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Abstract
In various real-life queueing systems, part of the service can be rendered without 
involvement or presence of the customers themselves. In those queues, customers 
whose service order is still in process may leave the service station, go to ‘orbit’ 
for a random length of time, and then return to find out if their order has been com-
pleted. Common examples are car’s annual maintenance works, food ordering, etc. 
In this paper, a thorough analysis of a single-server ‘orbit while in service’ queueing 
model with general service time is presented. Assuming an Exponentially distrib-
uted orbit time, we derive general formulae for the distributions of (i) a customer’s 
total residence time in the system; (ii) a customer’s net actual residence time in the 
system during service (not including orbit time); (iii) the time an orbiting customer 
is late to return, i.e., remains in orbit after his/her service has been completed; and 
(iv) the total number of customers in the system. Considering the family of Gamma-
distributed service times (spanning the range of distributions between the Exponen-
tial and the Deterministic), as well as the Uniform distribution, we further derive 
explicit formulae for the distributions of the above variables. Under linear cost 
assumptions, the optimal mean orbit time is numerically calculated for each of the 
above service-time distributions. Figures depicting the behavior of the measures as 
functions of the parameters are presented.
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1  Introduction

A common queueing system is the following: customers arrive at a service station 
and place an order. Part (or all) of the service may be conducted without the cus-
tomer’s presence or involvement. While service is rendered, a customer may become 
impatient and leave the system before the order is completed, only to return later, 
after a random (orbit) time. Upon return, a customer collects his/her order, if com-
pleted, or waits in the premises until the service is concluded. One example of this 
“orbit while in service” phenomenon is seen in food stores. Another example is an 
annual car maintenance, followed by a Department of Motor Vehicles inspection. 
In almost all countries, all private cars are required to pass an annual mechanical 
inspection. Before passing the inspection, the car owner usually drives his/her car to 
a service station where the car undergoes maintenance procedures. This latter pro-
cess is usually lengthy. If the maintenance process extends beyond the customer’s 
patience time, s/he leaves the station and goes elsewhere for a random “orbit” time. 
If the car is ready when the owner returns from orbit, the customer pays for the 
service and drives away. However, if the maintenance operations have not been com-
pleted, the customer waits on the premises until service is completed and only then 
leaves.

Such an “orbit while in service” policy allows customers to use their time effi-
ciently so that rather than staying idle in the system during the service execution, 
they can perform other tasks while spending time “in orbit.” For example, customers 
can shop while their car undergoes maintenance; alternatively, they can spend the 
time relaxing in a coffee shop. Many researchers state that a customer’s satisfaction 
in service systems is significantly and implicitly affected by the time they physically 
spend in the system (see, e.g., Polas et al. 2018). Thus, by adopting the proposed 
policy and allowing, even encouraging, customers to use an orbit option while their 
service is in process, service system managers would gain a competitive advantage 
and increased demand. Despite the potential benefits of using the “orbit while in ser-
vice” policy, this branch of queueing systems is barely investigated in the literature. 
To the best of our knowledge, only the current work and (Hanukov 2023) addressed 
such a policy. The latter work assumed a Markovian system and investigated the 
inventory of stored ready services. In the current work, we study the “orbit while in 
service” policy with a general service duration distribution and investigate the opti-
mal time customers should orbit during their service.

Models of queueing systems with “impatient” customers who abandon the system 
before their service starts (or has been completed) have been widely investigated 
in the literature. For example, Bouchentouf et  al. (2022) consider a finite popula-
tion multi-server machine system with breakdowns, repairs, Bernoulli feedback, 
balking, reneging, and retention of reneged customers under multiple synchronous 
working vacations. The authors find the optimal system capacity, number of serv-
ers, and service rates during working vacations and regular busy periods by min-
imizing the system’s total cost. Dong and Ibrahim (2021) investigate the shortest 
remaining processing time (SRPT) scheduling policy in multi-server queues with 
abandonment. The authors prove that the SRPT discipline asymptotically maximizes 
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the system throughput among all scheduling disciplines. Bassamboo et  al. (2023) 
study scheduling multi-class impatient customers in parallel server queueing sys-
tems. The authors use fluid approximations to analyze the multi-class scheduling 
problem and provide managers with ways to improve the quality of service to man-
age such systems. Further discussion on queueing systems with “impatient” custom-
ers is available in the literature (see e.g., Altman and Yechiali 2006; Yechiali 2007; 
Sherzer and Kerner 2018; Bouchentouf et al. 2021; Dong and Ibrahim 2021; Shajin 
and Krishnamoorthy 2021; Ayhan 2022; Firouz et al. 2022; Kumar et al. 2022; Yin 
et al. 2023; Cherfaoui et al. 2023; Manitz and Piehl 2023). In all these papers, cus-
tomers abandon the system due to their impatience and relinquish receiving service, 
while in our work the customers go to orbit during the service execution and return 
to collect the completed service.

Also studied extensively are the so-called retrial models where blocked or delayed 
customers leave and “orbit” outside the system before returning to obtain service. 
For example, Dimitriou (2023) considers the single-server retrial queue with event-
dependent arrival rates, investigates the impact of event dependency on performance 
measures and derives optimal joining probabilities. Zhang and Wang (2023) analyze 
retrial queueing systems with boundedly rational customers. They show that the rev-
enue-optimal price is not generally socially efficient but depends on the retrial rate. 
Fiems (2023) investigates the M/D/1 retrial queueing system with constant retrial 
times. The author finds explicit expressions for various performance measures. Fur-
ther discussion on retrial queues is available (see e.g., Avrachenkov and Yechiali 
2010; Avrachenkov et al. 2014; Krishna Kumar et al. 2018; Do et al. 2020; Kumar 
et al. 2020; Gao et al. 2021; Lee et al. 2022; Nazarov et al. 2022; Templeton and 
Falin 2023; Zhang and Wang 2023; Melikov et al. 2023; Nithya et al. 2023). In all 
these studies, customers go to orbit before entering the system, while in our work 
customers go to orbit after their service has begun.

A special model where customers voluntarily go to orbit is the “ticket queue” 
process where impatient arriving customers who observe a long queue leave the 
service station for a random time and rejoin it after spending orbiting time outside 
the system (see e.g., Hanukov et al. (2020) and references there). Again, these stud-
ies, in contrast to ours, address the case where the customers go to orbit before the 
beginning of their service.

The model of customers orbiting while in service differs from the model of server 
vacations, which has been treated extensively in the literature (see e.g., Levy and 
Yechiali 1975, 1976; Kella and Yechiali 1988; Rosenberg and Yechiali 1993; Boxma 
et al. 2002; Tian and Zhang 2006; Liu and Wang 2017; Bouchentouf and Guendouzi 
2019; Suranga Sampath and Liu 2020; Bouchentouf et al. 2020; Sakuma et al. 2021; 
Wang and Xu 2021; Jain et al. 2021; Kleiner et al. 2021; Xu et al. 2022; Economou 
et  al. 2022; Afanasyev 2023; Sindhu et  al. 2023). In the “orbit while in service” 
model, customers are “vacationing,” while in the vacation models the server is the 
one who goes for (single or multiple) vacations.

In this paper, we thoroughly analyze the single-server “orbit while in service” 
queueing model with general service duration (which, to the best of our knowledge, 
as indicated above, has not been studied before) and investigate various variables 
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characterizing the system. The main contributions of this paper are summarized 
below:

•	 General formulae are obtained for the distributions of (i) a customer’s total resi-
dence time in the system; (ii) a customer’s net actual residence time in the sys-
tem during his/her service (not including orbit time); (iii) the time an orbiting 
customer is overdue, that is, remains in orbit after his/her service has been com-
pleted; and (iv) the number of customers in the system.

•	 Considering the family of Gamma-distributed service times (spanning the range 
of distributions between the Exponential and the Deterministic), as well as the 
Uniform distribution, we further derive explicit formulae for the distributions of 
the above variables.

•	 The optimal mean orbit time is calculated for each service-time distribution, 
considering (i) the utility customers gain from orbiting; (ii) the penalty incurred 
by a customer for every unit of time s/he is late returning from orbit; and (iii) the 
cost of queueing.

•	 Figures depicting the behavior of the measures as functions of the parameters are 
presented.

The remainder of this paper is organized as follows: Sect. 2 describes the model 
formulation. In Sect. 2.1, probability distribution functions for various sojourn times 
are obtained. Section 2.2 derives the probability distribution of the number of cus-
tomers in the system, and Sect. 2.3 calculates closed-form expressions for various 
distributions. Section 3 provides a scheme to obtain the optimal mean orbit time. 
The findings are discussed in Sect. 4.

2 � Model formulation

Customers arrive at a single-server queueing system according to a Poisson pro-
cess with rate λ. Required net service times for individual customers, B1,B2,B3... , 
are i.i.d, all distributed like B, with probability density function fB(t) , cumulative 
distribution function FB(t) , FB(t) = 1 − FB(t) , and LST B̃(s) . After entering ser-
vice, each customer is willing to wait an Exponentially distributed time T (with 
mean 1∕� ) for the service to be completed (T is called “patience time”). Several 
possible events (scenarios) can occur: (i) If the service time B is shorter than the 
customer’s patience time T (i.e. B < T  ), the customer leaves the system upon ser-
vice completion; (ii) If the service has not been completed by time T (i.e. T < B ), 
the customer leaves for a random time X, called “orbit time”, before returning to 
the system. The orbit time X is Exponentially distributed with parameter � . While 
the customer is in orbit, the server continues rendering the originally required 
service, B, for that customer (and possibly continues executing orders of other 
customers in case our customer’s service has been completed). If the service has 
been completed before the customer’s return (B < T + X) , the customer picks his/
her order and leaves; (iii) If a customer’s service is not finished when s/he returns 
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from orbit, the customer remains waiting in the service station until the service 
is completed, and only then leaves. The above possible scenarios are illustrated 
below:

Scenario 1 The service time is shorter than the customer’s patience time, that 
is, B < T  . Consequently, the customer doesn’t go to orbit, and leaves upon service 
completion.

Scenario 2 The customer’s patience time is less than the service time, so the cus-
tomer goes to orbit before service completion. Then, if the combined customer’s 
patience time plus orbit time exceeds the service time, (that is, T < B < T + X ), the 
customer leaves the station as soon as s/he is back from orbit.

Scenario 3 The customer’s patience time plus orbit time is less than the service 
time, that is, T + X < B . After back from orbit, the customer waits until his/her ser-
vice is completed.

Based on the above three scenarios, we investigate various key variables in the 
following section and derive their probability distribution functions.
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It should be indicated that the ‘orbit while in service’ model differs from a regu-
lar M/G/1 queue in the following aspects: (i) service of orbiting customers continues 
even in their absence; (ii) sojourn time is not composed simply of queueing time 
and service time, but it is a combination of time before orbit; orbit time (if appli-
cable); and waiting for service completion (if required) after returning from orbit. 
Thus, one cannot apply a standard argument to deduce the distribution of sojourn 
time from the corresponding probability generating function. Consequently, a differ-
ent approach is required to derive the probability generating function of number of 
customers in the system (not including those in orbit).

Note: to make the following presentation and analysis easier to follow, we present 
a notation list in Appendix A.

2.1 � Customers’ residence times

2.1.1 � Total time in system

Let V denote a customer’s total residence time in the system measured from the 
instant s/he starts service until departure. Note that V does not include a customer’s 
waiting time for her/his service to start, but may include the customer’s time in orbit. 
We have (see the three scenarios above):

The Laplace-Stieltjes transform (LST) of V is derived in Theorem 1 below:

Theorem 1 
Proof  According to (1),

Let Y = T + X with probability distribution function FY (y) and density fY (y). 
Then, the above is translated to

(1)V =

⎧⎪⎨⎪⎩

B if B < T

T + X if T < B < T + X

B if T + X < B

(2)Ṽ(s) = B̃(s) +
𝛼s

(s + 𝛽)(𝛼 − 𝛽)

(
B̃(s + 𝛼) − B̃(s + 𝛽)

)

Ṽ(s) = E[e−sB|B < T ]P(B < T) + E[e−s(T+X)|T < B < T + X ]P(T < B < T + X)
+ E[e−sB|T + X < B ]P(T + X < B).

(3)

Ṽ(s) =

∞

∫
t=0

t

∫
b=0

e−sbfB(b)fT (t)dbdt +

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−s(t+x)fB(b)fT (t)fX(x)dxdtdb

+

∞

∫
y=0

∞

∫
b=y

e−sbfB(b)fY (y)dbdy.
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Equation (3) comprises of three terms, calculated below.
Term 1
∞
∫
t=0

t
∫

b=0
e−sbfB(b)fT (t)dbdt =

∞
∫

b=0

∞
∫
t=b

e−sbfB(b)fT (t)dtdb =
∞
∫
0
e−sbfB(b)e−�bdb = B̃(s + �).

Term 2

Term 3
We first determine FY (y) and fY (y):

FY (y) ≡ P(Y < y) =
y

∫
t=0

fT (t)FX(y − t)dt =
y

∫
t=0

�e−�t(1 − e−�(y−t))dt = 1 + �e−�y−�e−�y

�−�
.

Then,
fY (y) =

dFY (y)

dy
=

��(e−�y−e−�y)

�−�
.

Consequently,

Finally, the LST of V is given by

Evidently, when the customer’s patience time is unbounded (� → 0) , Ṽ(s) → B̃(s) . 
Moreover, when the orbit time tends to zero (� → ∞) , Ṽ(s) → B̃(s).

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−s(t+x)fB(b)fT (t)fX(x)dxdtdb =

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−stfB(b)fT (t)e−sx�e−�xdxdtdb

=

∞

∫
b=0

b

∫
t=0

e−stfB(b)fT (t)
�

s + �
e−(s+�)(b−t)dtdb

=

∞

∫
b=0

b

∫
t=0

fB(b)e−st�e−�t
�

s + �
e−(s+�)(b−t)dtdb

=

∞

∫
b=0

b

∫
t=0

fB(b)�e−(s+�)t
�

s + �
e−(s+�)(b−t)dtdb =

∞

∫
b=0

b

∫
t=0

fB(b)e−(�−�)t
��
s + �

e−(s+�)bdtdb

=

∞

∫
b=0

fB(b)(1 − e−(�−�)b)
��

(s + �)(� − �)
e−(s+�)bdb =

��
(s + �)(� − �)

(

B̃(s + �) − B̃(s + �)
)

.

∞

∫
y=0

∞

∫
b=y

e−sbfB(b)fY (y)dbdy =

∞

∫
b=0

b

∫
y=0

e−sbfB(b)fY (y)dydb =

∞

∫
0

e−sbfB(b)
(

1 + �e−�b − �e−�b

� − �

)

db

= B̃(s) +
�

� − �
B̃(s + �) − �

� − �
B̃(s + �).

Ṽ(s) =B̃(s + 𝛼) +
𝛼𝛽

(s + 𝛽)(𝛼 − 𝛽)

(
B̃(s + 𝛽) − B̃(s + 𝛼)

)

+ B̃(s) +
𝛽

𝛼 − 𝛽
B̃(s + 𝛼) −

𝛼

𝛼 − 𝛽
B̃(s + 𝛽)

=B̃(s) +
𝛼s

(s + 𝛽)(𝛼 − 𝛽)

(
B̃(s + 𝛼) − B̃(s + 𝛽)

)
.
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The customer’s mean total residence time in the system is calculated by using 

E[V] = −
dṼ(s)

ds

|||| s = 0
 . We obtain.

E[V] = E[B] +
𝛼(B̃(𝛽)−B̃(𝛼))

𝛽(𝛼−𝛽)
.

It follows that for any 𝛼, 𝛽 > 0 , E[V] > E[B] . Moreover, for small � and � , 
E[V] ≈

(
1 +

�

�

)
E[B].

2.1.2 � Net actual residence time

An important variable is D, a customer’s net actual residence time in the system during 
his/her service time (not including orbit time).

We have (see the corresponding illustrations for scenarios 1, 2, and 3):

The LST of D is derived in Theorem 2:

Theorem 2 
Proof  According to (4),

Equation (6) comprises three terms, calculated below.
Term 1

Term 2

(4)D =

⎧
⎪⎨⎪⎩

B if B < T

T if T < B < T + X

B − X if T + X < B

(5)D̃(s) =
𝛽

𝛽 − s
B̃(s) +

s

s + 𝛼 − 𝛽
B̃(s + 𝛼) −

𝛼s

(𝛽 − s)(s + 𝛼 − 𝛽)
B̃(𝛽)

(6)

D̃(s) = E[e−sB|B < T ]P(B < T) + E[e−sT |T < B < T + X ]P(T < B < T + X)

+E[e−s(B−X)|T + X < B ]P(T + X < B).

E[e−sB|B < T ]P(B < T) =

∞

∫
t=0

t

∫
b=0

e−sbfB(b)fT (t)dbdt =

∞

∫
b=0

∞

∫
t=b

e−sbfB(b)fT (t)dtdb

=

∞

∫
0

e−sbfB(b)e
−𝛼bdb = B̃(s + 𝛼).
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Term 3

The details of the derivation of Term 3 are given in Appendix B.
Finally, the LST of D is given by

Again, when the customer’s patience time is unbounded (� → 0) , D̃(s) → B̃(s) . 
Moreover, when the orbit time tends to zero (� → ∞) , D̃(s) → B̃(s).

The mean of D, E[D] = −
dD̃(s)

ds

|||| s = 0
 is given by.

A customer’s mean queueing time (not including service or orbit) is the same as 
that of the classical M/G/1 queue, that is, E[Wq] =

�E[B2]

2(1−�E[B])
 . This follows since an 

arriving customer waits in line before entering service for the same length of time as 
s/he would have waited in a regular M/G/1 queue with no orbiting, since the orbiting 
of customers whose service has begun does not affect their service, which continues 

E[e−sT |T < B < T + X ]P(T < B < T + X) =

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−stfB(b)fT (t)fX(x)dxdtdb

=

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−stfB(b)fT (t)𝛽e
−𝛽xdxdtdb =

∞

∫
b=0

b

∫
t=0

e−stfB(b)fT (t)e
−𝛽(b−t)dtdb

=

∞

∫
b=0

b

∫
t=0

e−stfB(b)𝛼e
−𝛼te−𝛽(b−t)dtdb =

∞

∫
b=0

b

∫
t=0

fB(b)𝛼e
−(s+𝛼)te−𝛽(b−t)dtdb

=

∞

∫
b=0

b

∫
t=0

fB(b)e
−𝛽b𝛼e−(s+𝛼−𝛽)tdtdb =

∞

∫
b=0

fB(b)e
−𝛽b(1 − e−(s+𝛼−𝛽)b)

𝛼

(s + 𝛼 − 𝛽)
db

=
𝛼

(s + 𝛼 − 𝛽)

(
B̃(𝛽) − B̃(s + 𝛼)

)
.

E[e−s(B−X)|T + X < B ]P(T + X < B) =

=
𝛼𝛽

𝛽 − s

(
1

𝛼
B̃(s) −

1

(𝛼 − 𝛽 + s)
B̃(𝛽) +

(
1

(𝛼 − 𝛽 + s)
−

1

𝛼

)
B̃(s + 𝛼)

)
.

D̃(s) =B̃(s + 𝛼) +
𝛼

(s + 𝛼 − 𝛽)

(
B̃(𝛽) − B̃(s + 𝛼)

)

+
𝛼𝛽

𝛽 − s

(
1

𝛼
B̃(s) −

1

(𝛼 − 𝛽 + s)
B̃(𝛽) +

(
1

(𝛼 − 𝛽 + s)
−

1

𝛼

)
B̃(s + 𝛼)

)

=
𝛽

𝛽 − s
B̃(s) +

s

s + 𝛼 − 𝛽
B̃(s + 𝛼) −

𝛼s

(𝛽 − s)(s + 𝛼 − 𝛽)
B̃(𝛽).

(7)E[D] = E[B] −
1

𝛽

(
1 −

𝛼B̃(𝛽) − 𝛽B̃(𝛼)

𝛼 − 𝛽

)
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while they are orbiting. Thus, a customer’s mean sojourn time is given by 
E[W] = E[Wq] + E[D].

The mean total time of a customer in the system, from instant of arrival to that of 
departure, is E[Wq] + E[V].

2.1.3 � Time in orbit after service completion

Let H denote the time a customer remains in orbit after his/her service has been 
completed. We have.

The LST of H is derived in Theorem 3:

Theorem 3 
Proof  According to (8),

the first term of which is calculated as follows:

The probability that a customer leaves to orbit and then is late to return is 
P(T < B < T + X) =

𝛼

𝛼−𝛽

(
B̃(𝛽) − B̃(𝛼)

)
 (see Appendix C). Thus, the second term in 

Eq. (10) is given as 1 ⋅ (1 − P(T < B < T + X)) = 1 −
𝛼

𝛼−𝛽

(
B̃(𝛽) − B̃(𝛼)

)
.

Note that the first term in (9) is equal to X̃(s)P(T < B < T + X) which is explained 
by the memoryless property of the orbit time.

Using E[H] = −
dH̃(s)

ds

|||| s = 0
 , we obtain.

(8)H =

{
T + X − B if T < B < T + X

0 Otherwise

(9)H̃(s) =
𝛽

s + 𝛽

𝛼

𝛼 − 𝛽

(
B̃(𝛽) − B̃(𝛼)

)
+ 1 ⋅

(
1 −

𝛼

𝛼 − 𝛽

(
B̃(𝛽) − B̃(𝛼)

))

(10)
H̃(s) = E[e−s(T+X−B)|T < B < T + X ]P(T < B < T + X) + 1 ⋅ (1 − P(T < B < T + X)),

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−s(t+x−b)fB(b)fT (t)fX(x)dxdtdb =

∞

∫
b=0

b

∫
t=0

∞

∫
x=b−t

e−s(t−b)fB(b)fT (t)e−sx�e−�xdxdtdb

=

∞

∫
b=0

b

∫
t=0

e−s(t−b)fB(b)fT (t)
�

s + �
e−(s+�)(b−t)dtdb =

∞

∫
b=0

b

∫
t=0

fB(b)e−s(t−b)�e−�t
�

s + �
e−(s+�)(b−t)dtdb

=

∞

∫
b=0

b

∫
t=0

fB(b)e−(�−�)t
��
s + �

e−�bdtdb =

∞

∫
b=0

fB(b)(1 − e−(�−�)b)
��

(s + �)(� − �)
e−�bdb

=
��

(s + �)(� − �)
(

B̃(�) − B̃(�)
)

.

(11)E[H] =
𝛼

𝛽(𝛼 − 𝛽)

(
B̃(𝛽) − B̃(𝛼)

)
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2.2 � Number of customers in the system

Let L denote the number of customers in the system (not including those in orbit), 
where L ∈ {0, 1, 2, ...} . A customer whose service has begun but has not been 
completed yet can be in one of three stages: stage 1—before entering orbit; stage 
2—in orbit; or stage 3—after returning from orbit. Denote this set of stages by S, 
S ∈ {1, 2, 3}. Let U denote the elapsed time since the start of service of a tagged 
customer (including orbit if applicable). The system’s state space is defined as 
{L, S,U} . For L = n , S = m and U = u , let p(n,m, u) denote the density of that state 
in steady state, n = 0, 1, 2, ...; m = 1, 2, 3 ; u ≥ 0 . Let �(u) be the hazard rate func-
tion of the service time. We now apply a supplementary variable technique to obtain 
the probability generating function of the number of customers in the system. The 
analysis proceeds by deriving separately the PGF of the number of customers in the 
system in each of the three stages defined above. The probabilities p(n,m, u) obey 
the following:

p(n, 1, u + h) = �hp(n − 1, 1, u) + [1 − (� + �(u) + �)h]p(n, 1, u) + o(h) , n = 1, 2, 3, ...;
u > 0, where p(0, 1, u) = 0.
p(n, 2, u + h) = �hp(n − 1, 2, u) + �hp(n + 1, 1, u) + [1 − (� + �(u) + �)h]p(n, 2, u) + o(h) , 

n = 0, 1, 2, ... ; u > 0 , where p(−1, 2, u) = 0.
p(n, 3, u + h) = �hp(n − 1, 3, u) + �hp(n − 1, 2, u) + [1 − (� + �(u))h]p(n, 3, u) + o(h) , 

n = 1, 2, 3, ... ; u > 0 , where p(0, 3, u) = 0.
Dividing each equation by h and letting h → 0 , we obtain for m = 1 , 

d

du
p(n, 1, u) = �p(n − 1, 1, u) − (� + �(u) + �)p(n, 1, u) , n = 1, 2, 3, ... , u > 0 ; for 

m = 2,
d

du
p(n, 2, u) = �p(n − 1, 2, u) + �p(n + 1, 1, u) − (� + �(u) + �)p(n, 2, u) , n = 0, 1, 2, ... ; 

u > 0 ; for m = 3 , d
du
p(n, 3, u) = �p(n − 1, 3, u) + �p(n − 1, 2, u) − (� + �(u))p(n, 3, u) , 

n = 1, 2, 3, ... ; u > 0.
Define the following three probability generating functions (PGFs) corresponding 

to the three possible values of m = 1, 2, 3 as follows:

G1(z, u) =
∞∑
n=1

p(n, 1, u)zn, G2(z, u) =
∞∑
n=0

p(n, 2, u)zn, G3(z, u) =
∞∑
n=1

p(n, 3, u)zn

By multiplying each of the above differential equations (for m = 1, 2, 3 ) by the 
corresponding zn and summing over all n, the following set of differential equa-
tions for the three PGFs, Gm(z, u) , m = 1, 2, 3 , is derived:

(12)
d

du
G1(z, u) = [�(z − 1) − �(u) − �]G1(z, u),

(13)
d

du
G2(z, u) = [�(z − 1) − �(u) − �]G2(z, u) + �z−1G1(z, u),

(14)
d

du
G3(z, u) = [�(z − 1) − �(u)]G3(z, u) + �zG2(z, u).
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Equation  (12) is solved using the identity (e.g., Ross 1996) relating the haz-
ard function �(u) to its corresponding probability distribution function, namely, 

FB(u) = e
−

u∫
0

�(t)dt

. We then obtain.
G1(z, u) = C1e

(�(z−1)−�)uFB(u)

C1 is calculated by using FB(0) = 1 and by utilizing the initial condition:
G1(z, 0) = C1e

(�(z−1)−�)0FB(0) . Thus, C1 = G1(z, 0) , leading to

We now solve Eqs. (13) and (14):

By using G2(z, 0) = 0 , C2 is calculated: C2 = −G1(z, 0)(� − �)−1�z−1 , so that.

Finally, using G3(z, 0) = 0 , C3 is calculated as C3 = G1(z, 0) , leading to.

Each of the above three PGFs, Gm(z, u) , is expressed as a function of G1(z, 0) . 
To obtain the latter, we proceed as follows:

p(1, 1, 0) =
∞∫
0

[p(2, 1, u) + p(1, 2, u) + p(2, 3, u)]�(x)du + �p(0),

p(n, 1, 0) =
∞∫
0

[p(n + 1, 1, u) + p(n, 2, u) + p(n + 1, 3, u)]�(u)du , n = 2, 3, 4, ....

Here, p(0) is the probability that the system is empty (and no customer is get-
ting service at stage S = 2 ). By multiplying each equation by zn and summing 
over all n, we get

To evaluate the right-hand side of (18), we derive an equation for p(0) as follows:

By substituting (19) in (18), we obtain.

(15)G1(z, u) = G1(z, 0)e
(�(z−1)−�)uFB(u)

G2(z, u) = G1(z, 0)(� − �)−1�z−1e(�(z−1)−�)uFB(u) + C2FB(u)e
(�(z−1)−�)u,

G3(z, u) = G1(z, 0)(� − �)−1(−�e((�(z−1)−�)u + �e((�(z−1)−�)u)FB(u) + C3FB(u)e
(�(z−1)u.

(16)
G2(z, u) = G1(z, 0)(� − �)−1�z−1e(�(z−1)−�)uFB(u)

−G1(z, 0)(� − �)−1�z−1FB(u)e
(�(z−1)−�)u

(17)
G3(z, u) = G1(z, 0)FB(u)((� − �)−1(−�e(�(z−1)−�)u + �e(�(z−1)−�)u) + e(�(z−1)u)

(18)

zG1(z, 0) = z2�p(0)

+

∞

∫
0

(G1(z, u) − zp(1, 1, u) + zG2(z, u) − zp(0, 2, u) + G3(z, u) − zp(1, 3, u))�(u)du.

(19)�p(0) =

∞

∫
0

[p(1, 1, u) + p(0, 2, u) + p(1, 3, u)]�(u))dx
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By substituting (15)–(17) in (20), we have.

Let p(n,m) = P(L = n, S = m) , and let.

Then, by substituting (21) in (15), (16), and (17), respectively, while using 

Gm(z) =
∞∫
0

Gm(z, u)du , m = 1, 2, 3 , we obtain the three PGFs, each as a function of 

p(0):

(20)

zG1(z, 0) =

∞

∫
0

(
G1(z, u) + zG2(z, u) + G3(z, u)

)
�(u)du − z�p(0) + z2�p(0)

(21)G1(z, 0) =
z�(1 − z)p(0)

B̃(�(1 − z)) − z

G1(z) =

∞∑
n=1

p(n, 1)zn, G2(z) =

∞∑
n=0

p(n, 2)zn, G3(z) =

∞∑
n=1

p(n, 3)zn

(22)G1(z) =
z�(1 − z)

(
1 − B̃(�(1 − z) + �)

)

(�(1 − z) + �)
(
B̃(�(1 − z)) − z

)p(0),

(23)

G2(z) =

⎡
⎢⎢⎢⎣

�(1 − z)(� − �)−1�
�
1 − B̃(�(1 − z) + �)

�

(�(1 − z) + �)
�
B̃(�(1 − z)) − z

�

−
�(1 − z)(� − �)−1�

�
1 − B̃(�(1 − z) + �)

�

(�(1 − z) + �)
�
B̃(�(1 − z)) − z

�
⎤
⎥⎥⎥⎦
p(0),

(24)

G3(z) =

⎡
⎢⎢⎢⎣
−
z�(1 − z)�(� − �)−1

�
1 − B̃(�(1 − z) + �)

�

(�(1 − z) + �)
�
B̃(�(1 − z)) − z

�

+
z�(1 − z)�(� − �)−1

�
1 − B̃(�(1 − z) + �)

�

(�(1 − z) + �)
�
B̃(�(1 − z)) − z

�

+
z
�
1 − B̃(�(1 − z))

�

B̃(�(1 − z)) − z

⎤
⎥⎥⎥⎦
p(0).
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To calculate p(0) , we first calculate

Since 1 = p(0) + G1(z = 1) + G2(z = 1) + G3(z = 1) , by using L’Hospital’s rule, 
we get.

p(0) = 1 − �E[B].
By substituting p(0) = 1 − �E[B] in (22)–(24), we obtain complete expressions of 

the PGFs.
When the customer’s patience time is unbounded (� → 0) , then 

p(0) + G1(z) + G2(z) + G3(z) →
(1−z)B̃(�(1−z))

B̃(�(1−z))−z
(1 − �E[B]) , which is the generating 

function of the number of customers in the classical M/G/1 system (e.g., Harchol-Bal-
ter 2013). The same occurs when the orbit time tends to zero (� → ∞).

As E[L] = dG1(z)

dz

|||| z = 1
+

dG2(z)

dz

|||| z = 1
+

dG3(z)

dz

|||| z = 1
 , using L’Hospital’s rule, we 

obtain

2.3 � Examples

This section provides explicit formulae for the wide-ranging family of Gamma prob-
ability distribution functions (spanning the range between the Exponential and the 
Deterministic distributions), as well as for the Uniform distribution, each represent-
ing the distribution of service times.

G1(z) + G2(z) + G3(z)

=

⎡

⎢

⎢

⎢

⎣

�(1 − z)
(

z + (� − �)−1(� − z�)
)

(

1 − B̃(�(1 − z) + �)
)

(�(1 − z) + �)
(

B̃(�(1 − z)) − z
)

−
�(1 − z)2(� − �)−1�

(

1 − B̃(�(1 − z) + �)
)

(�(1 − z) + �)
(

B̃(�(1 − z)) − z
)

+
z
(

1 − B̃(�(1 − z))
)

B̃(�(1 − z)) − z

⎤

⎥

⎥

⎥

⎦

p(0).

(25)

E[L] = �E[B] +
�2E[B2]

2(1 − �E[B])
−

�

�

(
1 −

�B̃(�) − �B̃(�)

�(� − �)

)

= �E[W] = E[LM∕G∕1] −
�

�

(
1 −

�B̃(�) − �B̃(�)

�(� − �)

)
.
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2.3.1 � Gamma distribution

Suppose the service time B is distributed according to the Gamma probability distri-
bution, namely, B ∼ Γ(� , ��) , with mean E[B] =

�

��
=

1

�
 , second moment 

E[B2] =
1+�

��2
 , variance V[B] = 1

��2
 , and LST B̃(s) =

(
𝛾𝜇

𝛾𝜇+s

)𝛾

.
Case (i) � = 1 (B ∼ Exponential(�)).
In this case,
B̃(s) =

𝜇

𝜇+s
,

Ṽ(s) =
𝜇

𝜇+s
−

𝛼𝜇s

(𝛽+s)(𝛼+𝜇+s)(𝛽+𝜇+s)
,

E[V] =
1

�
+

��

�(�+�)(�+�)
,

D̃(s) =
𝜇(s(𝛼+𝛽+𝜇)+(𝛼+𝜇)(𝛽+𝜇))

(𝜇+s)(𝛼+𝜇+s)(𝛽+𝜇)
,

E[D] =
1

�
−

�

(�+�)(�+�)
,

H̃(s) =
𝛼𝜇

(𝛽+s)(𝛼+𝜇)(𝛽+𝜇)
,

E[H] =
��

�(�+�)(�+�)
,

G1(z) =
z�(�(1−z)+�)(�−�)

�(�−�z)(�(1−z)+�+�)
,

G2(z) =
��(�(1−z)+�)(�−�)

�(�−�z)(�(1−z)+�+�)(�(1−z)+�+�)
,

G3(z) =
���z(�−�)

�(�−�z)(�(1−z)+�+�)(�(1−z)+�+�)
,

Clearly, E[L] < E[LM∕M∕1] since during part of their service time, customers 
remain in orbit out of the main queue in the service station.

Case (ii) 1 < 𝛾 < ∞.
Ṽ(s) =

(
𝛾𝜇

𝛾𝜇+s

)𝛾

+
𝛼s

(s+𝛽)(𝛼−𝛽)

((
𝛾𝜇

𝛾𝜇+s+𝛼

)𝛾

−
(

𝛾𝜇

𝛾𝜇+s+𝛽

)𝛾)
,

E[V] =
1

�
+

�
((

��

��+�

)�

−
(

��

��+�

)�)

�(�−�)
,

D̃(s) =
𝛽

𝛽−s

(
𝛾𝜇

𝛾𝜇+s

)𝛾

+
s

s+𝛼−𝛽

(
𝛾𝜇

𝛾𝜇+s+𝛼

)𝛾

−
𝛼s

(𝛽−s)(s+𝛼−𝛽)

(
𝛾𝜇

𝛾𝜇+s+𝛽

)𝛾

,

E[D] =
1

�
−

1

�

(
1 −

�
(

��

��+�

)�

−�
(

��

��+�

)�

�−�

)
,

H̃(s) =
𝛼𝛽

(s+𝛽)(𝛼−𝛽)

((
𝛾𝜇

𝛾𝜇+𝛽

)𝛾

−
(

𝛾𝜇

𝛾𝜇+𝛼

)𝛾)
,

E[H] =
�

�(�−�)

((
��

��+�

)�

−
(

��

��+�

)�)
,

(26)E[L] =
�

� − �
−

��

(� + �)(� + �)
= E[LM∕M∕1] −

��

(� + �)(� + �)
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Case (iii) � → ∞ (B ∼ Deterministic).
B̃(s) = e−s∕𝜇,

Ṽ(s) = e
−

s

𝜇 −
𝛼s

(
e
−
s+𝛽
𝜇 −e

−
s+𝛼
𝜇

)

(𝛽+s)(𝛼−𝛽)
,

E[V] =
1

�
+

�

(
e
−
�
� −e

−
�
�

)

�(�−�)
,

D̃(s) =
s(s−𝛽)e

−
s+𝛼
𝜇 −𝛽(s+𝛼−𝛽)e

−
s
𝜇 −𝛼se

−
𝛽
𝜇

(s−𝛽)(s+𝛼−𝛽)
,

E[D] =
1

�
−

�e
−
�
� −�e

−
�
� +�−�

�(�−�)
,

H̃(s) =
𝛼

(
e
−
𝛽
𝜇 −e

−
𝛼
𝜇

)

(s+𝛽)(𝛼−𝛽)
,

E[H] =
�

(
e
−
�
� −e

−
�
�

)

�(�−�)
,

G1(z) =
z�(1−z)(�−�)

(
1−e

−
�(1−z)+�

�

)

�(�(1−z)+�)

(
z−e

−
�(1−z)

�

) ,

G2(z) =
��(1−z)(�−�)

(
(�(1−z)+�)e

−
�(1−z)+�

� −(�(1−z)+�)e
−
�(1−z)+�

� +�−�

)

�(�−�)(�(1−z)+�)(�(1−z)+�)

(
z−e

−
�(1−z)

�

) ,

G3(z) =

z(�−�)

⎛
⎜⎜⎜⎜⎝

��(1 − z)(�(1 − z) + �)e
−

�(1−z)+�

� − ��(1 − z)(�(1 − z) + �)e
−

�(1−z)+�

�

−(� − �)
�
(�(1 − z) + �)(�(1 − z) + �)e

−
�(1−z)

� − ��
�

⎞⎟⎟⎟⎟⎠
(�−�)(�(1−z)+�)(�(1−z)+�)

�
z−e

−
�(1−z)

�

� ,

E[L] =
�(2�−�)

2�(�−�)
−

�

(
�e

−
�
� −�e

−
�
� +�−�

)

�(�−�)
= E[LM∕D∕1] −

�

(
�e

−
�
� −�e

−
�
� +�−�

)

�(�−�)
.

The following graphs exhibit the change in E[D] (Fig.  1), E[H] (Fig.  2), and 
E[L] (Fig. 3), each as a function of � , where � = 8 , � = 10 , � = 18 , and � = 20 . 
When � increases, the variance of B decreases, so E[D] and E[L] monotonically 
decrease, while E[H] monotonically increases.

An interesting phenomenon occurs regarding E[V] . When the service-time vari-
ance decreases ( � increases), E[V] increases in some cases but decreases in others 
(see Figs. 4, 5 and 6). This result can be explained as follows: the decrease in the 

E[L] = �
1

�
+

�2
1+�

��2

2

�
1 − �

1

�

� −
�

�

⎛
⎜⎜⎜⎝
1 −

�
�

��

��+�

��

− �
�

��

��+�

��

�(� − �)

⎞
⎟⎟⎟⎠

= E[LM∕Γ(� ,��)∕1] −
�

�

⎛
⎜⎜⎜⎝
1 −

�
�

��

��+�

��

− �
�

��

��+�

��

�(� − �)

⎞
⎟⎟⎟⎠
.
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Fig. 1   E[D] as a function of � when � = 8 , � = 10 , � = 18 , and � = 20

Fig. 2   E[H] as a function of � when � = 8 , � = 10 , � = 18 , and � = 20
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service-time variance (when � increases) has two contradicting effects on E[V] : 
(i) the probability of entering orbit decreases, causing E[V] to decrease; however, 
(ii) the probability of returning from orbit after the service has been completed 
increases, causing E[V] to increase. Consequently, E[V] decreases when the first 
effect overtakes the second and increases vice versa. Moreover, Figs.  4, 5 and 6 
show that the higher the value of � , the more significant is the first effect (i.e., the 
decrease in E[V] starts sooner). Furthermore, for lower values of � , E[V] monotoni-
cally increases (Fig. 6).

2.3.2 � Uniform distribution

Consider now the case where B is Uniformly distributed, namely

Substituting those expressions in the general formulae derived above, we have.

Ṽ(s) =
𝜇

(
1−e

−
2s
𝜇

)

2s
−

𝛼𝜇s

(
(s+𝛼)e

−
2(s+𝛽)

𝜇 −(s+𝛽)e
−
2(s+𝛼)

𝜇 −𝛼+𝛽

)

(𝛽+s)(𝛼−𝛽)
,

E[V] =
1

�
+

�

(
�e

−
2�
� −�e

−
2�
� +�−�

)

2�2(�−�)
,

B ∼ U

(
0,

2

𝜇

)
, E[B] =

1

𝜇
, E[B2] =

4

3𝜇2
, V[B] =

1

3𝜇2
, B̃(s) =

𝜇

2s

(
1 − e

−
2s

𝜇

)

Fig. 3   E[L] as a function � when � = 8 , � = 10 , � = 18 , and � = 20
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Fig. 4   E[V] as a function of � when � = 8 , � = 10 , � = 30 , and � = 20

Fig. 5   E[V] as a function of � when � = 8 , � = 10 , � = 21 , and � = 20
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D̃(s) =
s𝜇

(
1−e

−
2(s+𝛼)

𝜇

)

2(s+𝛼)(s+𝛼−𝛽)
+

s𝛼𝜇

(
1−e

−
2𝛽
𝜇

)

2𝛽(s−𝛽)(s+𝛼−𝛽)
−

𝛽𝜇

(
1−e

−
2s
𝜇

)

2s(s−𝛽)
,

E[D] =
1

�
−

�

(
�2e

−
2�
� −�2e

−
2�
�

)
−(�−�)(�(�−2�)+��)

2��2(�−�)
,

H̃(s) =
𝜇

(
𝛽e

−
2𝛼
𝜇 −𝛼e

−
2𝛽
𝜇 +𝛼−𝛽

)

2𝛽(s+𝛽)(𝛼−𝛽)
,

E[H] =
�

(
�e

−
2�
� −�e

−
2�
� +�−�

)

2�2(�−�)
,

E[L] =
�(3�−�)

3�(�−�)
−

�

(
�

(
�2e

−
2�
� −�2e

−
2�
�

)
−(�−�)(�(�−2�)+��)

)

2��2(�−�)
.

3 � Optimal mean orbiting time

This section provides a scheme to set the optimal mean orbiting time 1∕� of an arbi-
trary customer. Let c be the cost rate of a customer’s sojourn time in the service 
facility, let r be a customer’s net rate of utility while in orbit, and let g > r be the 
penalty each customer is levied for any unit of time s/he resides in orbit after his/
her service has been completed. A customer’s objective is to maximize the total 
expected net reward per unit time, Z, by controlling the orbiting rate, � . That is, a 
customer’s optimization problem is

Fig. 6   E[V] as a function of � when � = 8 , � = 10 , � = 18 , and � = 20
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where

Proposition 1.  For 𝛽 > 0 , the function Z(�) has a global maximum point.

Proof.  The derivative of Z(�) is given as follows.

Then, the claim is proved by two steps:

	 i.	 lim
𝛽→0+

dZ(𝛽)

d𝛽
= lim

𝛽→0+

(g−r)(1−B̃(𝛼))

𝛽2
> 0 , implying that Z(�) increases at the origin.

	 ii.	 lim
𝛽→∞

dZ(𝛽)

d𝛽
= lim

𝛽→∞

−(r+c)(1−B̃(𝛼))𝛽2

𝛽4
< 0 , implying that from some value of 

0 < 𝛽 < ∞ , the function Z(�) monotonically decreases.

From (i) and (ii) it follows that there exists at least one maximum point for 𝛽 > 0 , 
one of which is a global maximum point.

Following Proposition 1, the optimal mean orbiting time, 1∕�∗ , is derived by 
solving dZ(�)

d�
= 0.

For example, for B ∼ Γ(� , ��) , � = 1:
dZ(�)

d�
=

�(�(g−r)(2�+�)−(c+r)�2)

(�+�)�2(�+�)2
,

and consequently, the unique optimal solution is.

�∗ =
�
�
(g−r)+

√
(c+g)(g−r)

�

c+r
.

It follows that in this case �∗ is a linear function of the service rate � . That is, if 
the mean service time is longer so is the optimal mean orbit time. Also, �∗ increases 
when the difference g − r increases.

To illustrate the calculation of the optimal mean orbiting time, 1∕�∗ , we use the 
following parameter values: � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , c = 1 , and � = 1 . 

Since dZ(�)
d�

= 0 when � = 9.26 , and d
2Z(𝛽)

d2𝛽

|||| 𝛽 = 9.26
< 0 , the optimal mean orbit-

ing time is 1∕�∗ = 1∕9.26. That is, in the above example, if the mean service time is 
E[B] = 1∕4 = 0.25 hours (15 min), and the mean patience time is E[T] = 1∕10 = 0.1 
hours (6 min), the optimal mean orbiting time is 1∕�∗ = 0.1079 hours (6.5 min).

(27)max
𝛽>0

{Z(𝛽) = rE[X]P(T < B) − cE[D] − gE[H]},

(28)

P(T < B) =

∞

∫
b=0

b

∫
t=0

fB(b)fT (t)dtdb =

∞

∫
b=0

b

∫
t=0

fB(b)𝛼e
−𝛼tdtdb =

∞

∫
b=0

fB(b)(1 − e−𝛼t)db = 1 − B̃(𝛼).

dZ(�)
d�

=
−�(c + g)B̃′(�)�(� − �) − (r + c)(1 − B̃(�))�2 + �

(

(c + g)B̃(�) − (g − r)B̃(�) − r − c
)

(� − 2�)

�2(� − �)2
.



	 G. Hanukov, U. Yechiali 

1 3

   18   Page 22 of 32

The behavior of the expected reward per unit time, Z(�) , as a function of the 
orbiting rate, � , is depicted in Fig. 7, which illustrates that Z(�) is unimodal as a 
function of � in the current example.

To investigate the effect of each parameter on the optimal orbiting time and 
the maximal reward, we calculate �∗ and Z(�∗) for various values of the param-
eters. Let � = g∕r . Figures 8 and 9 show that �∗ increases monotonically with � 
for all B ∼ Γ(� , ��) , as well as for B ∼ U(0, 2∕�) . That is, as the ratio between 
g, the penalty of delaying the return from orbit, and the gain r from orbiting, 
increases, the optimal orbiting time decreases (larger �∗ ). Moreover, Fig.  8 
shows that �∗ increases with � for small values of � but decreases with � for 
high values of � . Figures 9, 10, and 11 depict the values of �∗ as a function of 
� when (i) B ∼ U(0, 2∕�) and (ii) B ∼ Γ(� , ��) for given values of the param-
eters, where � = 1, 5,∞ , respectively. It is shown that (i) for small values of � 
(which is presented in Fig.  9), when B ∼ U(0, 2∕�) , �∗ is higher than its value 
when B ∼ Γ(� , ��) for small values of � , but it is lower for high values of � ; (ii) 
for intermediate values of � (which is presented in Fig. 10), �∗ for B ∼ U(0, 2∕�) 
is smaller than �∗ for B ∼ Γ(� , ��) for all values of � ; and (iii) for high values 
of � (which is presented in Fig. 11), when B ∼ U(0, 2∕�) , �∗ is smaller than its 
corresponding value when B ∼ Γ(� , ��) for small values of � , but the opposite 
occurs for high values of � . Figure  12 shows that Z(�∗) decreases monotoni-
cally with � but increases with � . Figure 13 shows that, as function of � , the opti-
mal value of Z(�∗) when B ∼ U(0, 2∕�) lies uniformly between its values under 
the two extreme cases of � when B ∼ Γ(� , ��) . That is, it is lower when � → ∞ 
(Deterministic service time) and it is higher when � = 1 (Exponential service 

Fig. 7   Z[�] as a function of � when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , c = 1 , and � = 1
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time). Figure  14 shows that �∗ remains constant with � for B ∼ Γ(� , ��) , � = 1 . 
Conversely, �∗ decreases monotonically with � for higher values of � and for 
B ∼ U(0, 2∕�) . That is, the shorter the mean patience time, the higher is the mean 
orbit time. Figure 15 shows that Z(�∗) increases monotonically with �.

Fig. 8   �∗ as a function of � , when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = {1, 3, 5, 7,∞}

Fig. 9   �∗ as a function of � , when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = 1 and for B ∼ U(0, 2∕�)
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4 � Discussion

This paper analyzes a previously unstudied real-life queueing system, where impa-
tient customers may tentatively depart and “go to orbit” while their service is still 
being processed. While customers benefit from the time they spend in orbit, they 
may be penalized for any unit of time they are overdue. We provide a thorough 

Fig. 10   �∗ as a function of � , when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = 5 and for B ∼ U(0, 2∕�)

Fig. 11   �∗ as a function of � , when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� → ∞ , and for B ∼ U(0, 2∕�)
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probabilistic analysis for a wide range of service-time probability distributions. 
Explicit results are derived for various performance measures, such as a custom-
er’s total residence time in the system; a customer’s net actual residence time in the 
system during service (not including orbit time); the time an orbiting customer is 
overdue, that is, remains in orbit after his/her service has been completed; and the 
total number of customers in the system. Numerical examples are presented, where 

Fig. 12   Z(�∗) as a function of � , when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = {1, 3, 5, 7,∞}

Fig. 13   Z(�∗) as a function of � , when � = 3 , � = 4 , � = 10 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = {1,∞} , and for B ∼ U(0, 2∕�)
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Fig. 14   �∗ as a function of � , when � = 3 , � = 4 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = {1, 7,∞} , and for B ∼ U(0, 2∕�)

Fig. 15   Z(�∗) as a function of � , when � = 3 , � = 4 , r = 20 , g = 40 , and c = 1 , for B ∼ Γ(� , ��) , 
� = {1, 7,∞} , and for B ∼ U(0, 2∕�)
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the impacts of the various parameters are visualized in several graphs. The optimal 
mean orbit time is calculated for each case of service-time distribution. Implement-
ing our results is straightforward, requiring only the calculation of the mean optimal 
customer orbit time.

The investigation provided in this work shows that the proposed “orbit while in 
service” policy significantly increases the service system’s efficiency by reducing 
customers waiting times, as well as increasing their utility by allowing them to use 
their time efficiently.

The study also shows that the mean time an orbiting customer is overdue (E[D]) 
increases with � (the shape parameter of the Gamma service-time distribution). For 
example, E[D] is higher in the Deterministic service-time case than in the Expo-
nential case, which is explained by the higher variance of the service-time distri-
bution. The latter result implies that customers prefer � to be as low as possible. 
Conversely, a customer’s net actual residence time in the system during service (not 
including orbit time) decreases with � . Based on this observation, customers prefer 
that � would be as high as possible. The combination of the two results raises the 
question regarding customers’ preferences. Considering the customers’ total utility, 
we show that the customers prefer � to be as high as possible. Thus, service system 
managers are recommended to decrease the variance of the service time, which can 
be accomplished by establishing a suitable workplace.

Another interesting result is that for high values of the penalty rate of returning late 
from orbit (� = g∕r) , as � increases (implying that the variance of the service time 
decreases), it is better for customers to spend more time in orbit. This counterintuitive 
result is explained as follows: when � is high, the optimal orbit time is relatively small, 
implying that the customer will return late from orbit only if the service duration is 
relatively low. Thus, when the variance of the service time decreases and consequently 
the probability of low service duration decreases, the customer can spend more time in 
orbit. Similar results are obtained when comparing the B ∼ U(0, 2∕�) service time case 
with the B ∼ Γ(� , ��) case. Notably, the variance in the B ∼ U(0, 2∕�) case is higher 
than that in the B ∼ Γ(� , ��) case when 𝛾 > 3.

Additionally, it is shown that the optimal orbiting time for the Exponential case is 
robust to changes in customer patience time, which is explained by the memoryless 
property. However, for other service-time distributions, the shorter mean patience 
time leads to a higher optimal mean orbit time. The latter result is intuitively under-
standable since the sooner the customer enters orbit, the more time remains for the 
service completion. Finally, it is shown that for the Exponential service time the 
optimal mean orbit time is a linear function of the mean service time.

For future research we suggest extending the model to a multi-server case and 
investigating the associated optimal staffing problem.
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Appendix A: list of notations

�—customers’ arrival rate.
B—service time.
fB(t)—probability density function of B.
FB(t)—cumulative distribution function of B.
B̃(s)—LST of B.
T—customer’s patience time, Exponentially distributed with mean 1∕�.
X—orbit time, Exponentially distributed with parameter �

V—customer’s total residence time in the system measured from the instant s/he 
starts service until departure.
Ṽ(s)—LST of V.
D—customer’s net actual residence time in the system during his/her service time 
(not including orbit time).
D̃(s)—LST of D.
Wq—customer’s waiting time in queue.
W—customer’s sojourn time in the system (not including orbit time).
H—length of time a customer remains in orbit after his/her service has been 
completed.
H̃(s)—LST of H.
L—number of customers in the system (not including those in orbit).
S ∈ {1, 2, 3}—customer’s stage: stage 1—before entering orbit; stage 2—in orbit; 
stage 3—after returning from orbit.
U—elapsed time since start of service of a tagged customer (including orbit if 
applicable).
{L, S,U}—system’s state.
p(n,m, u)—density of state L = n , S = m and U = u.
Gm(z, u)—PGF of L as a function of u, given S = m.
�(u)—hazard rate function of the service time B.
Gm(z)—PGF of L, given S = m.
c—cost rate of a customer’s sojourn time in the service facility.
r—customer’s net rate of utility while in orbit.
g—a penalty each customer is levied for any unit of time s/he resides in orbit after 
his/her service has been completed.
Z(�)—customers’ total expected net reward per unit time as a function of �.

Y = T + X
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Appendix B: derivation of Term 3 in Theorem 2

Appendix C: calculation of �X(s)P(T < B < T + X)

E[e−s(B−X)|T + X < B ]P(T + X < B) =

∞

∫
b=0

b

∫
t=0

b−t

∫
x=0

e
−s(b−x)

f
B
(b)f

T
(t)f

X
(x)dxdtdb =

∞

∫
b=0

b

∫
t=0

b−t

∫
x=0

e
−sb

f
B
(b)f

T
(t)esx𝛽e−𝛽xdxdtdb

=

∞

∫
b=0

b

∫
t=0

b−t

∫
x=0

e
−sb

f
B
(b)f

T
(t)𝛽e−(𝛽−s)xdxdtdb =

∞

∫
b=0

b

∫
t=0

e
−sb

f
B
(b)f

T
(t)

𝛽

𝛽 − s

(1 − e
−(𝛽−s)(b−t))dtdb

=

∞

∫
b=0

b

∫
t=0

e
−sb

f
B
(b)𝛼e−𝛼t

𝛽

𝛽 − s

(1 − e
−(𝛽−s)(b−t))dtdb =

∞

∫
b=0

b

∫
t=0

e
−sb

f
B
(b)𝛼

𝛽

𝛽 − s

(e−𝛼t − e
−(𝛽−s)(b−t)−𝛼t)dtdb =

=

∞

∫
b=0

b

∫
t=0

e
−sb

f
B
(b)𝛼

𝛽

𝛽 − s

(e−𝛼t − e
−(𝛽−s)b

e
−(𝛼−𝛽+s)t)dtdb

=

∞

∫
b=0

e
−sb

f
B
(b)

𝛼𝛽

𝛽 − s

(
(1 − e

−𝛼b)
1

𝛼
− (1 − e

−(𝛼−𝛽+s)b)
e
−(𝛽−s)b

(𝛼 − 𝛽 + s)

)
db

=

∞

∫
b=0

e
−sb

f
B
(b)

𝛼𝛽

𝛽 − s

(
(1 − e

−𝛼b)
1

𝛼
− (e−(𝛽−s)b − e

−𝛼b)
1

(𝛼 − 𝛽 + s)

)
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=

∞

∫
b=0

f
B
(b)

𝛼𝛽

𝛽 − s

(
(e−sb − e

−(s+𝛼)b)
1

𝛼
− (e−𝛽b − e

−(s+𝛼)b)
1

(𝛼 − 𝛽 + s)

)
db

=

∞

∫
b=0

f
B
(b)

𝛼𝛽

𝛽 − s

(
e
−sb 1

𝛼
− e

−𝛽b 1
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+ e
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1
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1
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∫
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