilities of social robot EMYS. The basic capabilities
of EMYS use a spoken dialog system for a conversational
agent that relies on mostly on speech, which has proven to
be enough for interactions with a single user, however it is
prone to conversational errors in multi-party interaction. The
purpose of the experiments was to test the proposed multi-
party interaction system (M), which implemented human
turn-taking behavior and multi-party capabilities, in relation
to this basic interaction system (B).

The control system of social robot EMYS is comprised
of a three-layer architecture: lowest, middle and highest
layer [26]. The lowest layer provides an access point for
actuators, sensors and external software. The middle layer
implements robot’s competencies, i.e. tasks that the robot
is able to perform. These competencies are based on lowest
layer modules or extend other competencies to carry out more
complex tasks. The highest layer is where the competencies
are utilized for the robot to function in a specific scenario or
application, while the implementation can vary from remote
control to fully autonomous control system.

The basic interaction system in EMYS utilizes speech
recognition engine [26] that detects speech events and relies
on pauses to segment users utterances. It does not take into
account any visual cues, nor does it process them to track the
turn-taking in the conversation, which, in multi-party setting,
results in a number of conversational errors and a reduced
smoothness of interaction. We argue that this can be signif-
icantly improved upon by using a system that detects and
expresses turn-taking cues, especially through combination
of gaze and speech cues.

The multi-party interaction system expands existing robot
control system. In the lowest layer the extension included
support for multiple microphones, an interface for tracking
multiple people through the Kinect sensor, as well as user
gaze detection and estimation. There were multiple compe-
tencies added to the middle layer. The robot’s perception was
enhanced by detection and tracking of turn-taking cues, while
for the robot’s expression the gaze and the speech were com-
bined into tasks: speak to user(s), listen to user(s). These
abilities are utilized in Turn-taking Manager to oversee the
conversation flow by ensuring that the robot has the floor
before speaking and that the proper attention is given to
the users when they are talking. Finally, the Dialog Man-
ager encapsulates all of the above multi-party turn-taking
competencies and allows language generation for robot’s

Table 1 Differences in behavior between multi-party interaction sys-
tem and basic interaction system

M-multi-party interaction system B-basic interaction system

Robot’s gaze tracks the current
speaker or the attention is shared
equally among the conversation
participants

Robot’s gaze tracks the
most active person
according to Kinect sensor

Robot allows the users to interact
with each other after each
utterance

Robot waits for silence
before speaking

Robot reacts if being looked at by
last speaker or after prolonged
silence (2 s)

Robot reacts after
medium-length silence
(1 s)

utterances along with interpretation of the user’s responses
for the robot’s programming logic.

In summary, the comparison is between a spoken dialog
system that uses pauses in speech for turn exchanges (basic
interaction system), and a multi-modal system that combines
gaze and speech to track and express turn-taking behavior
(multi-party interaction system). However, rather using var-
ious turn-taking cues and other factors, the focus is placed
on comparison between minimal system requirements for
smooth interaction.

The experimental scenario was implemented so that in
both cases the interaction could be finished successfully to the
best of each system’s capabilities. The differences, presented
in Table 1, were in the robot’s gaze patterns, patience in taking
the conversational floor and recognizing when being spoken
to.

3.2 Experimental Scenario

The goal of the experimental scenario was to facilitate turn-
exchanges in multi-party interaction setting. Two participants
interacted with the robot while playing a trivia questions
game in which the robot served as a host. After each ques-
tion, the participants were to consult the answer and provide
it to the robot upon agreement. The setup for the experiment
is presented in Fig. 2.

Below is an excerpt from the transcript of a dialog between
the robot and the users.

robot:
The Roman god of love was called?
A. Amor
B. Jupiter
C. Eros

user a:
I’m sorry, can you repeat the question?

robot: [repeats]
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Fig. 2 The experimental setup

user b: [after consulting each other]
We decided upon Amor.

robot:
Are You sure that You want to answer A – Amor?

user a:
Yes, we are.

robot:
Correct! / Sorry, the correct answer is ...
Did You know that Amor was the son of Venus and
Mars? His Greek equivalent was Eros.
[waits for the users before continuing]
Next question: …

The experimental scenario was prototyped through pre-
liminary experiments in order to create the vocabulary and
grammar necessary for user speech recognition, as well
as to design robot utterances. Moreover, the preliminary
experiments allowed to fine-tune the system: select latency
threshold for responding, take into account the limitations of
the robot sensors, such as positioning in the camera range or
noise reduction and resolve unpredicted situations that could
affect the study.

3.3 Experimental Design

The main goal of the experiment was to evaluate and compare
both interaction systems in terms of performance (RQ1) and
user assessment (RQ2). This comparison should be made on
unbiased interactions with robot, i.e. first-time interactions.

The secondary goal was to measure the effect of repeated
interactions (RQ3). The first meeting with the robot estab-
lishes some preconceptions regarding its abilities and results
in participants modifying their behavior and expectations.
These expectations can influence the perception of the robot
in further interactions. We studied how does user assessment
differ in the second (biased) interaction with the robot after
the first interaction has set some expectations, in the case of
both improvement (i.e. first basic, then multi-party interac-

tion system), as well as deterioration (i.e. first multi-party,
then basic).

The participants were divided randomly into two groups
that both interacted with robot twice but in different order.
One group interacted with basic interaction system first and
then with multi-party interaction system, resulting in exper-
imental conditions basic-first (B1) and multi-party-second
(M2). For the other group the order was reversed, resulting
in conditions multi-party-first (M1) and basic-second (B2).
Note that interactions B1 and M1 are unbiased, while inter-
actions B2 and M2 will be biased by previous interaction.

The experimental design focuses on following aspects:

Evaluate the developed multi-party interaction system
The evaluation and comparison both interaction systems
in term of performance (RQ1) and user assessment (RQ2)
was done on unbiased interactions, i.e. comparing con-
ditions B1 with M1.
Measure the effect of user expectations in repeated inter-
actions
The effect of repeated interactions (RQ3) was measured
by comparing biased interactions to their unbiased coun-
terparts, i.e. B2 with B1 and M2 with M1. For example,
we know for condition B2 (basic-second) that the user
have previously interacted with multi-party interaction
system (M1), which may have set high preconceptions
and expectations, by comparing B2 with B1 the effect of
this factors can be measured.
Do not reveal the goal of the study to the participants
The information about the true goal of the experiment
can cause participants to consciously and unconsciously
influence the results of the study, therefore this informa-
tion should not be revealed. This effect was reduced by
presenting the interaction in the form of a game.
Moreover, the robot has been awarding points for correct
answers, which may have led the participants to believe
that the real goal was to test their knowledge rather than
the robot’s communicative abilities.
Do not reveal the experimental group to the participants
The participants were not aware what the difference is
between the two interactions neither with which version
of the robot they are currently speaking. This a further
consequence of not revealing the goal of the study.
Reduce the influence of the researchers on the results
The behavior of the researchers can also indirectly influ-
ence the results of the study, therefore, their contact with
the participants should be reduced to the necessary min-
imum. During the recruitation process the participants
have only been informed that they will participate in a
game with the robot and about the estimated time it will
take (up to 40 min). Any further questions that they may
have had, have been answered after the completion of
both interactions and filling of the surveys during the
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Female
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Fig. 3 Age and gender of the participants

in-depth interviews. After guiding the participant to the
room and their seats, the researcher left the room and the
robot took the role of the host, who explained the rules
of the game and the next course of events.
Keep the duration of the experiment representative, albeit
short
The length of the interaction should provide enough time
for the participants to get accustomed to the situation
and develop their opinion, however at the same time be
relatively short to not bore or fatigue the participants.
We decided upon 10–15 min for the interaction and 3–
5 min for filling out the questionnaire, basing our decision
on so-called ‘tv-series’ attention span. The participants
interacted with the robot two times in total, filling the
questionnaire after each interaction.
Recruit participants with ease
Larger groups of people are more difficult to recruit
(and organize) than smaller ones. The possible techni-
cal limitations of the robot’s sensors were also taken
into consideration. On this basis, we decided upon
3-party interaction between two people and a robot.
The location selected for the experiment and recruit-
ment methods, described below, also helped with this
aspect.

3.4 Experimental Procedure

The experiments were conducted near the city center, outside
the main university campus, which resulted in increased num-
ber of participants, as well as provided diversity among them.
The rooms where the experiment took place were prepared
to ensure the neutral appearance by removal of elements that
were suggestive or distracting.

The participants were recruited by two methods: online
internet registration form sent through social media (snow-

ball method) and by inviting pedestrians to take part in the
experiment. In total, 32 people took part in the experiment,
21 were female and 11 were male. The age of participants
was between 15 and 44 with an average of 29 years old. The
distribution of gender and age of the participants is presented
in Fig. 3.

The participants interacted with the robot over the course
of playing a trivia questions game. The goal of the par-
ticipants was to select the correct answer. There were 12
randomly selected questions asked in total (4 easy, 4 medium
and 4 hard) and the robot presented three possible answers.
The duration of the game was in the range of 10 to 15 min.
After finishing the game, the participants were moved to sta-
tions, where they were asked to fill out the questionnaire,
which took between 3 and 5 min. After the first experiment,
the participants were asked to interact with the robot again.
Throughout the whole experiment the robot was working
autonomously.

User assessment of the robot was done through ques-
tionnaires after each interaction with the robot followed by
in-depth interviews with the participants. The questionnaires
designed for this study consisted of 15 questions graded on a
7-point Likert scale, based on approaches presented in [7,56].
The aim of the question was to inquire about the perceived
communication skills of the robot, its intuitiveness, polite-
ness and expressiveness, as well as user expectations and
reception of the robot. For full list of questions please con-
sult Table 3.

The questionnaire filling stations were placed in a sep-
arate room from the robot. The role of the researchers has
been minimized to welcoming participants into the room,
seating them in their respective places and showing them to
the questionnaire filling station after the interaction. Neither
during the interaction with the robot, nor during the filling of
questionnaires was the researcher present in the room. The
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Table 2 Performance of the robot interaction systems as a percentage of correct turn-exchanges during the experimental scenario in unbiased
conditions (B1 and M1) with breakdown of conversational errors

Interaction system Correct behavior Repetition
needed

Response
wrongly
understood

Prolonged silence Unnecessary
question
repeat

Reacted
without
prompt

Performance

Basic-first (B1) 9.86 (± 0.34) 4.43 (± 0.89) 3.14 (± 0.62) 0.14 (± 0.34) 1.43 (± 0.50) 0.14 (± 0.34) 51.5% (± 2.0%)

Multi-party-first (M1) 13.00 (± 2.63) 1.38 (± 1.93) 0.38 (± 0.72) 0.00 (± 0.00) 0.50 (± 0.52) 0.88 (± 0.96) 80.5% (± 9.4%)

in-depth survey was conducted only after both interactions
took place. The survey consisted of open discussion between
both participants and the experimenter.

The total size of the data set was: 16 pairs that interacted
with the robot twice, which resulted in 32 interactions and
64 filled questionnaires.

4 Results

4.1 Performance

The performance of the interaction systems was calculated
as a percentage of correct responses during the whole inter-
action. The following conversational errors were considered:

– User had to repeat himself
– User response wrongly interpreted
– Prolonged ‘awkward’ silence
– Robot repeated the question without request
– Robot spoke out of turn

Two judges were asked to review the video record-
ings of the experiments and count occurrences of correct
turn-exchanges or the above error types. The judges were
otherwise not involved in the study, they were not aware
of the research hypotheses or experimental conditions (i.e.
basic/multi-party), nor could they differentiate between these
conditions. Each interaction, 8 for condition B1 and 8 for
condition M1, was from 10 to 15 min long and contained
from 15 to 22 places that needed classification, totaling
almost 300 observations. Independently, the judges anno-
tated a subset of 30 randomly selected segments (10% of total
observations), to verify inter-rater reliability, which resulted
in Cohen’s Kappa K = 0.76 indicating acceptable agree-
ment.

The robot equipped with the multi-party interaction sys-
tem is expected to show improved performance in com-
parison with basic interaction system (RQ1). Indeed, as
shown in Table 2, in an unbiased conditions (B1 and M1)
the performance of multi-party interaction system (M =
80.5%, SD = 9.4%) was much higher than the performance
of basic interaction system (M = 51.5%, SD = 2.0%). The

analysis of variance has confirmed that this difference was
significant [F(1, 30) = 85.56, p < 0.001].

In addition, the length of the interaction (measured in total
places to classify by the judges) was also shorter in multi-
party condition (M = 16.12, SD = 2.71) than in basic
condition (M = 19.12, SD = 0.81), which was signifi-
cant [F(1, 30) = 18.07, p < 0.001]. This coincides with
lower number of repetitions that the robot was asked to per-
form.

4.2 User Assessment

User assessment serves as a validation that the multi-party
interaction system improved how the robot is seen by its
users in comparison with the basic interaction system (RQ2).
The assessment of the robot was done through 15 questions
regarding the robot’s perceived abilities and user experience,
which were rated on a 7-point Likert scale. The verification of
multi-party interaction system focused on unbiased interac-
tions: conditions basic-first (B1) and multi-party-first (M1),
in which the participants talked to the robot for the first time
and should not have any previous opinions and preconcep-
tions about the robot. The user responses are presented in
Table 3, as well as visually by plots in Figs 4 and 5, see
conditions B1, M1 and (M1–B1).

Analysis of variance with Bonferroni correction for α =
0.05/15 = 0.0033 has shown significant differences in
10 cases between multi-party-first and basic-first conditions
(M1–B1):

– Q1: EMYS met my expectations (2.38, p < 0.001)

– Q3: EMYS made a good impression on me (1.25, p =
0.002)

– Q7: EMYS correctly reacts to the environment (1.50,

p < 0.001)

– Q8: EMYS is cooperative (3.38, p < 0.001)

– Q9: EMYS can communicate (3.13, p < 0.001)

– Q10: EMYS can assess a situation (2.00, p < 0.001)

– Q11: EMYS understands when being spoken to (2.63,

p < 0.001)

– Q13: EMYS completed his task (2.38, p < 0.001)

– Q15: EMYS is intuitive (1.88, p < 0.001)
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Table 3 User assessment questionnaire responses on 7-point Likert scale (−3, 3) and supporting indicators with corresponding significance tests

Statistical significance marked for p < α = 0.05/15 = 0.0033

Note the magnitude of the changes, e.g. EMYS cooperative-
ness (Q8) has shifted more than 3 points, from ’rather poor’
(M = −1.25, SD = 1.91) to ’well’ (M = 2.13, SD =
0.81). The results confirm that the robot had better commu-
nicative and interactive abilities, was better perceived by the
users and fit their expectations better when it was equipped
with the multi-party interaction system rather than the basic
interaction system.

In addition, it is worth mentioning the questions that didn’t
reach statistical significance due to alpha correction, but still
had p < 0.05, which makes them strong candidates for fur-
ther study.

– Q2: I like EMYS (0.88, p = 0.008)

– Q5: EMYS is interesting to me (0.88, p = 0.017)

– Q6: EMYS behaves like a human (1.38, p = 0.050)

– Q14: EMYS understands complex situations (1.00, p =
0.010)

4.3 Repeated Interactions

The effect of repeated interactions was measured both in
performance and user assessment (RQ3). The participants
interacted with the robot two times, each in time with a differ-
ent interaction system, however the order of the interactions
was randomized. Specifically, half of participants interacted
with condition basic-first (B1) followed by multi-party-
second (M2), while the other half started with condition
multi-party-first (M1) followed by basic-second (B2). If the
order of interaction was not of importance the ratings should
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Q7:   EMYS correctly reacts to the environment Q8:  EMYS is cooperative Q9:  EMYS can communicate
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Fig. 4 User assessment questionnaire responses (questions Q1–Q12). Confidence intervals plotted for α = 0.05
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Q13:  EMYS completed his task Q14:  EMYS understands complex situations Q15:  EMYS is intuitive
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Fig. 5 User assessment questionnaire responses (questions Q13–Q15). Confidence intervals plotted for α = 0.05

be equal, i.e. M1 = M2, B1 = B2. However, this does not
hold—some aspects of interaction have been assessed differ-
ently. How does these impressions and convictions of users
manifest themselves? For further reference, we have named
the observed effects as benefit of the doubt and caution.

4.3.1 Benefit of the Doubt (B2–B1)

The difference (B2 − B1) will determine the effect of the
users first impressions after interaction multi-party-first (M1)
that preceded condition basic-second (B2). If multi-party
interaction system M has been evaluated positively, a kind
of benefit of the doubt can be expected, i.e. since the robot
previously had some features (in condition M1), the partici-
pants may be convinced that the robot still has these features,
even if it does not show them (condition B2).

The performance in the basic-second condition (B2)
(M = 42.5%, SD = 15.6%) was worse than the basic-
first condition (B1) (M = 51.5%, SD = 2.0%), which was
significant [F(1, 30) = 5.38, p < 0.027].

The user assessment, as shown in Table 3 (column
B2–B1), yielded significant differences (p < α = 0.05/15
= 0.0033) for following questions:

– Q1: EMYS met my expectations (1.63, p < 0.001)

– Q9: EMYS can communicate (2.13, p < 0.001)

– Q15: EMYS is intuitive (1.38, p < 0.001)

The Cronbach’s α = 0.810 for measuring the effect of benefit
of the doubt confirms the internal consistency for the above
questions.

The questions below didn’t reach statistical significance,
but are worth mentioning for further research due to p <

0.05:

– Q8: EMYS is cooperative (1.75, p = 0.004)

– Q11: EMYS understands when being spoken to (1.25,

p = 0.043)

– Q13: EMYS completed his task (1.13, p = 0.034)

The additional inclusion of these questions raises the Cron-
bach’s α = 0.906

This confirms that repeated interactions affect the per-
formance of the interaction system, as well as the user
assessment of the robot. Curiously enough, the objective per-
formance in the biased basic-second condition was worse by
9% than in basic-first condition, but user assessment of the
robot was better in the range 1.13–2.13 point on a 7-point
scale.

4.3.2 Caution (M2–M1)

In contrast, the difference (M2 − M1) will describe the
impact of the first impression after interaction basic-first
(B1). We expect increased conservativeness and caution
when assessing the robot in multi-party-second condition
(M2), which should manifest in lower scores than the unbi-
ased interaction (M1).

In this case the performance in the multi-party-second
condition (M2) (M = 69.8%, SD = 11.8%) was also
worse than the multi-party-first condition (M1) (M =
80.5%, SD=9.4%), the difference was significant [F(1, 30)

= 4.45, p < 0.043].
In terms of user assessment as presented in Table 3

(column M2–M1) only 1 question reached significance for
p < α = 0.05/15 = 0.0033 :

– Q1: EMYS met my expectations (−1.50, p < 0.001)

Other questions worth considering for further study due
to p < 0.05 are:

– Q7: EMYS correctly reacts to the environment (−1.00,

p = 0.046)

– Q8: EMYS is cooperative (−1.25, p = 0.041)

– Q10: EMYS can assess a situation (−1.13, p = 0.049)
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– Q14: EMYS understands complex situations (−0.88,

p = 0.030)

– Q15: EMYS is intuitive (−1.13, p = 0.006)

This set of questions resulted in Cronbach’s α = 0.832 for
the effect of caution.

The performance deteriorated 10.7%. It can be observed
that the overall set of questions mostly overlaps with the
previous case with the differences at level of 0.88–1.50. This
time, however, the worse performance coincides with worse
user assessment.

5 Discussion

The aim of the study was to evaluate the proposed multi-party
interaction system in terms of performance (RQ1) and user
assessment (RQ2). The secondary objective was to study how
multiple interactions with the robot affect the user assessment
of the robot (RQ3).

5.1 Evaluation of Multi-party Interaction System

The multi-party interaction system has shown a significant
improvement in comparison to basic interaction system. The
basic interaction system relies on speech cues for turn-
exchanges while the multi-party system provided turn-taking
mechanisms by combining speech and gaze cues, which
resulted in performance improvement from 51.5% to 80.5%.
This manifests in greatly reduced number of errors and
shorter length of the conversation, which accounts for more
fluent interaction (RQ1).

The analysis of the questionnaires revealed that, on the
basis of user assessment, the developed multi-party interac-
tion system was perceived significantly better than the basic
interaction system in 10 different aspects (RQ2). The changes
in assessment were in the range of 1 to 3 points in 7-point
Likert scale, mostly showing that the multi-party interac-
tion system exhibited some trait that the basic interaction
system lacked, for example the perception of EMYS abil-
ity to communicate has shifted from ‘rather poor’ to ‘well’.
The participants rated the robot equipped with multi-party
interaction system as, among others, more communicative,
perceptive and willing to cooperate. These aspects can be
described as indigenous elements of multi-party communi-
cation. Apart from communication skills, it was also stated
that EMYS equipped with the multi-party interaction system
has made an overall better impression, satisfied the expecta-
tions of the users better(in the context of user expectations of
social robots) and also performed his task better (the role of
the game host). It is evident that the ability to communicate
naturally has a significant impact on the perception of social
robots and that these skills are perceived as crucial for role

of a game host. In addition, during the in-depth interviews
conducted after the experiments, the participants described
the robot with the multi-party interaction system as listening
actively and showing attention, pointing towards the robot’s
gaze as a factor that created such an impression.

A larger difference was expected in the assessment of the
robot manners, but in both cases they were rated about equally
high, in the range of 2.00–2.50 which places them between
‘well’ (2) and ‘exceptional’ (3). This is probably due to the
nature of the interaction with the robot, as well as the patient
(respectful) way of taking the floor. Placing the robot in a con-
flict scenario could lead to more conversational errors (i.e.
interruptions) and, in the context of turn-taking, good man-
ners reflect in the way of tactfully resolving such situations.
In a similar way, the latency in taking the floor was set rel-
atively long and its reduction would increase the number of
interruptions and misunderstandings during the conversation
[40]. It is possible that this would have a significant impact
on the perception of the other aspects of the robot, especially
on the robot’s likeability.

5.2 Repeated Interactions

The other part of the analysis concerns the effect of repeated
interactions with the robot on the robot’s assessment. It shows
that even the first interaction with the robot can leave an
impression on the user that will affect the user in later inter-
actions with robot and influence his/hers assessment (RQ3).
Positive and negative effect of magnitude in the range of
0.88–2.13 on the 7-point Likert scale were observed, which
were defined as a benefit of the doubt and caution.

Benefit of the doubt occurred after initial interaction with
the multi-party interaction system (condition M1) in the user
second interaction that used the basic interaction system
(B2). The participants rated the basic interaction system bet-
ter in this biased condition B2 than in the unbiased condition
B1, in which the user interacted with the basic interaction
system for the first time. This effect is even more interesting
if one takes into account that the measured performance of
the basic interaction system in the condition B2 was actually
lower than in the condition B1 (42.5% vs 51.5%).

Caution, a situation opposite to the above, occurs after ini-
tial interaction with the basic interaction system (condition
B1) when assessing multi-party interaction system in the sec-
ond interaction (M2) . It was observed that the participants
are more conservative in assessing the multi-party interac-
tion system in biased condition M2 than if it was the first
encounter with the robot as it was in condition M1. How-
ever, in this case the worse performance between conditions
multi-party-second M2 and multi-party-first M1 coincides
with worse user assessment (69.8% vs 80.5%).

Both situations are consistent and mostly symmetric.
There are no cases in which the multi-party interaction
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system would cause caution or the basic version would
develop benefit of the doubt in the users. In terms of size,
these two effects are mostly equal (consider comparison
|B2 − B1| − |M2 − M1|) with the exception of question
‘Q15: EMYS can communicate’, in which the benefit of the
doubt left a seemingly stronger impression of 1.25 points.

This means that the initial opinion about the robot is dif-
ficult to change once it is established. The bias is so strong
that once the user witnesses some trait exhibited by a robot,
he/she will still continue attributing this trait to the robot, even
if the objective measurement of performance proves other-
wise. This seems to be a result of attribution bias applied to
social robots.

In addition, this drop in performance may indicate that the
users try adapt to the way the robot communicates, even if this
unconscious. It shows that if the way the robot communicates
changes, the users may need additional time to get used to it.

As a consequence, for experiments using social robots,
it is recommended to take into account these factors during
the experimental design process, paying special attention to
multiple experiments with a social robot involving the same
research groups, especially across different studies. At the
same time, from the perspective of social robot as a com-
mercial product, this study ascertains that it is difficult to
influence the established opinion of the users, so if achiev-
ing a particular impression is needed, the effects of benefit
of dobut and caution should be considered when introducing
subsequent versions of the robot.

5.3 Observations

During the analysis of video recordings from experiments,
it was noticed that people gradually examine the perceptual
and cognitive abilities of the robot. Basing on these observa-
tions, the users build their model of the robot’s capabilities.
For example, some people tried to elicit a reaction from the
robot by joking, to see if the robot would react to humor,
when this attempt was unsuccessful they adapted to the state
of the robot’s abilities and no longer used jokes in the mes-
sages directed towards the robot, but were still using them
in communication with the other person. This supports that
people tend to instinctively verify the communication capa-
bilities of the other party, social robots included, and then
adjust their way of communication. Consequently, people
construct their own model of robot competence and it is pos-
sible that the re-evaluation of this model in the case of these
competencies changing is difficult and may take time, which
is an important factor to considers when adding new func-
tions to existing robots.

The in-depth interviews that followed the experiment has
shown that the most noticed aspect of the interaction was the
gaze of the robot tracking the current speaker. This means
that the ability to actively listen, and thus provide feedback

to the speaker is an important part of communication. Lack
of this behavior may cause the robot to be ignored during the
interaction, and thus not treated as its full participant. Such
situation took place in the research described in [19]. More-
over, the backchannel feedback is also presented verbally,
which symbolizes an understanding of the current statement
(‘aha’, ‘mhm’). These intrusions do not signify the intention
to take the floor, on the contrary, they encourage the speaker
to continue; in a way, this is the action of giving the floor in
advance. In our opinion, the issue of expressing such feed-
back signals and their impact on the speaker is a promising
direction for future research

In both experimental cases the robot reacted emotionally
to the responses give by the participants, i.e. acted happy
when the answer was correct and sad when the answer was
incorrect, which served as a way of presenting empathy. As
a result the robot could have been perceived more positively
in terms of likeability.

5.4 Limitations

The following factors were not controlled for in the experi-
ments and can be a subject for further research.

Alternative measures of performance
In the domain of dialog systems two common measures of
performance are accuracy,used in this study, and latency.
Latency has been shown to affect conversation in the fol-
lowing ways: awaiting too long to respond can prolong
the conversation and impact its fluency, while responding
too quickly can cause interruptions and misunderstand-
ing [40]. In case of evaluating and comparing different
variants of multi-party interaction system the researchers
should consider using latency.
Differences in communication between friends, acquain-
tances, strangers and enemies
Because the participants were recruited in pairs, it should
be assumed that they knew each other before the study
and were on friendly terms. Considering various social
robot working environments, these kinds of situations are
more common than multi-party conversations including
two strangers or two people in direct conflict. The inter-
personal relationship could influence the the way they
communicate, as well as their perception of the robot as
a result of a positive association. An opposite situation
would be a scenario in which the robot acts as a judge
or an arbiter between two opposite parties. However,
this scenario does not encourage mutual communication
between parties, but rather places the robot as an inter-
mediary.
Participants influencing each other
The participants were not separated during the task of
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filling the questionnaires. This could have caused strong
correlations in the questionnaire scores in each pair of
participants that interacted with the robot.
Individual differences between participants
The analysis did not take into account participants gender,
age, personality, understanding of the technology, hob-
bies etc. It is difficult to say to what extent these factors
can influence the results of the study, but the strongest
candidate for a more in-depth assessment would be the
personality types. Research indicates that people with
different personalities prefer different traits in their com-
panions [15], therefore these differences can reflect in the
way they communicate. The factors to consider are the
patterns of open/closed, social/asocial people in relation
to multi-party interaction.
Group dynamics and interpersonal relationships
In recent research Fraune et al. [18] observed 2714 people
interacting with the social robot in a naturalistic setting
and reported how group presence, group cohesiveness
and group social norms can influence the human–robot
interaction. We argue that interpersonal relationships,
such as: family, friendship, work, as well as age and sex
differences, can be a strong factor in turn-taking, espe-
cially in the case of our experimental scenario, which
required reaching a consensus in selecting the answer.
For a social robot to operate in (and among) such relation-
ships is an emerging and promising research direction.
Physiological measurements
The gathered survey data were not verified through any
physiological measurements.

6 Conclusion

In this paper we present the experimental verification of the
developed social robot multi-party interaction system, from
the perspective of both performance evaluation and users
assessment of the interaction with this system. In the context
of social robotics this kind of simultaneous two-sided evalu-
ation is rarely performed due its difficulties. The multi-party
interaction system improved the performance, expressed as a
percentage of correct turn-exchanges, of the basic interaction
system of robot EMYS from 51.5% to 80.5%, which resulted
in more fluent interaction due to reduced number of errors
and shorter length of the conversation.

User feedback assessment based on the analysis of sur-
veys has shown that the multi-party interaction system makes
the robot perceived as more communicative, cooperative,
intuitive, fitting the user expectations and making an over-
all better impression.

The other problem studied was the effect of repeated
human–robot interaction on the user assessment of the robot.
It was shown that the interaction with the robot may leave a

lasting impression on the user, which impacts the perception
of the robot in future interactions. This effect can be both
positive, i.e. benefit of the doubt, or negative, i.e. caution,
to the assessment of the robot. We advise to take this effect
into consideration either during the social experiments with
the robot involving the same participants or in the process of
updating the existing social robots. If the goal is not specif-
ically to measure an individual user opinion, but to obtain
an objective/unbiased assessment, the experimental design
should refrain from using participants that had any previous
contact with the robot, even across different experiments.
Moreover, in case of social robot development, it may be
that a set of small updates to the robot can have a diminished
cumulative effect on users than a larger combined update.

As open directions for further research, we point towards
including more people in the conversation, making it more
dynamic and changing the role of the robot in the interaction.
In particular, attention should be paid to examining a greater
range of different social situations in which the robot can
operate. The relationship between the robot and its users may
be symmetrical or asymmetrical. The goals of the robot may
vary, which can create scenarios of cooperation or conflict.
The hierarchy between the interlocutors may differ, as well as
the use of formal and informal language. Finally, the available
means of expression may be limited (e.g. one of the users is
available only by voice, but not visually, which may take
place during teleconferences) or extended (e.g. telepresence
on a tv-screen or a mobile phone). The overall aim of the
HRI research should gradually shift from modeling specific
use cases into describing general social situations towards a
coherent model of (multi-party) interaction.
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