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Abstract
Replacing a pan involves the expenditure of significant capital for a sugar mill. Replacing a pan too late may result in exces-
sive downtime, maintenance costs, and risk of catastrophic failure. On the other hand, replacing a pan too early will lead to 
wasting residual life and an unnecessary allocation of capital funds that may have been spent better elsewhere in the mill. 
This paper reports on the development of a replacement policy for batch vacuum pan components based on a stochastic 
model of degradation. Degradation data, principally wall-thickness measurements, were collected from the vacuum pans 
of an Australian sugar factory and used to develop component degradation models. Unlike the conventional approach of 
using a line of best fit to identify the end of life of the pan, the methods adopted account for the uncertainties due to seasonal 
operating conditions and inherent uncertainty in the degradation model parameters. The quantification of the uncertainty in 
identifying the end of life of a vacuum pan has shown that there is significant risk of a pan failing earlier than the straight-
line prediction. Employing this quantification of the risk, a component replacement plan was developed by optimising the 
replacement of each component individually and subsequently optimising the replacement plan for the entire pan. This 
strategy is demonstrated using a case study with and without parametric uncertainty to evaluate its impact on maintenance 
optimisation. Including parametric uncertainty leads to the determination of greater risk earlier, proposing the replacement 
of components earlier than when parameters are considered as ‘known’. It is, therefore, important to consider parametric 
uncertainty in the planning of pan component replacements to better manage risk.
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Introduction

Batch pan functionality is of critical importance to sugar 
mill profitability, so asset maintainers aim to undertake 
maintenance and renewal actions at near-optimal times. 
Given the long lifetimes of the pans, scheduling is a difficult 
task, made more complicated by constrained capital budgets 
and limited condition inspections. Premature renewal wastes 

limited capital; whereas, late renewal may yield unaccepta-
ble failure risks. For assets that are inspected infrequently, 
a predictive approach is preferable, and making decisions 
based upon current asset condition allows for better balanc-
ing of costs and risks (Truong-Ba et al. 2019).

Pans are commonly subjected to corrosion of their inter-
nal surface, which increases stress on the surface, thereby 
increasing risk of failure (Cerit 2019). While this corrosion 
is a known physical characteristic, corrosion can occur in a 
highly localised and temporally stochastic process, making 
wall-thickness loss difficult to predict and the true risk of 
failure therefore difficult to quantify. This situation is par-
ticularly true when pan operating conditions vary signifi-
cantly from season to season and limited historical condi-
tion data are available for modelling—both of which induce 
significant uncertainty on the degradation process. This 
uncertainty must be quantified to properly estimate the fail-
ure risks and balance them against the cost of component 
replacements.
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Here, we present a methodology for optimising the 
renewal times of pan components using thickness loss data. 
The overall process of renewal optimisation is shown in 
Fig. 1. The degradation model uses a statistical method for 
modelling wall-thickness loss that incorporates both his-
torical data and relevant engineering knowledge, and that 
acknowledges and accounts for uncertainty both inherent to 
the degradation process and due to poor knowledge of the 
parameters identified from “little” condition data. The deg-
radation model yields a prediction of pan failure time, which 
can be combined with a pan cost model through optimisation 
to yield optimal times for preventive component replace-
ment. The optimal replacement methodology thus provides 
a decision support approach for asset maintainers in creating 
renewal schedules. This process can be repeated when more 
condition data becomes available, to update the advice.

We firstly detail the cost model used for batch pans in 
the maintenance optimisation process, and then discuss the 
methodology for degradation modelling and maintenance 
optimisation with a full acknowledgement of parameter 
uncertainty induced by the limited data. Finally, we detail 
the results of a case study of these methods, undertaken on 
an example batch pan from a real Australian sugar mill.

Methodology

In engineering contexts, pressure-vessel wall-thickness 
loss is commonly modelled with stochastic processes, 
particularly gamma processes that are random processes 
with gamma-distributed increments (Cholette et al. 2019; 
Haladuick and Dann 2016; Zhang and Zhou 2013). Their 
stochasticity accounts for some temporal uncertainty in 
degradation rate, and the monotonic progression of the 
gamma process is a natural fit for thickness loss. For this 
paper, a gamma process model structure for thickness loss 
was used which depends on the cumulative steam flow 
through the pan, which is an indicator of both operational 
time and relative load of the given pan. This framework 

allows for the assumption that pans with different steam 
flow (operating cycles) can be modelled by the same struc-
ture—with comparable parameters.

Consider component i over the time interval (tj−1, tj] . 
The change in thickness loss Δxi,j = xi,j − xi,j−1 is proposed 
to follow a gamma distribution such that Δxi,j ∼ G(aj, �) , 
where:

where ṁsteam

(
tj−1, tj

)
 is the (assumed constant) steam flow 

over the time interval and � and � are the gamma process 
parameters to be identified. The parameters � and � are the 
shape and rate parameters of the gamma process. In a practi-
cal sense, their values jointly control the rate of thickness 
loss, which is predicted by the degradation model. For exam-
ple, Fig. 2 shows the impact on straight-line thickness loss 
prediction of a range of � values (when � is fixed) and a 
range of � values (when � is fixed).

Parameter Estimation

While the gamma process itself accounts for some deg-
radation rate uncertainty, traditional techniques such as 

(1)aj = 𝛼

j∑

j=j−1

ṁsteam

(
tj−1, tj

)
⋅
(
tj − tj−1

)

Fig. 1  Flowchart of high-level process to yield the decision support 
tool

Fig. 2  Impact on straight-line-thickness loss prediction of different 
model parameter values
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Maximum Likelihood Estimation (MLE) assume model 
parameters are known once estimated as point estimates 
(single parameter values)—something that is not assured 
under the condition of “little data”. Moreover, MLE has no 
natural capability to exploit engineering knowledge in the 
parameter estimation. Given historical data and the proposed 
model structure, MLE yields the single point value of best 
fit for the model parameters.

On the other hand, Bayesian methods can be utilised to 
naturally acknowledge parametric uncertainty in limited data 
environments and can be used to incorporate engineering 
knowledge on the plausible values. Bayesian methods seek 
to compute the posterior distribution, which is the probabil-
ity (of the value) of the model parameters given the observed 
historical data (Gelman et al. 2013). To do so, the methods 
leverage an expression based on the prior distribution and 
the likelihood function. The prior is the probability of the 
model parameters without “seeing” any data—this method 
is used to incorporate any existing knowledge of the deg-
radation process. The likelihood function, or sampling dis-
tribution, is the probability of observing the historical data 
given the model parameters. Thus, we pursued Bayesian 
identification of the gamma process parameters to provide 
the capability to characterise the effect of limited data and 
potentially mitigate its effects by intelligent prior selection.

Given historical data D of steam flow and thickness loss 
measurements, the Bayesian methods seek to compute the 
posterior distribution:

where p(�, �) is the prior distribution of the parameters that 
encapsulates the prior knowledge and �(D|�, �) is the like-
lihood of the observed data given the model parameters. 
While the posterior p(�, �|D) can be analytically estimated 
in some cases, it is more common to sample from the poste-
rior using Markov Chain Monte Carlo (MCMC) techniques. 
MCMC techniques utilise a Markov Chain (where the next 
sample is dependent on the existing sample) to randomly 
walk and draw samples from a region proportionate to, and 
thus effectively from, the parameter posterior distribution. 
Here, we used Hamiltonian Monte Carlo, which is a type of 
MCMC method, using the modelling software MATLAB 
Stan (Gelman et al. 2013; Stan 2022) to sample from, and, 
hence, to estimate statistical properties of, the posterior. In 
a practical sense, this process yielded distributions for the 
probability of a range of values for � and � comprised of 
parameter samples from the posterior.

In the degradation prediction space, there is a marked 
difference between using MLE point estimates and MCMC 
probability distributions for model parameters. Utilising the 
MLE point estimates for thickness loss prediction results in 

(2)(�, �) ∼ p(�, �|D) =
𝓁(D|�, �) ⋅ p(�, �)

∫ ∫ 𝓁(D|�, �) ⋅ p(�, �)d�d�

a single predicted thickness loss path—although confidence 
intervals can be included around this value. In comparison, 
altering model parameter values alters the predicted degrada-
tion rate (Fig. 2), so utilising the full distribution of MCMC 
parameter values therefore yields a predictive distribution of 
thickness loss paths. In practice this predictive distribution is 
commonly broader—more uncertain of prediction—than MLE 
point estimate confidence intervals.

Failure Time Distribution

The gamma process model detailed above can be utilised for 
the prediction of future wall-thickness loss and the distribution 
of the times when this loss hits the maximum allowable thresh-
old—called hitting time. The Cumulative Distribution Func-
tion (CDF) of the hitting time ( F(m) ) represents the cumula-
tive chance of the threshold being reached with steam flow 
less than or equal to ‘ m ’. For homogeneous gamma processes 
with known (or estimated) parameters � and � , the CDF of 
the hitting time of threshold h can be found analytically (van 
Noortwijk and Klatter 1999):

where m is the cumulative steam flow and the numerator is 
equal to the ‘upper incomplete gamma function’ which is 
defined as Γ(x, y) = ∫ ∞

y
tx−1e−tdy . Note that hitting cumula-

tive steam flow is considered rather than hitting time since 
steam flow is the independent variable in the degradation 
model in Eq. (3).

Renewal Optimisation

The timing of the renewal decision of the pan was optimised 
by minimising the total discounted cost CT over a finite hori-
zon of length T:

where �(t) is a binary decision variable to indicate capital 
replacement ( �(t) = 1 indicates that renewal occurs at time 
t ), crenewal and crisk are the expected cost of undertaking pan 
component/s renewal and the failure risk cost, respectively, 
and crisk , is the failure risk cost, whose consequence is the 
sum of downtime, safety, and reactive maintenance costs 
incurred upon failure. A discount factor 0 < r ≤ 1 is applied 
to account for the time value of money. Sugar mills have two 
distinct seasons: growing and crushing. It is assumed that 
preventive renewal of pan component/s can be scheduled in 
the growing season, and that any failure occurs in the crush-
ing season when pans are in use. Hence, failure incurs the 

(3)F(m) =
Γ(�m�, h�)

Γ(�m�)

(4)CT =

T∑

t=0

rt[crenewal(�(t)) + crisk(�(t))]
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downtime cost of loss of production. The only preventive 
maintenance action considered by this model is renewal of 
individual components. No costs are included for inspection, 
as the model predicts forward from current knowledge of 
condition, in this case study, from ‘as new’.

The costs of maintenance and renewal must be computed 
according to the pan components specifications and reliabil-
ity structure. A general reliability structure for the five pan 
components (top cone, main body, middle cone, calandria, 
and bottom cone) was developed based on discussions with 
sugar mill staff: if one component fails, the entire pan (all 
five components) must be replaced unless the failure occurs 
in the top or bottom cone. In this latter case, only the failed 
component must be replaced. When performing preventive 
renewals, it is assumed that any of the five components may 
be replaced individually.

We pursued a simulation–optimisation for minimising 
the total discounted cost (the expected value of Eq. (4)). A 
Monte Carlo simulation was used to estimate the expecta-
tion CT using specified replacement ages and gamma pro-
cess parameter distributions as inputs. For each simulation, 
a two-stage sampling was utilised: first of the parameter 
values (from the parameter posterior distributions) and then 
of the component failure times (via the CDF in Eq. (3) at 
the sampled parameter values). In the case of point esti-
mates for parameters yielded from traditional techniques 
such as MLE, the first level of sampling is not necessary. 
For each component, a replacement occurred if the compo-
nent failed or was preventively replaced within the horizon. 
Upon this replacement, the component age was reset to zero 
and the simulation was continued until the time horizon was 
achieved. The discounted total cost was computed by sum-
ming the (discounted) cost of each of the replacement events 
and the expectation of CT was approximated by taking the 
average of Nsample sample path costs. This simulation was 
used as the fitness function in a Genetic Algorithm to find 
the five component replacement ages that minimized this 
(approximate) discounted total cost.

Case Study Results

A case study was undertaken on an example pan from a fleet 
of batch pans at an Australian sugar mill. The next section 
details the results of degradation model parameter estima-
tion using both Bayesian techniques and the more traditional 
Maximum Likelihood Estimation (MLE) technique and 
assesses the impact of parameter uncertainty on the failure 
risks. We then present the results of renewal optimisation 
undertaken for the example pan.

Parameter Estimation and Degradation Modelling

Historical data available from an Australian sugar mill pan 
fleet was used to estimate the parameters for the degradation 
model. The data were comprised of historical cumulative 
steam-flow and thickness measurements. Using the degrada-
tion model framework detailed in the Methodology, change 
in thickness measurements for each of the five components 
were grouped across the fleet of seven pans. This approach 
yielded the small number of changes in thickness historical 
measurements identified in Table 1.

Point estimates for the degradation parameters α and β for 
each of the five components were firstly obtained via MLE; 
while, the Bayesian posteriors were sampled using Stan’s 
MATLAB interface (Stan 2022). An example of the param-
eter estimation results for the top cone is shown in Fig. 3. 
Figure 3 shows the MLE point estimate, along with the prob-
ability distribution of values determined by the Bayesian 
techniques. The graphs show that there is quite high proba-
bility that the two parameters could be much higher or lower 
in value than the point estimate.

To then examine the impact of parameter uncertainty in 
the degradation predictions, we compared the hitting time 
distributions for the minimum thickness for both the MLE 
and Bayesian parameter identification methods. The maxi-
mum allowable thickness loss threshold was found by sub-
tracting the minimum thickness from the original (as new) 
thickness of the components. Firstly, a straight-line predic-
tion of hitting time was made using MLE point estimates. 

Table 1  Number of historical 
thickness loss measurements 
available for each component 
for parameter estimation

Component Number of 
measure-
ments

Top cone 17
Main body 33
Middle cone 15
Calandria 48
Bottom cone 31

Fig. 3  Comparison of the parameter estimations for the top cone 
component
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Secondly, the point estimates were used in Eq. (3) to yield 
a curve for the hitting time distribution which incorporates 
some uncertainty of future steam flow and operating con-
ditions. Finally, the MCMC parameter distributions were 
utilised to simulate and store component hitting times, yield-
ing a distribution of possible hitting times which also incor-
porates parametric uncertainty. An example of the hitting 
time distributions can be seen in Fig. 4 (middle cone). As 
can be seen in the figure, a significant portion of the MCMC 
simulated failure times fall outside the bounds of the 95% 
confidence interval of the MLE hitting time distribution, 
shown by the bell-shaped curve. This result indicates that the 
inclusion of parametric uncertainty (inherent in the Bayesian 
method) is important to properly evaluating risk of compo-
nent failure since ignoring it under-estimates the probability 
of the tails (i.e. very early or very late failure times).

A similar comparison was performed for each of the five 
components in the example pan. The results are presented 
in Table 2, which quantifies the added risk of failure iden-
tified by including parametric uncertainty in degradation 
modelling of the example pan. The results show significant 
risk of failure occurring both before and after the analyti-
cal modelling predicts. This identified risk has important 
implications for renewal optimisation but is difficult to use 
directly for decision making. In the next section the impact 
of this earlier identified risk is demonstrated on optimal 

replacement ages, which can be used as a decision support 
tool. Note that if ignoring parameter uncertainty is accept-
able, the percentage of samples falling outside the bounds of 
the confidence interval of the analytical distribution would 
be 2.5% on either end.

Renewal Optimisation

The renewal optimisation of the example pan was under-
taken to identify optimal ages for the component renewals. 
The downtime cost was computed based on the fraction of 
lost productivity due to the pan’s failure. Individual compo-
nent renewal costs were estimated as Vcomponent

Vpan

Ccapital where V  

is the volume of material (either for the component or the 
pan) and Ccapital is the capital cost of the pan. Safety risk cost 
was considered to be AUD50,000.

MATLAB’s inbuilt Genetic Algorithm (GA) was utilised 
to solve for the optimal replacement ages for the components 
of the example pan. The components were considered con-
currently, with the reliability structure as noted in the Meth-
odology. The optimisation took place with a finite horizon 
of T = 50 years, and a discount rate of r = 0.95 was used. To 
assess the impact of including parametric uncertainty in the 
modelling, optimisation was undertaken twice: firstly, utilis-
ing the Bayesian posterior parameter samples (and two-stage 
sampling), and secondly using the MLE point estimates and 
no parameter sampling. The optimal preventive replacement 
ages for the components are presented in Table 3.

When utilising the full parameter marginal distribu-
tions in the simulation–optimisation based on the Bayes-
ian approach, all five components are found to be optimally 
preventively replaced prior to the 50-year horizon—from 
their as new state. Whereas when utilising the parameter 
point estimates based on the MLE approach, none of the 
components are scheduled for preventive replacement. This 
result indicates that when parameter uncertainty is included 
in the process the model identifies potential failure earlier 
than when the parameters are ‘known’ using point estimates. 
Including parameter uncertainty results in the earlier sched-
uled preventive replacements of components.Fig. 4  Comparison of the analytical estimation of failure time distri-

bution to the Monte Carlo simulated times

Table 2  Percentage of Monte Carlo failure times outside the bounds 
of the point estimate driven analytical distribution confidence interval 
for components of the example pan. If ignoring the parameter uncer-

tainty is acceptable, the percentage of samples outside the lower/
upper CI would be 2.5%. Clearly, the true probability is higher if one 
considers parameter uncertainty

Component Percentage of simulated failure times before 
lower bound analytical CI

Percentage of simulated failure times after 
upper bound analytical CI

Total failure risk outside 
bounds of analytical CI

Top cone 4.0 7.0 11.0
Main body 5.5 9.0 14.5
Middle cone 10.0 25.0 35.0
Calandria 6.7 13.6 20.3
Bottom cone 5.0 10.0 15.0
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Following the simulation–optimisation of the replace-
ment ages, the Monte Carlo algorithm was utilised to find the 
expected discounted yearly costs when following the optimal 
replacement schedule. The yearly costs are comprised of 
the expected amount of component replacement and failure 
costs. Each Monte Carlo simulation that experienced com-
ponent failure or preventive replacement recorded the appro-
priate indicative costs of the reliability model as the yearly 
costs of the simulation. The expected yearly costs are; thus, 
the mean of the yearly costs of all the simulations. They are 

a portion of the cost of a failure event. The expected yearly 
costs, for each of the components and for the pan, are pre-
sented in Fig. 5. Note that the yearly costs peak and begin to 
reduce in the second half of the finite horizon, this is due to 
the effect of the discount rate on the costs.

Conclusions

Here, we have presented a model for predicting thickness 
loss of sugar mill batch pans while acknowledging and quan-
tifying uncertainty. This model was compared to a baseline 
version wherein model parameters were considered ‘known’ 
after (point) estimation. A methodology was presented to 
utilise the uncertain model in optimising preventive replace-
ment scheduling of pans in accordance with their presented 
reliability structure. A case study was undertaken on an 
example pan from a real Australian sugar mill, utilising 
historical data from the fleet of pans at the mill. We found 
that treating the model parameters as known led to overcon-
fidence in the model and under evaluation of failure risk. 
Maintaining parametric uncertainty led to identification of 
this risk, and hence earlier scheduled preventive replace-
ments of the pan’s components. We recommend that asset 

Table 3  Genetic algorithm optimised replacement ages, generated 
using full set of MCMC parameters and MLE point estimates

* A dash indicates that the solver found the optimal action was to plan 
for no preventive replacement of the component

Component MCMC parameters MLE 
param-
eters

Top cone 44 -*
Main body 47 -
Middle cone 42 -
Calandria 47 -
Bottom cone 44 -

Fig. 5  Expected discounted yearly costs when following the optimised preventive replacement schedule
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maintainers utilise this method when predicting future wall 
thickness loss and scheduling preventive replacement.
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