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Abstract A robot agent designed to engage in real-world
human-robot joint action must be able to understand the
social states of the human users it interacts with in order
to behave appropriately. In particular, in a dynamic public
space, a crucial task for the robot is to determine the needs
and intentions of all of the people in the scene, so that it
only interacts with people who intend to interact with it.
We address the task of estimating the engagement state of
customers for arobot bartender based on the data from audio-
visual sensors. We begin with an offline experiment using
hidden Markov models, confirming that the sensor data con-
tains the information necessary to estimate user state. We then
present two strategies for online state estimation: a rule-based
classifier based on observed human behaviour in real bars,
and a set of supervised classifiers trained on a labelled corpus.
These strategies are compared in offline cross-validation, in
an online user study, and through validation against a sep-
arate test corpus. These studies show that while the trained
classifiers are best in a cross-validation setting, the rule-based
classifier performs best with novel data; however, all classi-
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fiers also change their estimate too frequently for practical
use. To address this issue, we present a final classifier based
on Conditional Random Fields: this model has comparable
performance on the test data, with increased stability. In sum-
mary, though, the rule-based classifier shows competitive
performance with the trained classifiers, suggesting that for
this task, such a simple model could actually be a preferred
option, providing useful online performance while avoiding
the implementation and data-scarcity issues involved in using
machine learning for this task.

Keywords Human-robot interaction - User engagement
classification - Joint action - Socially appropriate behaviour -
Multi-party interaction

1 Introduction

Robots will become more and more integrated into daily life
over the next decades, with the expectation that the market
for service robots will increase greatly over the next 20 years
[31]. Everyday interactions, especially in public spaces, dif-
fer in several ways from the companion-style interactions that
have been traditionally considered in social robotics (e.g.,
[9,14,34]). First, interactions in public spaces are often short-
term, dynamic, multimodal, and multi-party. Second, in a
public setting, it is not enough for a robot simply to achieve
its task-based goals; instead, it must also be able to satisfy
the social goals and obligations that arise through interac-
tions with people in real-world settings. Therefore, we argue
that task-based, social interaction in a public space can be
seen as an instance of multimodal joint action [32,58].

In this work, we consider the socially aware robot bar-
tender shown in Fig. 1, which has been developed as part
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A customer attracts the bartender’s attention

ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.

Another customer attracts the bartender’s attention

ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]

ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
T'd like a pint of beer.

[Serves Customer 2]

CUSTOMER 2:
ROBOT:

Fig. 1 The JAMES socially aware robot bartender

of the JAMES project.! The JAMES robot bartender sup-
ports interactions like the one shown in the figure, in which
two customers enter the bar area and each attempt to order
a drink from the bartender. Note that when the second cus-
tomer appears while the bartender is engaged with the first
customer, the bartender reacts by telling the second customer
to wait, finishing the transaction with the first customer, and
then serving the second customer. In the bartending scenario,
the first step in ensuring successful joint action between robot
and customer is to correctly classify the engagement of all
potential customers in the scene, both at the start of the inter-
action and as it progresses: that is, in order to carry out its
interactive task, the bartender must be able to understand the
social scene in front of it to ensure that it only interacts with
potential customers who are actually seeking to engage with
it. In this paper, we present the collected findings from the
engagement classification work in the context of the JAMES
project.

We make use of rule-based and data-driven methods
for estimating the desired engagement of customers of the
robot bartender. We begin with an off-line experiment for
social signal recognition using hidden Markov models. We
then compare two classification strategies in the context
of the full robot bartender system: a simple, hand-coded,
rule-based classifier based on the observation of human
behaviour in real bars, and a range of supervised-learning
classifiers trained on an annotated corpus based on the sen-
sor data gathered from an initial human-robot experiment.
We first compare the two classification strategies through

! http://www.james-project.eu.
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offline cross-validation; then we integrate the rule-based clas-
sifier and the top-performing trained classifier into the full
robot bartender system and compare them experimentally
through interactions with real human users. Because the
ground-truth engagement-seeking behaviour of the users in
that experimental study is not available, making the practical
implications difficult to interpret, we therefore also test the
performance of all of the classifiers (rule-based and trained)
on a newly-recorded, fully annotated, more balanced test
corpus. Finally, we examine the impact of incorporating tem-
poral features into the classifier state by using an alternative
classification strategy—Conditional Random Fields—which
is particularly suited to this sequence classification task.

2 Related Work

Gaze contact is crucial for establishing social rapport [3],
and a number of researchers have addressed the task of esti-
mating engagement based on gaze and other signals. Bohus
and Horvitz [6,7] pioneered the use of data-driven meth-
ods for this task: they trained models designed to predict
user engagement based on information from face tracking,
pose estimation, person tracking, group inference, along with
recognised speech and touch-screen events. After training,
their model was able to predict intended engagement 3—4 s
in advance, with a false-positive rate of under 3%. A number
of more recent systems have also used machine learning to
address this task. For example, Li et al. [44] estimated the
attentional state of users of a robot in a public space, com-
bining person tracking, facial expression recognition, and
speaking recognition; the classifier performed well in infor-
mal real-world experiments. Castellano et al. [10] trained a
range of classifiers on labelled data extracted from the logs
of children interacting with a chess-playing robot, where
the label indicated either high engagement or low engage-
ment. They found that a combination of game context-based
and turn-based features could be used to predict user level
engagement with an overall accuracy of approximately 80%.
McColl and Nejat [48] automatically classified the social
accessibility of people interacting with their robot based on
their body pose, with four possible levels of accessibility:
the levels estimated by their classifier agreed 86% of the
time with those of an expert coder. MacHardy et al. [47]
classified the engagement states of audience members for
an online lecture based on information from facial feature
detectors; the overall performance was around 72% on this
binary classification task. Hernandez et al. [29] used wear-
able electrodermal activity sensors to detect the engagement
of children during social interactions with adults. Their goal
was to automatically predict which children are difficult to
engage with in social interactions. Leite et al. [43] compared
models for detecting disengagement. They found that mod-


http://www.james-project.eu

Int J of Soc Robotics (2017) 9:659-674

661

Fig. 2 Software architecture of
the JAMES robot bartender
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els trained on data from group interactions between several
humans and two social robots scale better when applied to
single user interactions than the other way around. Further
related problems are the prediction of responses in dialogues
with embodied agents [15] and turn-taking in general [60].
Our work is also closely related to automatic human activ-
ity recognition. Ke et al. [35] survey the use of human activity
recognition in single person activity recognition, multiple
people interaction and crowd behaviour, and abnormal activ-
ity recognition. Aggarwal and Xia [1] give details on human
activity recognition with 3D data, similar to the data we
are using in our approach. Lara and Labrador [40] give an
overview of human activity recognition using wearable sen-
sors. Brand et al. [8] used coupled hidden Markov models for
robust visual recognition of human actions. Torta et al. [61]
addressed the dual problem of how a robot should attract a
human’s attention, and found that speech and body language
were the most successful, while gaze behaviour was use-
ful only in cases where the human was already attending to
the robot. Figueroa-Angulo et al [16] trained a compound
hidden Markov model to recognize human activity with
RGB-D skeleton data of humans for a service robot. For the
related problem of face-to-face conversation, conversation
estimation has been demonstrated using visual tracking alone
[51-53] or combined RGB-D sensing to analysing and gen-
erating multimodal behaviour [49]. Mihoub et al.’s approach
for social behaviour modelling and generation is based on
incremental discrete hidden Markov models. It can be used
to recognise the most likely sequence of cognitive states of a
speaker, given his or her multimodal activity, and to predict
the most likely sequence of the following activities. Finally,
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Chen et al. [12] conducted experiments in a “drinking at a
bar” scenario. In contrast to our user engagement classifica-
tion, their intention recognition system with two-layer fuzzy
support vector regression identifies most likely orders based
on age, gender, nationality, and detected emotions.

Most previous work in engagement classification has
approached it as a machine learning problem. The related
work shows that machine learning works well for engage-
ment classification for several different interaction settings
and using various machine learning algorithms. In compari-
son to this previous work, we have a more holistic approach
for studying error classification. In particular, one of our
goals is to compare a simpler classification system with hand-
written rules to a machine-learned approach. We have also
tested a large variety of different machine learning algorithms
on the same data set and interaction scenario. Finally, we
tested our rule-based and machine-learned approaches not
only in an offline evaluation, as most previous work did, but
also in an online human-robot interaction user study with
naive participants.

3 Social Signal Processing in the JAMES Robot
Bartender

The JAMES robot bartender incorporates a large number of
hardware and software components; Fig. 2 illustrates the soft-
ware architecture. In summary, the robot senses events in its
surroundings through the speech recogniser and visual pro-
cessor modules, while the parser component processes the
output from speech recognition. The state manager takes the
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output from visual processing and parsing and transforms
it into symbolic representations for the interaction man-
ager module. The interaction manager then selects high-level
actions for the robot, which are processed by the output plan-
ner for execution as concrete actions by the talking-head
controller and the robot motion planner. Full technical
details of the system can be found in [19,25].

The work presented in this paper takes place largely in
the context of the state manager (SM), whose primary role is
to turn the continuous stream of sensor messages produced
by the low-level input-processing components into a discrete
representation of the world, the robot, and all entities in the
scene, integrating social, interaction-based, and task-based
properties. Petrick and Foster [55] give a formal description
of the inputs and outputs of the SM. In summary, the input
consists of a set of timestamped sensor readings, while the
output is a set of first-order predicates denoting properties
of all agents in the scene, their locations, torso orientations,
engagement states, and drink requests if they have made one.
In addition to storing and discretising all the low-level sensor
information, the SM also infers additional relations that are
not directly reported by the sensors. For example, it fuses
information from vision and speech to determine which user
should be assigned a recognised spoken contribution, and
estimates which customers are in a group. Most importantly
in the current scenario—where one of the main tasks is to
manage the engagement of multiple simultaneous customers,
as in Fig. 1—the SM also informs the rest of the system every
time a customer is seeking to engage with the bartender.

The low-level sensor data that is relevant for classifying
intended user engagement is available on two input channels.
The visual processor [5,54] tracks the location, facial expres-
sions, gaze behaviour, and body language of all people in the
scene in real time, using a set of visual sensors including
two calibrated stereo cameras and a Microsoft Kinect depth
sensor. The data from the vision system is published as frame-
by-frame updates approximately every 200 ms. The other
primary input modality in the system is linguistic [56], com-
bining a speech recogniser with a natural-language parser to
create symbolic representations of the speech from all users.
For speech recognition, we use the Microsoft Speech API
together with a Kinect directional microphone array; incre-
mental hypotheses are published constantly, and recognised
speech with a confidence above a defined threshold is parsed
using a grammar implemented in OpenCCG [65] to extract
the syntactic and semantic information.

Concretely, for these experiments in user state classifi-
cation, we make use of the following data from the input
Sensors:

— The (x, y, z) coordinates of each customer’s head, left

hand, and right hand as reported by the vision system
(Fig. 3);
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Fig. 3 Output of face and hand tracking (image from [19])

— The angle of each customer’s torso in degrees, where 0°
indicates that the customer is facing directly towards the
counter;

— The customer’s three-dimensional head pose (roll, pitch,
yaw); and

— An estimate of whether each customer is currently speak-
ing, derived from the estimated source angle of each
speech hypothesis along with the location information
from vision.

4 Experiment 1: Offline State Classification with
Hidden Markov Models

As an initial experiment to test the utility of the sensor data
for this task, we trained a supervised hidden Markov model
(HMM) to recognize a set of communicative states based
on the vision data: that is, using the customers’ body and
hand coordinates, body angles, and head poses with position
(xyz coordinates) and orientation (roll, pitch, yaw). To cre-
ate the training data, a total of 200 interactions were enacted
by five human customers, with up to three customers in one
interaction. In this experiment, there was no feedback from
the robot system. For later training and off-line evaluation,
we recorded the robot’s RGB and depth camera views. Cus-
tomers’ interactions contained a total of eight different states:
Entering or leaving the scene, an idle state, attention to the
robot bartender, attention to a written menu, interaction with
another customer, and visible “cheers” gestures and drinking
actions. We labelled all data by hand, resulting in a total of
1720 interaction states, which we divided into a training set
of 1010 states, a cross-validation set for model optimization
of 319 states, and a testing set of 391 states. All participants
appeared in both training and test data sets.

As components of the feature vector, we selected body
position, body orientation, head orientation (represented both
as a normal vector and as pitch and yaw angles), hand posi-
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;I::;:E :taiersetgésggfﬁtgs HMM Recognized interaction states ~ Labelled interaction states

experiment b o g c d e i 1 D 9 Corr.
Bartender 52 1 0 1 2 0 0 6 91.2
Object 0 24 0 0 0 0 1 0 2 96.0
Guest 0 0 36 0 0 0 1 1 7 94.7
Cheers 2 0 0 12 1 1 1 1 6 66.7
Drink 0 0 1 0 35 1 1 0 6 92.1
Enter 0 0 0 0 0 30 0 0 1 100.0
Idle 0 1 1 1 0 105 0 17 96.3
Leave 0 0 0 0 0 0 0 30 1 100.0
1 8 10 5 7 4 18 8
Correctness 82.9%  H/N
Accuracy 66.2%  (H-I)/N
Correctly recognized states 324 H
Deletions 46 D
Substitutions 21 S
Insertions 65 I
Number of interaction states 391 N

tions, and two horizontal and frontal distance features to other
customers. The fuzzy distance features were computed from
the set of body positions of all customers and responded to
whether another customer was located in front of or next
to an actor. We derived this collection of features through
systematic, manual evaluation of the available visual input
data and its different representations while observing the
correctness and accuracy on the cross-validation set. When
experimenting with different features, we observed that hand
positions were not significant to detect the interaction states
“bartender” or “guest” [23] (i.e., the states relevant to user
engagement), but were necessary for detecting the “cheers”
and “drink” gestures.

We then modelled the behaviour and state of interaction
of each costumer by a separate, continuous-valued multi-
dimensional hidden Markov model. As an emission model,
full covariance matrices showed slightly more accurate than
standard, diagonal variance, which we compared on the
cross-validation data set. To prepare training of the model, we
measured transition frequencies between states in the train-
ing data to bootstrap the hidden state graph and its transition
matrices. For the hidden state graph, we defined a linear graph
of three hidden states (or, inner states) within each interaction
state (or, outer state), with transitions between interaction
states if labelled transition frequencies were higher than 5%.

The results of this off-line evaluation are listed in Table 1.
The confusion matrix indicates substitutions, false insertions,
and deletions of states, and therefore shows the editing dis-
tance between the recognized and labelled sequence of states;
it does not depend on time frames. In general, we could cor-

rectly recognize 82.9% of all states, and the accuracy of the
recognition was 66.2%.

We can draw two main conclusions from this stand-alone
study using HMMs for state recognition. First, we have con-
firmed that the attributes available from the visual processor
do, in principle, support the recognition of user social states.
Secondly, this study agrees with the results of related human—
human studies [30,45,46] which suggest that the combined
features of head pose and torso orientation are adequate for
classifying user engagement in this bartender context. In
our HMM experiment, hand positions were not significant
for detecting the “bartender”, “idle”, or “guest” interaction
states, which are the states relevant to the overall property of
user engagement.

5 Experiment 2: Strategies for Engagement
Detection

The preceding section described a stand-alone experiment
which tested the performance of HMMs at estimating user
states based on a small amount of high-quality data provided
by trained actors; the results of that study confirm that the
available sensor data is useful for determining user states.
We now turn our attention to the task of online detection of
user engagement, which—as mentioned previously—is fun-
damental to interactions with the full robot bartender (e.g.,
Fig. 1). For this task, we will explore two classification strate-
gies: a rule-based classifier that uses a simple, hand-crafted
rule derived from the observation of natural interactions in a
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real bar, and a set of trained classifiers based on an annotated
corpus of actual human-robot interactions.

The rule-based engagement classifier relies on the signals
observed inreal bar customers who signalled that they wanted
to engage with the bartender [30]: (1) standing close to the
bar, and (2) turning to look at the bartender. These signals
were extremely common in the natural data; and, although
they seem very simple, in a follow-up classification experi-
ment based on still images and videos drawn from the natural
data, the two signals also proved both necessary and suffi-
cient for detecting intended customer engagement [45]. Also,
when a different group of human participants were asked to
play the role of the human bartender based on a “Ghost-in-
the-Machine” paradigm (where the participants had access
only to the data detected by the robot sensors), they also paid
attention primarily to the signals of position and pose when
determining whether to initiate an interaction [46].

Based on the details of the bartender environment, we
therefore formalised these two signals into a rule-based clas-
sifier that defined a user to be seeking engagement exactly
when (1) their head was less than 30cm from the bar, and
(2) they were facing approximately forwards (absolute torso
angle under 10°)—note that since the bartender robot (Fig. 1)
is very large compared to the bar, facing forwards is used as a
proxy for looking towards the bartender. In Experiment 1, we
also included hand positions in the feature vector; however,
that study found that signal to be relevant only for classifying
gestures that did not relate to user engagement; the latter can
be reliably detected without hand poses [23].

The trained classifiers, on the other hand, make use of a
multimodal corpus derived from the system logs and anno-
tated video recordings from the first user study of the robot
bartender [19]. In particular, the engagement state of each
customer visible in the scene was annotated by an expert
with one of three (mutually exclusive) levels: NotSeeking-
Engagement, SeekingEngagement, and Engaged. For the
current classification task—where we aim to detect users
who have not yet engaged with the system but are seeking
to do so—the Engaged state is not relevant, so the corpus
was based on the time spans annotated with one of the other
labels. In total, the corpus consisted of 5090 instances: each
instance corresponded to a single frame from the vision sys-
tem, and contained the low-level sensor information for a
single customer along with the annotated engagement label.
3972 instances were in the class NotSeekingEngagement,
while 1118 were labelled as SeekingEngagement.

For this initial experiment in trained classification, we
used the Weka data mining toolkit [27] to train a range of
supervised-learning classifiers on this corpus, using a set of
classifiers designed to provide good coverage of different
classification styles. To ensure that we selected a wide range
of classifiers, we chose the classifier types based on those
listed in the Weka primer [63]; The full list of classifiers
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Table 2 Classifiers considered

CVR Classifies using regression: the target class is
binarised, and one regression model is built for
each class value [22]

IB1 A nearest-neighbour classifier that uses normalised
Euclidean distance to find the closest training
instance [2]

J48 Classifies instances using a pruned C4.5 decision
tree [57]

JRip Implements the RIPPER propositional rule learner
[13]

LibSVM Generates a Support Vector Machine using LIBSVM
(11]

Logistic Multinomial logistic regression with a ridge
estimator [42]

NaiveBayes A Naive Bayes classifier using estimator classes [33]

ZeroR Baseline classifier; always predicts the most frequent

value

is given in Table 2. All classifiers were treated as “black
boxes”, in all cases using the default configuration as pro-
vided by Weka version 3.6.8. For training and testing, we
treated the corpus as a set of 5090 separate instances; that is,
each instance (i.e., frame) was separately classified.

Before integrating any engagement classifier into the sys-
tem for an end-to-end evaluation, we first tested the classifiers
in a set of offline experiments to compare the performance
of the trained classifiers with each other and with that of the
rule-based classifier. This study provides an initial indication
of which classification strategies are and which are not suit-
able for the type of data included in the training corpus, and
also gives an indication of the performance of the rule-based
classifier on the same data.

5.1 Cross-Validation

We first compared the performance of all of the classifiers
through 5-fold cross-validation on the 5090-item training
corpus. For each classifier, we computed the following mea-
sures: the overall classification accuracy, the area under the
ROC curve (AUC), along with the weighted precision, recall,
and F measure. Note that the baseline accuracy score for
this binary classification task is the size of the larger class
(NotSeekingEngagement): 3972/5090 = 0.78. The results
of this evaluation are presented in Table 3, sorted by accu-
racy; the overall performance of the hand-coded rule on
the full training corpus is also included. The groupings in
Table 3 reflect differences among the accuracy scores that
were significant at the p < 0.01 level on a paired T test
based on 10 independent cross-validation runs. In other
words, the IB1 classifier (nearest-neighbour) had the high-
est performance on this measure; J48 (decision trees), CVR
(regression) and JRip (propositional rule learner) were statis-
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Table 3 Cross-validation results, grouped by accuracy

Table 4 Output of attribute selection

Classifier Accuracy AUC  Precision Recall F

1B1 0.954 0.926 0.954 0954  0.954
J48 0.928 0.921 0.928 0.928  0.928
CVR 0912 0.955 0.910 0912 0911
JRip 0.910 0.877  0.908 0910  0.909
LibSVM 0.790 0.521 0.830 0.790  0.706
Logistic 0.781 0.738  0.730 0.781  0.711
ZeroR 0.780 0.500  0.609 0.780  0.684
NaiveBayes 0.665 0.654 0.728 0.665  0.687
Hand-coded rule ~ 0.655 na 0.635 0.654  0.644

tically indistinguishable from each other; LibSVM (support
vector machines), Logistic (logistic regression), and ZeroR
(baseline—chooses most frequent class) were again indistin-
guishable (these classifiers generally labelled all instances as
NotSeekingEngagement); while NaiveBayes (naive Bayes)
and the hand-coded rule (distance + orientation) had the
lowest overall accuracy by a significant margin. Figure 4
shows the ROC curves for all classifiers based on the Seekin-
gEngagement class: as expected, the curves for all of the
high-performing classifiers are close to optimal, while those
for the other classifiers are closer to the chance performance
of the baseline ZeroR classifier.

5.2 Attribute Selection

The above cross-validation results made use of the full set
of sensor attributes included in the corpus; however, it is
likely that not all of the sensor data is equally informative for
the classification task. To get a better assessment of which
sensor data was most relevant, we carried out two forms of
attribute selection. We first determined the sensor attributes
that were the most informative for each of the individual

Fig. 4 ROC curves for 1
SeekingEngagement class 09
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classifiers, using a wrapper method [37] to explore the rela-
tionship between the algorithm and the training data. We
then analysed the corpus as a whole using Correlation-Based
Feature Selection (CBF) [28], a general-purpose selection
method known to have good overall performance [26].

The results of this attribute selection process are shown in
Table 4. The main body of the table indicates with a bullet
(e) the attributes that were determined to be most informa-
tive for each of the classifiers; for reference, the last row
shows the two features that were used by the rule-based clas-
sifier (z head position and body orientation). The final Acc
column shows the cross-validation accuracy of a classifier
making use only of the selected attributes. As can be seen,
most of the high-performing classifiers made use of the full
3D location of the customer’s head, along with the 3D loca-
tion of the hands and the “speaking” flag. The accuracy of
most classifiers was very slightly better with the classifier-
specific attribute subset when compared to the results from
Table 3, but in no cases was this improvement statistically

—IB1
J48
—CVR
— JRip
— LibSVM
Logistic
— ZeroR

— NaiveBayes

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate
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significant. The bottom row of the table shows the attributes
that were found to be most informative by the CBF selec-
tor, which were similar to those used by the high-performing
classifiers: namely, the full 3D position of the customer’s
head, along with some of the hand coordinates. The selected
attributes correspond very well with the results of the HMM-
based study from the previous section.

It is notable that body orientation—which was one of the
two main engagement-seeking signals found in the human—
human data, and which was found to be necessary for making
offline engagement judgements based on that same data—
was not determined to be informative by any of the attribute
selectors. This is most likely due to the performance of the
initial vision system that was used to create the corpus data,
which turned out to have difficulty in detecting body orienta-
tion reliably, making this attribute unreliable for engagement
classification. The unreliability of this signal in the corpus
data likely also affected the cross-validation performance of
the hand-coded rule (which used both factors found to be rel-
evant to engagement based on the real-world study), which
had lower accuracy even than the baseline ZeroR classifier.
Also, the right hand was generally found to be more infor-
mative than the left: this is probably because, assuming that
most customers were right-handed, they would have used this
hand more often, thus providing more useful vision data.

6 Experiment 3: Online Comparison of
Rule-Based and Trained Classifiers

The offline results presented in the preceding section are
promising: in cross-validation against real sensor data, the
top-performing trained classifier (IB1) correctly labelled
over 95% of the video-frame instances. However, this study
was based on frame-by-frame accuracy; and as Bohus and
Horvitz [7] point out, for this sort of classifier, a better run-
time evaluation is one that measures the errors per person,
not per frame.

As a step towards such an evaluation, we therefore inte-
grated the top-performing trained classifier into the robot
bartender’s state manager (SM) and tested its performance
against that of the rule-based classifier through an online eval-
uation, with human participants playing the role of customers
for the robot bartender. This study used the drink-ordering
scenario illustrated in Fig. 1: two customers approached the
bar together and attempted to engage with the bartender,
and—if successful—each ordered a drink. The bartender was
static until approached by a customer, and did not engage in
any interaction other than that required for the target scenario.
As soon as the robot detected a customer intending to engage
with it, it would acknowledge their presence by turning its
head towards them and speaking: either a greeting (if they
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were the first customer) or a request to wait (if they were the
second)—Fig. 1 contains an example of both behaviours.

For this experiment, in half of the trials, the SM used
the rule-based engagement classifier, while for the rest, it
instead made use of the IB1 classifier trained on the complete
5090-instance corpus used in the experiment in the preceding
section.

6.1 Participants

41 participants (29 male), drawn from university departments
outside the German robotics group involved in developing
the bartender, took part in this experiment. The mean age of
the participants was 27.8 (range 16-50), and their mean self-
rating of experience with human-robot interaction systems
was 2.51 on a scale of 1-5. Participants were given the choice
of carrying out the experiment in German or English; 27
chose to use German, while 14 chose English.

6.2 Scenario

The study took place in a lab, with lighting and background
noise controlled as far as possible. In each trial, the participant
approached the bartender together with a confederate, with
both customers seeking to engage with the bartender and
order adrink (as in Fig. 1). Each participant was given a list of
the possible drinks that could be ordered (Coke or lemonade),
but was not given any further instructions. The robot was
static until approached by a customer, and the confederate did
not attempt to speak at the same time as the participant. Each
participant carried out two interactions, with the order and
selection of classifiers counter-balanced across participants.

6.3 Dependent Measures

To evaluate the performance of the classifiers, we used the
system logs to compute a number of objective measures
which specifically address the interactive performance of the
two engagement classifiers. Note that the ground-truth data
about the participants’ actual behaviour is not available; how-
ever, based on the scenario (Fig. 1), it is reasonably safe to
assume that the majority of customers were seeking to engage
with the bartender as soon as they appeared in the scene, and
that the participants behaved similarly in the two classifier
conditions. We collected the following objective measures:

— Detection Rate How many of the customers detected in
the scene were classified as seeking to engage. Under the
above assumptions, this measure assesses the accuracy
of the two classifiers.

— Initial Detection Time The average delay between a cus-
tomer’s initial appearance in the visual scene (i.e., the
point at which the vision system first noticed them)
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and the time that they were considered to be seeking  Table5 Objective results (significant difference highlighted)
engagement. Agal.n, under.the assumption that all partl'c1- Measure Rule (SD) Trained (SD)
pants behaved similarly, this measure assesses the relative
responsiveness of the two engagement classifiers. Detection rate 0.98 (0.10) 0.98 (0.09)

— System Response Time The average delay between a cus- ~ Time to first detection (s) 5.4(1.9) 4.0(9.7)
tomer’s initial appearance in the visual scene and the time Time to system response (s) 7.0 (7.9) 6.4 (10.4)
that the system generated a response to that customer.  Time to drink served (s) 62.2 (22.2) 53.7 (14.0)
Since the system would only respond to customers that ~ Num. engagement changes 12.0 (10.2) 17.6 (7.6)

were detected as seeking engagement, this is a secondary
measure of classifier responsiveness, but one that is more
likely to have been noticed by the participants.

— Drink Serving Time The average delay between a cus-
tomer’s initial appearance in the visual scene and the
time that the system successfully served them a drink.
Since serving a drink ultimately depends on successful
engagement between the customer and the bartender, this
is an even more indirect measure of responsiveness.

— Number of Engagement Changes The average number of
times that the classifier changed its estimate of a user’s
engagement-seeking state over the course of an entire
experiment run. In the experimental scenario, only the
initial detection affected the system behaviour: as soon
as a customer was determined to be seeking engagement,
the system would engage with them and the interac-
tion would continue. However, the engagement classifier
remained active throughout a trial, so this measure tracks
the performance over time. Although the actual behaviour
of the experimental participants is not known, we assume
that it was similar across the two groups, so any differ-
ence on this measure indicates a difference between the
classifiers.

The participants also completed a subjective usability
questionnaire following the experiment, including questions
about perceived success, ease and naturalness of the inter-
action, and overall satisfaction. In general, the participants
gave the system reasonably high scores on perceived suc-
cess, interaction ease, and overall quality, with somewhat
lower scores for naturalness. However, the choice of engage-
ment classifier made no significant difference to any of the
responses to this questionnaire, so we do not discuss those
results further here—see Foster et al. [20] for more details.

6.4 Results

A total of 81 interactions were recorded in this study.
However, due to technical issues with the system, only 58
interactions could be analysed, involving data from 37 of the
41 subjects: 26 interactions using the rule-based classifier,
and 32 using the trained IB1 classifier. All results below are
based on those 58 interactions.

Table 5 summarises the objective results, divided by the
classifier type. Overall, the detection rate was very high, with

98% of all customers determined to be seeking engagement,
generally within 4-5s (and, in many cases, in under 1s).
The robot acknowledged a customer on average about 6—
7s after they first became visible, and a customer received
a drink about a minute after their initial appearance—note
that this last number includes the full time for the spoken
interaction, as well as the 20 s normally taken by the robot arm
to physically grasp and hand over the drink. Over the course
of an entire interaction, a customer’s estimated engagement
changed an average of 15 times.

Each study participant took part in two interactions; how-
ever, as mentioned above, due to technical issues we could
not analyse the full paired data. Instead, we analysed the data
using a linear mixed model [4,64], treating the participant
identifier as a random factor, with the classification strategy
and all demographic features included as fixed factors. This
analysis found that the effect of the classification strategy
on the number of changes in estimated engagement was sig-
nificant at the p < 0.05 level; however, while the numbers
in Table 5 suggest that the trained classifier was somewhat
more responsive, none of those differences were found to be
statistically significant.

Several demographic factors also affected the objective
results: the participants who carried out the experiment in
German took significantly longer to receive their drinks
than did those who interacted in English (48.1 vs. 62.0s;
p < 0.05), while the classifiers changed their estimate of
the female participants’ engagement state significantly more
often over the course of an interaction (21.1 vs. 13.3 times;
also p < 0.05).

6.5 Discussion

The objective results of this study indicate that the system
was generally successful both at detecting customers who
wanted to engage with it and at serving their drinks: despite
the minimal instructions given to the participants, the objec-
tive success rate was very high. The choice between the two
classification strategies had one main objective effect: the
trained classifier changed its estimate of a customer’s engage-
ment state more frequently than did the rule-based classifier;
in other words, the rule-based classifier was more stable over
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the course of an interaction than the trained classifier. While
the data in Table 5 suggests that the trained classifier may
have been more responsive than the rule-based classifier (i.e.,
with a faster response time), no significant difference was
found in these results.

The demographics had several effects on the results. First,
the participants who used German took significantly longer to
receive their drink, and also gave lower overall ratings to the
system. We suspect that this was likely due to the decreased
performance of the Kinect German language model, which
was added to the Kinect Speech API much later than the
English recognition. The system only responds to speech
utterances with a confidence above a threshold—and on
average, nearly twice as many attempted user turns were dis-
carded due to low confidence for the German participants (4.1
per interaction) as for the English participants (2.2). Also,
both classifiers’ estimate of customer engagement changed
more often over the course of a trial for the female partici-
pants than for the male participants: we hypothesise that this
may be due to the vision system having been trained primar-
ily on images of male customers.

Note that all of the dependent measures in this study are
based only on the data from the log files, along with some
underlying assumptions about user behaviour based on the
scenario given to the participants (Fig. 1): namely, we assume
that all customers were seeking to engage with the bartender
from the moment that they appeared, and that the behaviour
of the participants in the two conditions did not differ over
the course of an interaction. The difference in classifier sta-
bility between male and female participants suggests that
this assumption may not hold in practice; however, to assess
the true performance of the classifiers, we require ground-
truth data as to the actual engagement-seeking behaviour of
the customers in the scene. Such ground-truth information
would also allow us to analyse the impact of the demographic
factors more directly.

7 Experiment 4: Evaluation with Novel Test Data

In the user evaluation summarised above, the ground truth
about the customers’ actual engagement-seeking behaviour
was not available. This makes the results of the user study
difficult to interpret, as it is impossible to know which of
the classifiers actually estimated customer engagement more
accurately in practice. Note that, due to the study design (in
which all subjects were instructed to engage, and which was
carried out in parallel with the end-to-end system evaluation
described by Keizer et al. [36]), even if the recordings were
annotated, there would be very few true negative examples
in any case.

Instead, we therefore carried out a new evaluation of the
engagement classifiers, making use of a specially-recorded
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Fig. 5 Sample images from the test data. a Customer not seeking
engagement. b Customer seeking engagement

test corpus addressing the weaknesses of the previous study:
namely, the engagement-seeking behaviour of all customers
is fully annotated, and the data includes a much more bal-
anced set of positive and negative instances.

The test data is based on six videos, each showing a sin-
gle customer in front of the bar, as in the sample images
in Fig. 5. Two different customers were recorded: one who
was involved in the human—robot interactions making up the
original training corpus, and one who was not. The customers
were instructed to move around in front of the bartender; for
half of the videos, they were instructed to engage with the
bartender, while for the others, they were told to move around
but not to engage; the details of how to behave were left up
to the subjects.

After the recordings were made, the ELAN annotation tool
[66] was used to annotate the videos, using the same labels as
the original training data: the customer’s engagement state
was labelled as either NotSeekingEngagement (Fig. 5a) or
SeekingEngagement (Fig. 5b). The video annotations were
synchronised with the frame-by-frame information produced
by the JAMES vision system, and a corpus instance was then
created from the relevant data in each vision frame, using the
annotation for the relevant time stamp as the gold-standard
label. In total, the test corpus consisted of 361 instances:
233 labelled as NotSeekingEngagement, and 128 labelled as
SeekingEngagement.
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Table 6 Classifier performance on the test set, sorted by F score

Classifier Accuracy  AUC Precision  Recall F

Rule 0.681 na 0.694 0.681 0.687
J48 0.648 0.583  0.661 0.648 0.653
CVR 0.598 0.576  0.612 0.598 0.604
NaiveBayes  0.571 0.528  0.638 0.571 0.578
LibSVM 0.645 0.500  0.417 0.645 0.506
ZeroR 0.645 0.500  0.417 0.645 0.506
JRip 0.421 0.350  0.557 0.421 0.432
Logistic 0.438 0.329  0.390 0.438 0.411
IB1 0.349 0.341  0.388 0.349 0.363

We then trained each classifier from Table 2 on the full
training corpus from the previous study, and used each trained
classifier to predict labels for every instance in the test data.
The results of this test are shown in Table 6, sorted by
weighted average F score. As shown by the groupings in
the table, the results fell into three broad categories: at the
top, the hand-coded rule and the J28, CVR, and NaiveBayes
classifiers all had F scores well above the baseline ZeroR
classifier, which always chooses the highest-frequency label
(NotSeekingEngagement); the LibSVM classifier exactly
reproduced the baseline ZeroR behaviour; while the JRip,
Logistic, and IB1 classifiers all did worse than this baseline.

These results contrast strongly with the cross-validation
results from Table 3. Firstly, the overall numbers are much
lower: while the top performing classifiers from the previ-
ous study had scores well above 0.9 on all measures, the top
results in this study were in the range of 0.6-0.7. Also, the
relative ordering of the classifiers is very different: while the
IB1 (instance-based) and JRip (rule learner) classifiers did
well on cross-validation, they were both among the lowest-
performing classifiers on the test data; this suggests that these
classification strategies may have ended up over-fitting to the
training data and did not generalise well. On the other hand,
the NaiveBayes classifier and the hand-coded rule—which
were both near the bottom on the cross-validation study—
both scored at or near the top on the test data. Other classifiers
such as J48 (decision trees) and CVR (classification via
regression) did well in both studies; for this binary classi-
fication task, it is not surprising that these classifiers—which
are particularly suited to binary classifications—showed gen-
erally good performance.

To better understand the performance of the classifiers, we
inspected the classifier output on each of the test-data videos.
Figure 6 shows the gold-standard (reference) annotation for
three of the test videos, along with the labels produced by
each classifier on those same videos. The light yellow regions
correspond to the frames labelled with the NotSeekingEn-
gagement class, while the dark blue regions correspond to the

SeekingEngagement class. The figure clearly suggests dif-
ferences among the classifiers: for example, the hand-coded
rule selected SeekingEngagement very rarely; on the other
hand, the lowest-performing classifiers (JRip, Logistic, IB1)
selected this state frequently, even in cases where the cus-
tomer never actually sought to engage (e.g., Video 3).

Note also that even the best-performing classifiers changed
their engagement estimate much more frequently than the
gold standard. Table 7 shows the mean number of engage-
ment switches per test video produced by each classifier; with
the exception of the two classifiers which always select Not-
SeekingEngagement, all of the numbers are well above the
reference value of 2.0. Recall that in the online user study in
Experiment 3, stability was also an issue: the hand-coded rule
changed its estimate an average of 12.0 times per interaction,
while the value for the IB1 classifier was 17.6.

8 Experiment 5: Adding Temporal Context with
Conditional Random Fields

Although we used an HMM in the stand-alone study in Exper-
iment 1—which implicitly incorporates temporal context in
its processing—for all of the subsequent engagement stud-
ies, the input to the classifier consisted only of the sensor
data at a given instant, without taking into account any of
the temporal context provided by the interaction. However,
real customers switch their engagement-seeking state rela-
tively infrequently, so—as noted at the end of the preceding
section—classifying each input frame independently tends
to overestimate the number of engagement changes.

If an engagement classifier—even one with high overall
accuracy—changes its estimate too frequently, the job of the
system’s interaction manager is made more difficult, in that
responding to every change in estimated state is likely to
produce undesirable behaviour. In an alternative, unsuper-
vised, POMDP-based approach to interaction management,
this issue is addressed by making the POMDP “sticky”;
that is, biasing it towards self-transitions [62]. As an ini-
tial effort to address this issue in the current context, we
experimented with various methods of incorporating infor-
mation from previous frames into the state used to train the
supervised classifiers; however these modifications were not
found to improve either the stability or the performance of
the classifiers (see [17] for details of these experiments).

Instead, we address this issue by turning to a completely
different classification model: Conditional Random Fields
(CRFs) [39,59], which are probabilistic graphical models
particularly suitable for segmenting and labelling sequence
data such as the user-engagement data considered in this
paper. In particular, for these experiments, we have used the
freely-available CRF implementation CRFSuite [50]. Just as
we did in the previous studies with Weka, we used CRFSuite
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Fig. 6 Reference annotations
and classifier predictions for
three sample videos (yellow
indicates
NotSeekingEngagement, blue
indicates SeekingEngagement). LibSVM
a)Video 1. b Video 2. ¢ Video 3. ZeroR
(Color figure online) JRip

Gold standard

Hand-coded rule

Logistic

Gold standard

Hand-coded rule
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CVR

Naive Bayes I
LibSVM

ZeroR

Jas

CVR

Naive Bayes
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Table 7 Mean engagement

changes per classifier Rule  J48

CVR

NaiveBayes

LibSVM ZeroR JRip Logistic IB1 Gold

4.7 10.5 8.8 5.8

0.0 0.0 11.3 53 9.3 2.0

in its default configuration: a first-order Markov CREF, trained
through gradient descent using the L-BFGS method [67]. To
make the data suitable for use by CRFSuite (which does not
deal with continuous attributes), we first rounded all loca-
tions in the training and test data to the nearest S0mm, and
all body-orientation values to the nearest degree. Rounding
parameters were chosen to provide good discrete approxima-
tions of the continuous data.

To test the performance of the CRF model for the cur-
rent engagement classification task, we carried out the same
studies as on the supervised Weka classifiers in Experiments
2 and 4: 5-fold cross-validation against the training corpus,
and evaluation against the separately recorded test data. The
results of the cross-validation study are presented in Table 8;
the results from the IB1, J48 and ZeroR classifiers and the
hand-coded rule are repeated from Table 3 for context. Note
that a paired ¢ test found a significant difference at the
p < 0.01 level between the accuracy scores of all classi-
fiers in this table. Clearly, the cross-validation performance
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Table 8 Cross-validation results for CRF

Classifier Accuracy Precision Recall F

IB1 0.954 0.954 0.954 0.954
J48 0.928 0.925 0.928 0.928
ZeroR 0.780 0.609 0.780 0.684
Hand-coded rule 0.655 0.635 0.654 0.644
CRF 0.589 0.606 0.627 0.503

of the CRF is much lower than that of the previous classi-
fiers, including the hand-coded rule; but as noted earlier, this
measure itself does not necessarily reflect the practical utility
of a classifier for the current task.

We then developed a CRF model based on the full training
corpus and tested its performance on the test data; the results
of this study are presented in Table 9, again with the results
for the IB1, ZeroR and J48 classifiers and the hand-coded
rule repeated for context. Here, the advantages of using a



Int J of Soc Robotics (2017) 9:659-674

671

Table 9 CRF performance on the test set

Classifier Accuracy Precision Recall F Changes
Hand-coded rule  0.681 0.694 0.681 0.687 4.7
J48 0.648 0.661 0.648 0.653 105
CRF 0.615 0.614 0.624 0.606 1.0
ZeroR 0.421 0.557 0.421 0432 0.0
1B1 0.349 0.388 0.349 0363 93

CRF rather than a frame-by-frame classifier are becoming
clearer: the CRF accuracy, precision, recall, and F score on
this test set are all comparable to those of the hand-coded
rule and the best-performing trained classifiers such as J48.

Finally, we revisit the main motivation for exploring a
temporal classifier such as CRF in the first place: does using
this sort of sequence model improve the overall stability of
the classifier? Based on the performance on the test data
(included in the final column of Table 9), the answer is clearly
yes: in contrast to the previous classifier, the CRF classifier
changed its estimate of the user’s engagement state an aver-
age of 1.0 times per video across the test set—recall that
the number from the gold-standard data was 2.0. The CRF
output on the same three gold-standard (reference) videos
is shown in Fig. 7. While the predictions are obviously not
perfect—especially on Video 3—the overall pattern is closer
to realistic, and is much more stable than that of any of the
previous classifiers.

9 Summary, Conclusions, and Future Work

In the context of real-world human—robot joint action, a cru-
cial task is to understand the social states of every person in
the dynamic, changing scene. We have discussed the role of
user engagement detection in the context of the JAMES robot
bartender, and have shown how understanding the intended
engagement of the customers is vital to supporting socially
appropriate joint action in this bartender context.

We have then summarised our efforts in engagement
detection in the context of this particular social HRI scenario.

Fig. 7 Reference annotations
and CRF predictions for three
sample videos (yellow indicates
NotSeekingEngagement, blue
indicates SeekingEngagement). Gold standard
a Video 1. b Video 2. ¢ Video 3. CRE
(Color figure online)

Gold standard
CRF

Gold standard

We began with a proof-of-concept study using HMMs to esti-
mate user state based on a small corpus of specially-recorded
training data (Experiment 1). In the light of the subsequent
experiments, we can draw two main conclusions from this
study. First, the visually recognized attributes available in this
human-robot interaction scenario allow, in principle, clas-
sification into a larger set of user states. Of course, larger
numbers of states would require more high-quality training
data with perfectly recognized head poses, which is difficult
to collect with uninformed customers that are not famil-
iar with the limitations of the depth camera. Second, the
HMM experiment confirms that the attribute selection of
head pose and body posture features is necessary to classify
user engagement in the bartender scenario, independently
from related human—human studies [30,45,46] and the newer
classifiers defined in Sect. 5.

Next, we have described two approaches to the task of
online estimation of customers’ intended engagement: the
first version used a hand-coded rule based on findings from
annotated human behaviour in real bars, while for the second
version, we trained a range of supervised-learning classifiers
using a multimodal corpus derived from user interactions
with the initial system. In a cross-validation study using real
sensor data (Experiment 2), nearly all of the trained classifiers
significantly outperformed the hand-coded rule. The best-
performing classifier in terms of accuracy was the instance-
based IB1 classifier, which had an overall accuracy of 0.954
in frame-based cross-validation. When we carried out feature
selection, it was found that the most informative features were
the 3D position of the customer’s head, along with some of
the coordinates of their hands; body orientation—which was
one of the two features used by the rule-based classifier—
was actually not informative based on the corpus data, which
we hypothesise was mainly due to the noisiness of this signal
in the vision data used for training.

In an online user study (Experiment 3) comparing the
rule-based classifier with the top-scoring IB1 classifier in the
context of the full robot bartender system, we found one main
difference between the two classifiers: namely, the trained
classifier changed its estimate of the customers’ engagement
state significantly more often over the course of an interaction
than did the rule-based classifier, suggesting that the former

(a)

(b)

o |

(c)
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is less stable in practice. However, due to the details of the
user experiment, these results have some limitations: in par-
ticular, the gold-standard engagement data was not available,
and in any case the scenario would have led to very few true
negative testing instances.

To address these limitations, we then carried out a targeted
evaluation (Experiment 4) of the classifiers using a corpus of
separately recorded, fully annotated, more balanced test data,
and found that the relative performance was different. In the
cross-validation study, the instance-based IB1 classifier had
the highest performance and the hand-coded rule the lowest.
On this study, we found instead that the J48 decision-tree
classifier gave the best estimate of the users’ engagement
state, while the hand-coded rule actually had the overall best
performance. We suspect that this result may also have been
influenced by the noisy body orientations in the training data,
particlarly when contrasted with higher-quality body orien-
tation detection in the test data.

In all cases, and across all of Experiments 2—4, even the
top-performing classifiers changed their estimate of the cus-
tomers’ engagement state much more frequently than the
gold standard, likely because they all operate by classify-
ing individual sensor data frames. To address this issue, we
used the same data to train a classification model based on
Conditional Random Fields, which are explicitly designed
for sequence labelling problems of this type. The cross-
validation results for the CRF were not as high as those for
the previous frame-level classifiers; however, the overall sta-
bility of the classifier was much better, indicating that this
sort of sequence model is a fruitful future direction for this
classification task.

In summary, the main conclusion that we can draw from
these studies is that, while data-driven methods can be useful
for this engagement classification task, care must be taken in
several areas. First of all, we have confirmed the message
from Bohus and Horvitz [7] that online, run-time evalu-
ation is crucial for evaluating any classifier for this task:
the results from offline, frame-by-frame evaluation may not
be indicative of online performance. Also, we have found
that using a CRF, which explicitly incorporates the temporal
sequence information, shows comparable frame-level perfor-
mance to the frame-level classifiers but also greatly improves
the overall stability of the classification. Even though the per-
formance of all classifiers was likely affected by the noisy
body orientation information from the training data, the sta-
bility difference with the CRF was so dramatic that it still
seems that this is a better classification strategy.

Perhaps most importantly, we must also point out that the
performance of the hand-coded, rule-based classifier—which
used an extremely simple rule derived from the observation
of human performance—was competitive with that of the
highest-scoring trained classifiers in all of the experiments.
While this may not be the case for every audiovisual process-
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ing task, this result does remind researchers to consider such
simpler, easier to implement models, particularly if training
data may be missing or of potentially uncertain quality.

Regarding future work, we first note that in all of the clas-
sification studies, we have made a deliberate choice to treat
all of the classifiers as “black boxes”, in all cases using the
default parameter settings provided by the tools (Weka and
CRFSuite, respectively). This is a similar approach to that
taken, for example, by Koller and Petrick [38], who compared
the off-the-shelf performance of a number of Al planners
when applied to tasks derived from natural language gen-
eration. However, it is certain that the relative and absolute
performance could be significantly affected by appropriate
parameter tuning [41], and in future we will explore the space
of parameters more fully.

Another direction for future work is to explore methods
for making improved use of the classifier output in the context
of end-to-end interactions with the robot bartender. In partic-
ular, where the classifier provides not only a class, but also
an estimated confidence in that class, that additional infor-
mation can be incorporated into the state and used in the
interaction. Indeed, the state representation used by the final
JAMES bartender system retains and exploits the uncertainty
coming from the underlying input sensors to improve inter-
active performance [18,21]. The use of classifiers such as
J48 and CRFs—which provide such confidence estimates—
could also prove useful in this context.

The anonymised, annotated training and test corpora from
Experiments 2-5 are available for download from http://
downloads.maryellenfoster.uk/, and we encourage other
researchers to test their models on this data.
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