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Abstract
Lagrangian relaxation is a common and often successful way to approach computa-
tionally challenging single-objective discrete optimization problems with complicat-
ing side constraints. Its aim is often twofold; first, it provides bounds for the optimal 
value, and, second, it can be used to heuristically find near-optimal feasible solu-
tions, the quality of which can be assessed by the bounds. We consider bi-objective 
discrete optimization problems with complicating side constraints and extend this 
Lagrangian bounding and heuristic principle to such problems. The Lagrangian 
heuristic here produces non-dominated candidates for points on the Pareto frontier, 
while the bounding forms a polyhedral outer approximation of the Pareto frontier, 
which can be used to assess the quality of the candidate points. As an illustration 
example we consider a facility location problem in which both  CO2 emission and 
cost should be minimized. The computational results are very encouraging, both 
with respect to bounding and the heuristically found non-dominated solutions. In 
particular, the Lagrangian bounding is much stronger than the outer approximation 
given by the Pareto frontier of the problem’s linear programming relaxation.
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1 Introduction

Multi-objective discrete optimization problems arise in a variety of areas of appli-
cations of operations research, for example in production scheduling and vehicle 
routeing, and they can be solved numerically by various techniques which can be 
exact or approximate; see for example Erhgott and Gandibleux (2000) and Halff-
mann et  al. (2022) for general surveys on multi-objective discrete optimization. 
In particular, problems of this type can be approached by multi-objective exten-
sions of exact solution methods for single-objective problems, such as branch-
and-bound, but this approach is best suited for cases with only few objectives; 
see Parragh and Tricoire (2019) for an example of such a method for bi-objective 
problems.

Considering problems with relatively few objectives and moderate number of 
non-dominated solutions, a well established approach is to use weighted Tcheby-
cheff methods, see for example Dächert et al. (2012), to find all such solutions. 
Recent research in this area focuses on increasing computational efficiency by 
employing hybrid methods, which include components such as �-constraint sca-
larisation and augmented weighted Tchebycheff objectives, see for example Dai 
and Charkhgard (2018), Leitner et al. (2016), and Fotedar et al. (2023).

Most common in practice are multi-objective metaheuristics, which are 
approximate approaches. For a recent survey on this topic, see Liu et al. (2020). 
The most popular metaheuristics for multi-objective optimization, in general and 
for discrete problems in particular, are those that are population-based, since 
they can very naturally be extended from the single-objective case to generate a 
diversity of solutions to multi-objective problems. For a recent survey on popu-
lation-based metaheuristics for multi-objective optimization, see Giagkiozis et al. 
(2015).

Common to metaheuristics, both for single and multiple objectives, and a 
major drawback of these optimization techniques is that they do not provide any 
estimates of the quality of the solutions found, in relation to exact optima. It is 
therefore not possible to assess solution quality, without resorting to some addi-
tional procedure to find such estimates.

A very well established way to find estimates of the optimal value in single-
objective optimization, and in particular for discrete problems, is to calculate 
bounds for the optimal objective value by means of Lagrangian relaxation (e.g. 
Wolsey 1998,  Chapter  10). This bounding principle also naturally leads to an 
approximate solution paradigm that is different from metaheuristics; solution 
methods based on this principle are commonly referred to as Lagrangian heu-
ristics. The Lagrangian relaxation and heuristic approach has proved to perform 
very well for a variety of applications, with the advantage of providing estimates 
of the quality of the solutions found.

For a minimization problem the Lagrangian relaxation gives lower bounds for 
the optimal objective value while the Lagrangian heuristic gives feasible solu-
tions and upper bounds to the same value, and the lower bounds can then be used 
to judge the quality of the upper bounds. This is illustrated to the left in Fig. 1. In 
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this work, we extend the Lagrangian bounding and heuristic approach to the case 
of bi-objective discrete optimization. An outcome of this approach is illustrated 
to the right in Fig. 1, for a bi-objective minimization problem. The Pareto frontier 
is enclosed by a set of mutually non-dominated objective outcomes and a piece-
wise linear outer approximation of, and bound for, the frontier.

Although the field of multi-objective discrete optimization is vast we have found 
only a few articles that are related to our work, which consists of two parts. First, 
we construct an outer approximation of the Pareto frontier by a Lagrangian duali-
sation of complicating side constraints, together with a weighted-sum scalarisation 
of the objective functions. The result of this relaxation is an intersection of a finite 
number of closed half-spaces, which contains the Pareto frontier. Second, we use a 
Lagrangian heuristic to construct non-dominated objective outcomes which are can-
didates for being Pareto optimal. The use of a Lagrangian heuristic to construct non-
dominated objective outcomes, has to the best of our knowledge not been explored 
earlier.

Concerning the construction of the outer approximation of the Pareto frontier, an 
obvious alternative is to consider partial linear programming relaxations, as in Oli-
vares-Benitez et al. (2012). It has also been suggested to use surrogate relaxation, for 
the specific case of multi-objective multi-knapsack problems (Cerqueus et al. 2015).

Lagrangian relaxation of multi-objective problems is quite extensively treated 
in Ehrgott (2006). However, the focus is on combining the multiple objective func-
tions, expressed as auxiliary constraints, into a single objective function by means of 
Lagrangian relaxation, which in essence results in a weighted-sum scalarisation of 
the objective functions.

Most commonly in multi-objective optimization it is the compromise between the 
conflicting objectives and the reformulation into single-objective problems that are 
considered to be the challenges. The feasible set is then paid little attention. In con-
trast, we consider a bi-objective problem where the structure of the feasible set is 
challenging, because of the presence of complicating side constraints, while the bi-
objective nature of the problem is not the primary difficulty.

We here develop a Lagrangian bounding and heuristic principle for bi-objective 
discrete optimization, since this is the most appropriate setting, although it can be 

Fig. 1  To the left, single-objective bounding of the optimal value ( z∗ ) by Lagrangian relaxation (LBD) 
and a heuristically found feasible solution (UBD). To the right, corresponding bounding for a bi-objec-
tive problem. Here, the circles represent the Pareto frontier, the convex piecewise linear curve is an outer 
bound for the Pareto frontier, and the plus signs represent mutually non-dominated objective outcomes
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directly extended to problems with more than two objectives. Further, we aim for bi-
objective problems where the number of non-dominated solutions is assumed to be 
very large, which makes methods such as those presented in Dächert et al. (2012), 
Dai and Charkhgard (2018), Leitner  et  al. (2016), and Fotedar  et  al. (2023) less 
suitable.

The work most closely related to ours is by Erhgott and Gandibleux (2007). They 
give a very general framework for relaxing multi-objective problems, both in the 
objective functions and of the feasible set, which together with a weighted-sum 
scalarisation of the relaxed objective functions create outer approximations of the 
Pareto frontier. Although closely related, as far as we can see our bounding proce-
dure does not follow directly from the general framework in Erhgott and Gandibleux 
(2007).

The outline of this paper is as follows. In Sect. 2.1 we derive a Lagrangian lower 
bounding principle for bi-objective discrete optimization problems. This principle 
provides an outer approximation of the Pareto frontier, and can therefore be used for 
assessing the quality of non-dominated solutions in relation to an unknown Pareto 
frontier. Another way of bounding the Pareto frontier is by using the linear program-
ming relaxation; in Sect. 2.2 it is established that the Lagrangian bounding is always 
at least as strong as the linear programming bounding. In Sect. 2.3 we propose quan-
titative measures for assessing bound quality for a bi-objective problem. Section 2.4 
gives a framework for Lagrangian heuristics for finding non-dominated, and hope-
fully also near Pareto optimal, solutions to a bi-objective problem. In order to illus-
trate the potential usefulness of the developed methodology, Sect. 3 gives an exam-
ple application to a bi-objective facility location problem; the experimental results 
in this application are very encouraging. In Sect. 4 we draw conclusions and make 
some suggestions for continued research. The material presented in Sect. 3 is based 
on the bachelor thesis (Åkerholm 2022).

2  Derivation

Let the vectors c1, c2 ∈ ℝ
n , the vector b ∈ ℝ

m , and the matrix A ∈ ℝ
m×n . Further, let 

the set X ⊂ ℝ
n
+
 be non-empty and finite, and consider a bi-objective discrete optimi-

zation problem with complicating side constraints stated as 

 which is assumed to have a feasible solution. The set X is typically described by 
constraints and integrality restrictions on variables, but its actual representation is 
of no interest. It is assumed that the primary difficulty of the problem lies in the 
side constraint (1b) rather than in its bi-objective nature. We further assume that it 
is inexpensive to minimize a linear objective over the set X, as compared to finding 

(1a)min
(
z1, z2

)
=
(
cT
1
x, cT

2
x
)

(1b)s.t. Ax ≥ b,

(1c)x ∈ X,
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non-dominated solutions to problem (1). Let Z be the set of feasible objective out-
comes, that is, Z =

{(
cT
1
x, cT

2
x
)
| x ∈ X and Ax ≥ b

}
 . The set Z is clearly finite, and 

for simplicity it is assumed that Z ⊂ ℝ
2
++

 . Further, let Z∗ ⊆ Z be the set of Pareto 
optimal outcomes (that is, the points in Z that are non-dominated).

2.1  Lagrangian bounding

Let the weight w ∈ [0, 1] define a convex combination of the two objectives into a 
single objective, and let z∗ ∶ [0, 1] ↦ ℝ++ be the function of optimal values for the 
resulting scalarised reformulation of problem (1), that is, 

 or, alternatively,

Since the set Z is finite, the function z∗ is piecewise linear and concave on [0, 1]. 
Problem (2) is always solved by some Pareto optimal solution, but due to the non-
convexity of problem (1) there may be Pareto points that can not be found by solving 
problem (2) for any value of w ∈ [0, 1] ; those that can actually be found are referred 
to as exposed (or supported) Pareto points.

Consider the set

which is convex, polyhedral, and unbounded. Clearly, Z∗ ⊆ Z ⊂ Z+
conv

 . Using that the 
defining equality (3) implies that wz1 + (1 − w)z2 ≥ z∗(w) holds for all (z1, z2) ∈ Z , 
we obtain the alternative characterisation

Only a finite number of values of w ∈ [0, 1] are of interest in this intersection. This 
is because the function z∗ is piecewise linear, and the values of interest are the 
breakpoints of z∗ . (It can easily be shown that if w is not a breakpoint of z∗ , then 
the constraint wz1 + (1 − w)z2 ≥ z∗(w) is a convex combination of the corresponding 
constraints at the two breakpoints that are adjacent to w, and therefore such a value 
of w is of no interest.)

The relationship Z∗ ⊂ Z+
conv

 is the tightest possible convex inclusion of Z∗ (in 
the minimization direction); it is however demanding to compute, since it requires 
a one-parametric analysis of problem (2), which is in itself, by assumption, com-
putationally hard. We therefore replace z∗(w) with a computationally inexpensive 

(2a)z∗(w) = min
[
wc1 + (1 − w)c2

]T
x

(2b)s.t. Ax ≥ b,

(2c)x ∈ X,

(3)z∗(w) = min
(z1,z2)∈Z

wz1 + (1 − w)z2.

Z+

conv
= conv(Z) +ℝ

2

+
,

Z+

conv
=

⋂

w∈[0,1]

{(
z1, z2

)
|wz1 + (1 − w)z2 ≥ z∗(w)

}
.
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lower bound to z∗(w) obtained by Lagrangian relaxation. This yields an outer 
approximation of the set Z+

conv
.

Let u ∈ ℝ
m
+

 be a vector of Lagrangian multipliers for constraint (2b) and define 
h ∶ [0, 1] ×ℝ

m
+
↦ ℝ as

that is, the optimal value in the relaxed problem. Since X is finite, the function h(w, ⋅) 
is the pointwise minimum of a finite number of affine functions, and it is therefore 
piecewise linear and concave on its domain. Weak Lagrangian duality yields that 
wz1 + (1 − w)z2 ≥ z∗(w) ≥ h(w, u) holds for all (z1, z2) ∈ Z . Hence,

holds for any w ∈ [0, 1] and any u ∈ ℝ
m
+
 . Defining the set

which is clearly convex, the following result is then immediate.

Proposition 1 Z∗ ⊂ ZLD.

Hence, the set ZLD provides a convex outer approximation of the set of Pareto 
optimal outcomes.

We next consider the function h∗ ∶ [0, 1] ↦ ℝ with

that is, the optimal value of the Lagrangian dual problem for the relaxation  (4). 
From weak Lagrangian duality follows that h∗(w) ≤ z∗(w) . For the given w ∈ [0, 1] 
the duality gap is z∗(w) − h∗(w) . (The maximum value in  (5) is clearly always 
attained since h(w, ⋅) is piecewise linear, with a finite number of pieces, and h(w, u) 
is bounded from above by z∗(w).)

Proposition 2 The set ZLD is polyhedral.

Proof If (z1, z2) ∈ Z then wz1 + (1 − w)z2 ≥ h(w, u) holds for any u ∈ ℝ
m
+
 , and 

therefore

holds. Hence,

(4)
h(w, u) = min

x∈X

[
wc1 + (1 − w)c2

]T
x + uT(b − Ax)

= uTb +min
x∈X

[
wc1 + (1 − w)c2 − ATu

]T
x,

Z∗ ⊂ Z+

conv
⊆
{(

z1, z2
)
|wz1 + (1 − w)z2 ≥ h(w, u)

}

ZLD =
⋂

w∈[0,1]

⋂

u∈ℝm
+

{(
z1, z2

)
|wz1 + (1 − w)z2 ≥ h(w, u)

}
,

(5)h∗(w) = max
u∈ℝm

+

h(w, u),

wz1 + (1 − w)z2 ≥ max
u∈ℝm

+

h(w, u) = h∗(w).
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Problem (4) is a Lagrangian relaxation of problem (2) and therefore 

 This is a linear program with a bounded feasible set. Further, it is a scalarised refor-
mulation of the bi-objective linear program 

 Since the two objectives are linear, the image of the polyhedral convex feasible set 
onto the space of the two objectives is a polyhedral convex set. Hence, the set 

 is polyhedral.   ◻

Note that the characterisation (6) shows that the function h∗ is finite, piecewise 
linear and concave on its domain. Further, because of the piecewise linearity of 
h∗ , only a finite number of values of w ∈ [0, 1] are of interest in (8a).

The boundary of the polyhedral convex set ZLD can be characterised as

Since Z∗ ⊂ ZLD , every point in bd(ZLD) is non-dominated by every point in Z∗ . The 
boundary of ZLD therefore forms a Lagrangian lower bounding frontier for the set of 
Pareto optimal outcomes of the given bi-objective discrete optimization problem. 
This bound is a bi-objective extension of the Lagrangian dual bounding principle 
that is commonly used for single-objective discrete problems with complicating side 
constraints.

It is of course also possible to construct an outer approximation of the set ZLD 
and a resulting lower bounding frontier for the set of Pareto optimal outcomes by 

ZLD =
⋂

w∈[0,1]

{(
z1, z2

)
|wz1 + (1 − w)z2 ≥ h∗(w)

}
.

(6a)h∗(w) = min
[
wc1 + (1 − w)c2

]T
x

(6b)s.t. Ax ≥ b,

(6c)x ∈ conv(X).

(7a)min
(
z1, z2

)
=
(
cT
1
x, cT

2
x
)

(7b)s.t. Ax ≥ b,

(7c)x ∈ conv(X).

(8a)ZLD =
⋂

w∈[0,1]

{(
z1, z2

)
|wz1 + (1 − w)z2 ≥ h∗(w)

}

(8b)=
{(

cT
1
x, cT

2
x
)
| x ∈ conv(X) and Ax ≥ b

}
+ℝ

2

+

bd(ZLD) =
⋃

w∈[0,1]

argmin
(z1,z2)∈ZLD

wz1 + (1 − w)z2.
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using any finite collections of weights w ∈ [0, 1] and vectors u ∈ ℝ
m
+

 of Lagran-
gian multipliers, as stated below.

Proposition 3 Let {wk}
K
k=0

⊂ [0, 1] and {ul}L
l=0

⊂ ℝ
m
+
 . Then

One way of constructing such an outer approximation of the set Z∗ is to first 
choose the collection {wk}

K
k=0

⊂ [0, 1] and then for each wk , k = 0,… ,K , use sub-
gradient optimization to find a near-optimal solution to the Lagrangian dual problem

Letting uk be the near-optimal solution found for the weight wk , the approximate 
outer approximation is

It is clearly, like ZLD , polyhedral and therefore the approximate lower bounding fron-
tier constructed in this way is piecewise linear. To reduce the computational effort, 
the subgradient optimization on each of the Lagrangian dual problems can of course 
be restarted from the already found dual point that gives the maximal value of the 
current dual objective function h(wk, u).

2.2  Comparison with linear programming bounding

If the set X is described by linear constraints and integrality restrictions on the vari-
ables, such as X =

{
x ∈ ℤ

n
+
|Dx ≥ e

}
 , then a bounding of the Pareto frontier of 

problem (1) can alternatively be based on the linear programming relaxation of the 
scalarised problem, that is, on the function z∗

LP
∶ [0, 1] ↦ ℝ with 

 The function z∗
LP

 is piecewise linear and concave, and it can be calculated exactly 
by performing a standard one-parametric analysis of the linear program. Similarly to 
above, we define the polyhedral convex set

Z∗ ⊂ ZLD ⊆

K⋂

k=0

{(
z1, z2

)
|wkz1 + (1 − wk)z2 ≥ max

l=0,…,L
h(wk, u

l)

}
.

h∗(wk) = max
u∈ℝm

+

h(wk, u).

(9)
K⋂

k=0

{(
z1, z2

)
|wkz1 + (1 − wk)z2 ≥ h(wk, u

k)
}
⊇ ZLD ⊃ Z∗.

(10a)z∗
LP
(w) = min

[
wc1 + (1 − w)c2

]T
x

(10b)s.t. Ax ≥ b,

(10c)Dx ≥ e,

(10d)x ∈ ℝ
n
+
.
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Since z∗
LP
(w) ≤ z∗(w) holds for all w ∈ [0, 1] , we have that Z∗ ⊂ ZLP and that bd(ZLP) 

provides a lower bounding for the Pareto frontier.
Using the characterisation of the function h given by problem (6) together with 

the relationship conv(X) ⊆
{
x ∈ ℝ

n
+
|Dx ≥ e

}
 , we conclude that h∗(w) ≥ z∗

LP
(w) 

holds for all w ∈ [0, 1] , which implies that ZLD ⊆ ZLP.
Suppose that the set 

{
x ∈ ℝ+ |Dx ≥ e

}
 has the integrality property, that is, that 

all its extreme points are integer-valued. Then (e.g. Wolsey 1998,  Section  10.2), 
conv(X) =

{
x ∈ ℝ+ |Dx ≥ e

}
 , the Lagrangian relaxed problem (4) can be solved as 

a linear program, even though it is discrete, which implies that h∗(w) = z∗
LP
(w) holds 

for all w ∈ [0, 1] and that ZLD = Z∗
LP

 . Hence, the Lagrangian lower bounding fron-
tier bd(ZLD) to the set of Pareto optimal outcomes does in this case have the same 
strength as the bounding frontier obtained from the linear programming relaxation 
of the scalarised single-objective reformulation of the original bi-objective discrete 
problem. (These results are analogous with those that hold in the single-objective 
case.)

If the set 
{
x ∈ ℝ+ |Dx ≥ e

}
 does not have the integrality property, then the 

Lagrangian relaxed problem is a genuine integer program, which needs to be solved 
by using for example branch-and-bound. It can then be expected that h∗(w) > z∗

LP
(w) 

typically holds and that ZLD ⊂ ZLP . Hence, in this case it can be expected that the 
Lagrangian bounding frontier to the set of Pareto optimal outcomes is stronger than 
the linear programming bounding frontier.

Example 1 To illustrate the Lagrangian bounding of the Pareto frontier and compare 
it to the linear programming bounding, we use the following small numerical zero–
one example.

The set X is here defined by (12) and (13). It contains 608 points, out of which 449 
are feasible. These give 284 distinct objective outcomes, out of which 10 are on the 
Pareto frontier, and out of these 6 are exposed. Figure 2 shows, to the left, the points 
on the Pareto frontier (circles), the boundary of Z+

conv
= conv(Z) +ℝ

2
+
 (solid), the 

Lagrangian lower bounding frontier bd(ZLD) (dash-dotted), and the linear program-
ming lower bounding frontier bd(ZLP) (dashed). Lagrangian relaxation of (11) gives 
a knapsack problem, which does not have the integrality property, and the Lagran-
gian bounding frontier is therefore tighter than the linear programming bounding 

ZLP =
⋂

w∈[0,1]

{(
z1, z2

)
|wz1 + (1 − w)z2 ≥ z∗

LP
(w)

}
.

(11)

min (z1 = 8x1 + 9x2 + x3 + 9x4 + 2x5 + 7x6 + 6x7 + 8x8 + x9 + 3x10,

z2 = x1 + x2 + 7x3 + 3x4 + 7x5 + 4x6 + 2x7 + x8 + 6x9 + 2x10)

s.t. 6x1 + 5x2 + 5x3 + 4x4 + 8x5 + 6x6 + 6x7 + x8 + 7x9 + 7x10 ≥ 28,

(12)6x1 + 3x2 + 6x3 + 8x4 + 8x5 + 8x6 + 3x7 + 9x8 + 3x9 + 2x10 ≥ 26,

(13)x ∈ {0, 1}
10



 T. Larsson et al.

1 3

   14  Page 10 of 34

frontier. The asterisks indicate the breakpoints of the Lagrangian and linear pro-
gramming frontiers. For the latter, a breakpoint corresponds to a certain optimal 
basis, while for the former it corresponds to a certain knapsack solution (point in X).

2.3  Evaluating bound quality

We here introduce a measure that can be used to assess the strength of a lower 
bound on the set of Pareto optimal outcomes. This measure is later used to compare 
the strength of the Lagrangian lower bounding versus the strength of the linear pro-
gramming bounding.

Let z ∶ [0, 1] ↦ ℝ be a lower bounding function for z∗ , obtained from a relax-
ation of the original bi-objective problem, so that it by construction holds that 
z(w) ≤ z∗(w) for all w ∈ [0, 1] . For a fixed value of w the duality gap associated with 
the relaxation is Γ(w) = z∗(w) − z(w) . The obvious examples of lower bounding 
functions are z∗

LP
 defined by the linear programming relaxation (10) and h∗ defined 

by (4) and (5).
We suggest to generalise the concept of a duality gap associated with a given 

relaxation of a non-convex single-objective optimization problem to the case of two 
objectives by defining the bi-objective duality gap

Based on this quantity, we next define a measure for the deviation between a set 
of mutually non-dominated objective outcomes and a lower bound to the Pareto 
frontier.

(14)Γ = ∫
1

0

Γ(w) dw = ∫
1

0

z∗(w) dw − ∫
1

0

z(w) dw.

Fig. 2  To the left, we show three frontiers. The circles are the points on the Pareto frontier, the solid 
curve is the boundary of Z+

conv
 , the dash-dotted curve shows the Lagrangian frontier bd(ZLD) , and the 

dashed curve shows the linear programming frontier bd(ZLP) . Asterisks show breakpoints. To the right, 
we show three functions of w ∈ [0, 1] . The solid, dash-dotted and dashed curves show z∗ , h∗ , and z∗

LP
 , 

respectively
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Suppose that the set of non-dominated objective outcomes is Z̄ ⊆ Z and define 
the upper bounding function UBD ∶ [0, 1] ↦ ℝ++ with

Clearly, UBD is a piecewise linear and concave function and z∗(w) ≤ UBD(w) 
always holds. Let LBD be a lower bounding function for the original bi-objective 
problem, so that LBD(w) ≤ z∗(w) always holds. It can be z∗

LP
 or h∗ , but it can also be 

lower bounds to these functions. Note however that LBD shall be a positive function. 
Then the relative deviation between the set of non-dominated objective outcomes 
and the lower bounding function is

Since LBD(w) ≤ z∗(w) ≤ UBD(w) , it holds that Γ̄r ≥ Γ∕ ∫ 1

0
z∗(w) dw . Further, a 

small value of Γ̄r shows that the lower bounding function is tight to z∗ and that the 
set of mutually non-dominated objective outcomes is close to, or coincides with, the 
exposed points on the Pareto frontier. If Z̄ = Z∗ , LBD = z∗

LP
 , X =

{
x ∈ ℤ

n
+
|Dx ≥ e

}
 , 

and 
{
x ∈ ℝ+ |Dx ≥ e

}
 has the integrality property, then Γ̄r = 0 . A large value of 

Γ̄r can indicate that the relaxation or the procedure used for computing the lower 
bounding function are inadequate, or that the set Z̄ lacks many points that are 
exposed Pareto optimal outcomes or that are close to such points.

Since the quantities Γ and Γ̄r are based on the scalarised single-objective refor-
mulation of the bi-objective problem, they can only capture problem characteris-
tics related to the exposed points on the Pareto frontier, This weakness is however 
of minor importance in our context since we use Γ̄r (or rather an approximation 
thereof) to compare two relaxations and their resulting lower bounding functions.

It may be practically impossible to calculate all the integrals in the expres-
sions (14) and (15) exactly. It is however quite easy to find lower and upper bounds 
to the values of these integrals by making discretisations. One possible way of doing 
this is given in Appendix 1.

The appendix also discusses the special case when the lower bounding in (15) is 
based on the Lagrangian dual problem (5), but only uses approximate solutions to 
the dual problem for discrete values of w, together with the above-mentioned lower 
bound calculation. It is established that this approximation will result in an overesti-
mate of the correct value of Γ̄r.

Example 2 (Continuation on Example 1) Figure 2 shows, to the right, the functions 
z∗ (solid), h∗ (dash-dotted), and z∗

LP
 (dashed) for the numerical instance in Exam-

ple 1. Here, ∫ 1

0
z∗(w) dw ≈ 16.36 , ∫ 1

0
h∗(w) dw ≈ 15.74 , and ∫ 1

0
z∗
LP
(w) dw ≈ 15.05 . 

The relative deviations (15) between UBD = z∗ and the alternative lower bounding 
functions LBD = h∗ and LBD = z∗

LP
 are 3.9% and 8.7% , respectively.

UBD(w) = min
(z1,z2)∈Z̄

wz1 + (1 − w)z2.

(15)Γ̄r =
∫ 1

0
UBD(w) dw − ∫ 1

0
LBD(w) dw

∫ 1

0
LBD(w) dw

.
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2.4  Bi‑objective Lagrangian heuristics

If a computationally challenging single-objective optimization problem (minimiza-
tion) is approached with a Lagrangian relaxation scheme in order to compute lower 
bounds to the optimal value, then it is common to augment the scheme with a pro-
cedure that tries to find feasible, and hopefully also near-optimal, solutions, and 
thereby upper bounds to the optimal value. Such a procedure is known as a Lagran-
gian heuristic. Both the number of possible applications of Lagrangian heuristics 
and the number of design options in such heuristics are large, which is reflected by 
the huge literature on the subject.

With reference to Larsson and Patriksson (2006), a Lagrangian heuristic works as 
follows: (i) it is initiated at a primal vector in the set defined by the non-relaxed con-
straints, (ii) it adjusts this vector by executing a finite number of operations, with the 
aim of reaching feasibility in the relaxed constraints, (iii) it utilises information from 
the Lagrangian dual problem, (iv) the sequence of vectors generated remains within 
the set defined by the non-relaxed constraints, and (v) the final vector is, if possible, 
primal feasible and hopefully also near-optimal in the primal problem. There is in 
general no guarantee that a feasible solution is found.

A common realisation of a Lagrangian heuristic is to initiate with a relaxed, and 
therefore infeasible, solution, often found in an iteration of a subgradient optimiza-
tion scheme for the Lagrangian dual problem. The modifications made of this solu-
tion strive for feasibility in the relaxed constraints, without violating the non-relaxed 
constraints, and they are typically guided by an objective metric, which has the pur-
pose of steering the modifications so that the objective value of an eventually found 
feasible solution becomes near-optimal. Common examples of objective metrics 
are the objective of the primal problem and the objective of the Lagrangian relaxed 
problem. How the relaxed solution is modified when striving for feasibility depends 
primarily on the structure of the problem at hand and the relaxation made (which is 
often a design question), which results in specific structures of the non-relaxed and 
the relaxed constraints that the modifications must be adapted to, but it is also a mat-
ter of design of the heuristic.

Lagrangian heuristics for single-objective problems are usually run many times, 
typically from relaxed solutions obtained for different dual solutions, both because 
a single run can fail to find a feasible solution but also in order to find a diversity 
of feasible solutions and resulting upper bounds, out of which the best one is hope-
fully near-optimal. In our bi-objective context, the Lagrangian heuristic should aim 
at finding near Pareto optimal solutions to the original problem (1). If the heuristic 
finds a candidate point that is dominated by already known near Pareto optimal solu-
tions, then it can be discarded.

The modifications made by the heuristic can be guided by the scalarised objec-
tive (2a). The heuristic will then aim at finding an exposed Pareto optimal solution, 
but it can of course still end up with a non-exposed Pareto point. Another possibil-
ity is to let the heuristic be guided by the objective  (4) of the Lagrangian relaxed 
scalarised problem. Still another possibility is to let the heuristic be guided by the 
bi-objective (1a) of the original problem. This may for example be made by using 
already known and mutually non-dominated solutions, and make the heuristic 
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modifications of a new relaxed solution with the aim of finding a feasible solution 
that is non-dominated with respect to the known solutions. If the heuristic succeeds 
in finding a new non-dominated solution, then some of the previously known solu-
tions may of course become dominated and therefore discarded.

The diversification aspect of a Lagrangian heuristic is even more important for 
a bi-objective problem, when a near Pareto frontier is sought for. A natural way of 
diversifying is to consider various values of w, and for each of them consider vari-
ous dual solutions, obtained when optimizing the Lagrangian dual problem for each 
value of w, and for each dual solution initiate the heuristic at the relaxed solution. 
Worth noting is that if the objective metric used depends of both  w and the dual 
solution, then these can be combined independently in the metric, in order to pro-
mote diversity. One can for example consider a particular dual solution and the cor-
responding relaxed solution, and run the heuristic repeatedly from the relaxed solu-
tion for various values of w.

In the application reported in next section we consider a number of values of w, 
and for each of these we consider a number of associated dual solutions. For each 
dual solution the heuristic is initiated at the relaxed solution obtained, and the modi-
fications made on the solution with the aim of reaching feasibility are guided by the 
weighted objective (2a). This strategy work very well, and experiments with other 
options are left for future research.

3  An application to bi‑objective facility location

We here describe an application of the developed methodology, with the purpose of 
illustrating its potential usefulness.

In recent years there has been an increasing interest in research about the trade-
offs between cost and environmental impact, often  CO2 emissions, within the fields 
of supply chain and transportation planning. Examples of this are the works Har-
ris et al. (2011), Zhang et al. (2017) and Gholipour et al. (2021).

The work Harris et al. (2011) considers a bi-objective single-sourcing capacitated 
facility location problem, where the bi-objective aspect is due to the simultaneous 
minimization of the  CO2 emissions and costs that arise when locating depots and 
transporting goods to customers. (Multi-objective facility location problems in gen-
eral are surveyed in Farahani et al. (2010).) The solution approach in Harris et al. 
(2011) is hierarchical; it first employs an evolutionary multi-objective algorithm for 
locating depots to some of a number of possible sites and then uses a Lagrangian 
relaxation based heuristic for assigning the customers to the selected depots.

We here apply our Lagrangian lower bounding and heuristic principle to the bi-
objective discrete optimization problem studied in Harris  et  al. (2011), and make 
experiments on the problem instances used in that work.

3.1  Problem formulation

The notations used in our formulation of the model are:
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I       set of possible depot sites, indexed by i
J       set of customers, indexed by j
dj       demand of customer j,
c1
ij
        CO2 emission from satisfying demand dj from depot i,

c2
ij
       cost for satisfying demand dj from depot i,

f 1
i
        CO2 emission from running depot i,

f 2
i
       fixed cost for locating depot i,

qi       capacity of depot i,
ni       number of customers that can be assigned to depot i.
The binary decision variables used are:
xij       equals 1 if customer j is assigned to depot i, and 0 otherwise,
yi       equals 1 if a depot is located to site i, and 0 otherwise.
Letting the total  CO2 emission and the total cost be denoted by z1 and z2 , respec-

tively, the bi-objective function to be optimized is 

 Constraint (16b) ensures that each customer is assigned to exactly one depot (that 
is, single-sourcing), and constraint  (16c) ensures that customers are only assigned 
to depots at the selected location sites. Further, constraint (16d) states that the total 

(16a)min

(
z1 =

∑

i∈I

f 1
i
yi +

∑

i∈I

∑

j∈J

c1
ij
xij, z2 =

∑

i∈I

f 2
i
yi +

∑

i∈I

∑

j∈J

c2
ij
xij

)

(16b)s.t.
∑

i∈I

xij = 1, j ∈ J

(16c)xij ≤ yi, i ∈ I, j ∈ J

(16d)
∑

j∈J

djxij ≤ qi, i ∈ I

(16e)
∑

j∈J

xij ≤ ni, i ∈ I

(16f)
∑

i∈I

qiyi ≥
∑

j∈J

dj

(16g)
∑

i∈I

niyi ≥ |J|

(16h)xij ∈ {0, 1}, i ∈ I, j ∈ J

(16i)yi ∈ {0, 1}, i ∈ I.
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demand of the customers that are assigned to a depot may not violate its capacity, 
and (16e) states that the number of customers assigned to a depot may not be larger 
than possible. Constraints (16f) and (16g) guarantee that enough depots are selected 
with respect to their total capacity and the maximal total number of customers they 
can handle, respectively. Finally, (16h) and (16i), are definitional constraints.

Single-objective facility location problems have been extensively studied. This 
includes several works where such problems are approached by Lagrangian relaxations, 
see for example Barcelo and Casanovas (1984), Klincewicz and Luss (1986), Pirkul 
(1987), Cornuejols et al. (1991), Beasley (1993), Holmberg et al. (1999), and Cortinhal 
and Captivo (2003). It is also popular to construct Lagrangian heuristics for such prob-
lems, see for example Pirkul (1987), Beasley (1993), and Cortinhal and Captivo (2003).

Note that constraint  (16f) is redundant, since it is implied by constraints  (16b), 
(16c)  and  (16d). Similarly, constraint  (16g) is redundant since it is implied by con-
straints  (16b), (16c)  and  (16e). Constraints  (16f) and  (16g) are still included in the 
model because they are not redundant in the Lagrangian relaxed problem to be con-
structed in Sect. 3.2, which will result in a more restricted relaxed problem and there-
fore stronger lower bounds.

3.2  Lagrangian relaxation

We apply Lagrangian relaxation to the single-sourcing constraint (16b). For the stand-
ard single-objective facility location problem, the same type of relaxation was first used 
in Bitran et al. (1981), and for the case of single sourcing it was first used in Sridharan 
(1993).

First the weight w ∈ [0, 1] is used to scalarise the objective (16a), giving the scalar-
ised problem 

 Then constraint  (16b) is Lagrangian relaxed with multipliers uj , j ∈ J . Letting 
fi(w) = wf 1

i
+ (1 − w)f 2

i
 , i ∈ I , and cij(w, u) = wc1

ij
+ (1 − w)c2

ij
− uj , i ∈ I , j ∈ J , we 

obtain the relaxed problem 

 with h(w, u) ≤ z∗(w) . We denote a solution to (18) by (x(w, u), y(w, u)).
For a fixed w ∈ [0, 1] , the Lagrangian dual problem is

(17a)z∗(w) = min
∑

i∈I

(
wf 1

i
+ (1 − w)f 2

i

)
yi +

∑

i∈I

∑

j∈J

(
wc1

ij
+ (1 − w)c2

ij

)
xij

(17b)s.t. (16b) − (16i).

(18a)h(w, u) =
∑

j∈J

uj +min
∑

i∈I

[
fi(w)yi +

∑

j∈J

cij(w, u)xij

]

(18b)s.t. (16c) − (16i),

(19)h∗(w) = max
u∈ℝ|J|

h(w, u)
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and the duality gap is Γ(w) = z∗(w) − h∗(w) ≥ 0.
The relaxed problem can be solved in two stages. In the first stage we con-

sider for each i ∈ I the cases yi = 0 and yi = 1 . For each of these cases we solve 
with respect to xij , j ∈ J . If yi = 0 holds, then the solution is trivial; due to con-
straint (16c), xij = 0 must hold for all j ∈ J , which results in a zero contribution 
to the objective value. If yi = 1 holds, then the contribution to the objective value 
is 

 This problem is solved for every i ∈ I . In the second stage the optimal values of yi , 
i ∈ I , are found by using the results from the first stage. The second stage problem is 

 which gives the solution y(w,  u). If some yi(w, u) = 1 , i ∈ I , then the val-
ues of xij(w, u) , j ∈ J , are given by a solution to problem  (20), while otherwise 
xij(w, u) = 0 , j ∈ J . The relaxed solution is used for calculating a subgradient of the 
dual objective function h(w, u) and also for initiating a heuristic which constructs 
feasible solutions to the original problem.

Note that both the |I| first stage problems and the single second stage problem 
are cardinality side constrained knapsack problems, which are in practice typically 
quite easily solved. Further, the second stage problem is typically much smaller, and 
hence the main computational burden lies in the first stage.

Furthermore, in the problem instances used for our experiments, all depots have 
the same capacity and can handle the same number of customers, that is, qi = q and 

(20a)vi(w, u) = fi(w) +min
∑

j∈J

cij(w, u)xij

(20b)s.t.
∑

j∈J

djxij ≤ qi,

(20c)
∑

j∈J

xij ≤ ni,

(20d)xij ∈ {0, 1}, j ∈ J.

(21a)h(w, u) =
∑

j∈J

uj +min
∑

i∈I

vi(w, u)yi

(21b)s.t.
∑

i∈I

qiyi ≥
∑

j∈J

dj

(21c)
∑

i∈I

niyi ≥ |J|

(21d)yi ∈ {0, 1}, i ∈ I,
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ni = n for all i ∈ I . Constraints (16f) and (16g) can then be combined into the single, 
and also stronger, constraint

where D =
∑

j∈J dj . This simplification leads to a second stage problem that is trivial 
to solve.

3.3  Overview of numerical experiment

We have made an implementation of the Lagrangian bounding principle derived 
in Sect. 2.1 and the Lagrangian heuristic principle outlined in Sect. 2.4 for the bi-
objective facility location problem. An overview of the implementation is shown in 
Fig. 3.

We use K = 101 equidistant values of the weight w ∈ [0, 1] to combine the two 
objectives. For each value of the weight the Lagrangian dual objective function (18) 
is maximized using subgradient optimization, each iteration of which includes the 
solution of the problems (20) and (21). The near-optimal dual solutions found are 
then used to construct a bound for the Pareto frontier according to equation (9).

(22)
�

i∈I

yi ≥ max (⌈D∕q⌉, ⌈�J�∕n⌉),

Fig. 3  Overview of the implementation. Here SNDP is the set of non-dominated points
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A Lagrangian heuristic is run within each subgradient iteration, initiated at the 
relaxed solution found when solving problems  (20), i ∈ I , and  (21). All feasible 
solutions found by the heuristic are recorded, and finally a near Pareto optimal fron-
tier is constructed by sorting out the non-dominated solutions; this set is called ND.

For comparison purposes, we also construct the linear programming bound for 
the Pareto frontier. This is done by simply solving the linear programming relaxa-
tion of the scalarised problem  (17) for the K values of the weight w. Further, the 
scalarised problem (17) is solved for each of the K values; this will generate a set of 
exposed Pareto points, denoted Pw.

In order to assess the quality of the near Pareto optimal solutions found by the 
heuristic, we also calculate points on the actual Pareto frontier. First the problem 
is solved with only  CO2 emission as objective and with only cost as objective; this 
will give the two endpoints of the Pareto frontier and the possible ranges for the two 
objectives. We then apply the �-constraint method to search for other Pareto optimal 
solutions, with cost as objective and a bounding constraint for  CO2 emission. This 
bound is initially set to the lower end of the range for  CO2 emission and then gradu-
ally increased up to the upper end of its range. Due to the nature of the problem, 
there is a huge number of Pareto optimal solutions, and the number actually found 
by the �-constraint method depends of the size of the increment with which the 
bound on  CO2 emission is increased. We have used 501 equidistant bounds within 
the possible range for  CO2 emission; the set of Pareto points found is denoted P�.

We made an implementation in  Python  3.10.61  together with the 
solver Gurobi 9.5.1.2 This implementation was run on an Apple M1 Max, 10-core 
CPU at 2.06–3.22 GHz, with 64GB RAM memory.

Ten problem instances (1–10) adopted from Harris et al. (2011) are used. (Table 3 
in Appendix 2 gives references to the names used in Harris et al. (2011)) They all 
include 10 possible depots, while the number of customers are 2000, 4000, 6000, 
8000 or 10000. For each number of customers, there are two instances, with capac-
ity ratio 4.0 and 8.0, respectively. This ratio is the total capacity of the depots in 
relation to the total demand from the customers. The fixed costs for locating depots 
and the  CO2 emissions from running them are created so that the fixed cost for locat-
ing a depot is 1.25 times its capacity and the ratio between the the fixed cost for a 
depot and its  CO2 emission is 24.4. Hence, the fixed cost for a depot is significantly 
larger than its  CO2 emission.

3.4  Implementation of subgradient optimization

The scalarised problem  (17) is considered for K  equidistant weights, that is, 
wk = k∕K , k = 0,… ,K . We used K = 101 . For each weight a straightforward sub-
gradient optimization method, see e.g. Shor (1985) or Strömberg  et  al. (2020), is 
used to find a near-optimal solution to the Lagrangian dual problem (19).

1 Python 3.9. https:// www. python. org/ downl oads/ relea se/ python- 390/
2 Gurobi 9.5.1. https:// www. gurobi. com/ docum entat ion/9. 5/ refman/ detai led_ relea se_ notes_ for_9_ 5. html

https://www.python.org/downloads/release/python-390/
https://www.gurobi.com/documentation/9.5/refman/detailed_release_notes_for_9_5.html


1 3

A Lagrangian bounding and heuristic principle for bi‑objective… Page 19 of 34    14 

We denote by s the subgradient iteration for a given weight wk . For a dual iterate 
us ∈ ℝ

|J| , a relaxed solution (x(wk, u
s), y(wk, u

s)) is found by solving problems (20) 
and (21). A subgradient �s ∈ ℝ

|J| of h(wk, u) at us is given by

In the unlikely case that �s = 0 , an optimal dual solution has been found and the 
method is terminated. Otherwise the next iterate is us+1 = us + ts�

s , where ts > 0 is a 
step length. We use the well known Polyak step length formula

where � ∈ (0, 2) and UBDk ≥ h∗(wk) . The upper bound UBDk is the best objective 
value wkz1 + (1 − wk)z2 among all feasible solutions to the original problem  (16) 
that have been found; these solutions are generated within the subgradient optimiza-
tion by using the Lagrangian heuristic described in Sect. 3.5. The subgradient opti-
mization method is terminated when (UBDk − LBDk)∕LBDk ≤ � , where LBDk is the 
best found lower bound to h∗(wk) and � = 10−4 , or after 100 iterations. If termina-
tion occurs because of the former criterion, then a verified very near-optimal solu-
tion to the dual problem has been found. The parameter � is initialised to the value 
1.5 and halved whenever LBDk has not improved for ten consecutive iterations since 
the most recent halving.

After termination for a given weight wk , the next value, wk+1 , is considered. Since 
the two values of the weight differ only little, it is reasonable to assume that the 
corresponding optimal dual solutions are also rather similar. The subgradient opti-
mization is therefore initialised at the best dual solution found for the previous value 
of the weight; this dual solution will often yield a good initial value of LBDk . For 
k = 0 , all dual variables are initialised to 500. The upper bound UBDk is initialised 
as the best objective value wkz1 + (1 − wk)z2 among all available feasible solutions 
to (16). (For k = 0 , when no feasible solution is known, we initiate UBD0 to a large 
number.)

The numerical parameter values introduced above are based on some preliminary 
experiments which are not reported. The performance of the overall method is how-
ever insensitive to the values of the parameters.

3.5  Lagrangian heuristic

A Lagrangian relaxed solution (x(wk, u
s), y(wk, u

s)) is of course fulfilling the non-
relaxed constraints  (16c)–(16i), but it is unlikely that the relaxed single-sourcing 
constraint (16b) is fulfilled. (If (16b) actually becomes fulfilled, then, for the current 
value of w, the duality gap is zero, u solves (19), and (x(w, u), y(w, u)) solves the 
scalarised problem (17).) In case u is near-optimal, it is however likely that most of 
the constraints in (16b) are fulfilled.

Our heuristic is very similar to that in Cortinhal and Captivo (2003), see Phase I, 
but randomised to create diversity. The aim of the heuristic is to modify the relaxed 

�s
j
= 1 −

∑

i∈I

xij(wk, u
s), j ∈ J.

ts = �
UBDk − h(wk, u

s)

||�s||2
,
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solution so that the violated constraints in (16b) become fulfilled, without violating 
any already fulfilled constraint. In order to strive for a feasible solution that is near-
optimal, the modifications made are guided by the weighted costs wc1

ij
+ (1 − w)c2

ij
 . 

The heuristic works in four steps, as outlined below. (It is here most convenient to 
use the terminology from the application.)

The first step is to find the customers that are not assigned to any depot and those 
that are assigned to multiple depots. (This information is readily available from the 
subgradient at the current dual iterate.) If more than 30% of the customers are unas-
signed, then the heuristic is not run. This is because if many customers are unas-
signed, then the heuristic will be time-consuming and the feasible solutions found 
will typically be inferior. The latter is due to the large degree of infeasibility and also 
that the heuristic is partly random, in order to promote diversity. The case that the 
heuristic is not run appears mainly in the early subgradient iterations, when the dual 
solution is far from being near-optimal.

The second step is to remove all but one of the depots from customers that are 
assigned to multiple depots. The depot that remains assigned is one with lowest 
weighted cost wc1

ij
+ (1 − w)c2

ij
 . (The fixed depot costs are not considered since 

removed depots are still available for other customers.) The removals made in this 
step will clearly keep or improve the feasibility in constraints  (16d) and (16e).

The third step is to try to assign all unassigned customers to the depots that are 
available (that is, with yi(w, u) = 1 ). These customers are considered in a random 
order; this is done to promote diversity among the solutions found in different runs 
of the heuristic. For each customer the available depots are examined according to 
increasing weighted cost wc1

ij
+ (1 − w)c2

ij
 , and the customer is assigned to the first 

depot where this is possible without violating constraint (16d) or (16e). If all unas-
signed customers can be assigned to the available depots, then the heuristic has 
found a feasible solution, and otherwise it has failed.

If the heuristic has been successful, then the last step is to remove any depot that 
is lacking assigned customers. Thereafter, the resulting feasible solution and its two 
objective values, z1 and z2 , are returned.

3.6  Results

We give detailed results for one problem instance and aggregated results for all of 
them. Since the Lagrangian heuristic described in Sect. 3.5 is randomised, the results 
obtained will vary between different runs. The variation in the results between runs 
is however very small, and we therefore only give results for a single run.

Figure  4 displays detailed results for problem instance  No.  1, which includes 
2000 customers. The results for this instance are representative for all the instances. 
Notice that because of the huge difference in magnitude between the two objectives, 
the scales of the axes differ with a factor of ten. The red dots are Pareto optimal 
outcomes, the blue curve is the linear programming bound, the green curve is the 
Lagrangian bound, the blue dots are the objective values of the feasible solutions 
found by the heuristic, and the plus signs are the non-dominated feasible solutions 
found by the heuristic.
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An important observation is that the Lagrangian bound is tight along the entire 
Pareto frontier, and that the linear programming bound is strong when emphasis is 
on minimizing  CO2 emission but weak when emphasis is on minimising cost. The 
latter is due to the large costs for locating each of the (few) depots, which results 
in large cost savings when the linear programming relaxation allows for fractional 
depots. In contrast, the Lagrangian relaxation does not allow fractional depots, and 
therefore provides a stronger bound.

With emphasis on minimizing  CO2 emission, more depots are located to reduce 
 CO2 emission from transports, until the emissions from the depots exceed the reduc-
tion of emission from shorter transports. With more depots located, there is enough 
capacity to assign all customers to nearby depots. Therefore, a linear programming 
solution will become integral, or almost integral, and the corresponding bound will 
be close to the Pareto frontier.

We have noticed that when emphasis is on minimizing  CO2 emission, the linear 
programming bounds are actually sometimes slightly stronger than the Lagrangian 
bounds, even though the latter is at least as strong as the former if Lagrangian dual 
problem (19) is solved exactly; the subgradient optimization used on (19) is however 
only approximate.

The heuristic is clearly able to produce a wide range of feasible solutions, and 
those that are mutually non-dominated are very close to the Pareto frontier. It can 
be noticed that the feasible solutions are roughly distributed on eight cost levels, 
which are related to the number of located depots. There are Pareto points on the 
three lowest levels, which contain solutions with three, four, and five located depots, 
respectively.

Fig. 4  Frontiers and feasible objective points for problem instance No. 1. The red dots are Pareto optimal 
outcomes, the blue curve is the linear programming bound, the green curve is the Lagrangian bound, the 
blue dots are the objective values for the feasible solutions found by the heuristic, and the plus signs are 
the non-dominated feasible solutions found by the heuristic (colour figure online)
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We next give results for all the problem instances, in Tables 1 and 2 and in Figs. 5 
and  7. Our Lagrangian bounding and heuristic principle for bi-objective discrete 
optimization aims at confining an unknown Pareto frontier. We therefore first study 
the strength of the bounding of the Pareto frontier achieved by the Lagrangian relax-
ation compared to that obtained by the linear programming relaxation. This is done 
by, for both relaxations, calculating approximate values of the relative deviations 
between the set of non-dominated objective outcomes found by the heuristic and the 
lower bounding function, according to expression (15) and using the approximation 
described in Appendix 1.

Figure 5 shows the results of these calculations. We can observe that the rela-
tive deviations of both the Lagrangian bound and the linear programming bound 

Fig. 5  For each problem instance, relative deviations between non-dominated objective outcomes and the 
Lagrangian and linear programming bounds, respectively

Table 1  The number of Pareto points in the sets P� and Pw ( |P�| and |Pw| , respectively), the number of 
feasible solutions found by the heuristic (# Feas), the number out of these that are mutually non-domi-
nated ( |ND| ), how many points in ND that coincide with any point in P� (In P� ), and how many that are 
not dominated by points in P� (Not P�)

Further, we give the hypervolume measures of ND and Pw in relation to the hypervolume measure of P� 
(Vol. ND and Vol. Pw , respectively), and the maxmin distance measures of ND and Pw in relation to P� 
(Dist. ND and Dist. Pw , respectively)

No. |P�| |Pw| # Feas |ND| In P� Not P� Vol. ND Vol. Pw Dist. ND Dist. Pw

1 78 34 4765 121 3 100 0.999 0.997 0.052 0.116
2 112 21 139 21 2 19 0.260 0.260 0.643 0.643
3 193 35 1594 25 1 11 0.996 0.988 0.140 0.386
4 55 62 761 78 2 76 1.000 1.000 0.032 0.033
5 95 87 5515 73 1 63 1.000 0.998 0.196 0.196
6 71 68 642 74 2 72 0.990 0.963 0.047 0.249
7 274 99 327 99 1 95 0.968 0.297 0.093 0.474
8 84 87 3010 348 2 340 0.999 0.998 0.073 0.073
9 142 72 2510 111 0 98 0.998 0.996 0.061 0.102
10 29 29 159 32 3 29 1.000 0.997 0.033 0.099
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are consistent over all the problem instances. The Lagrangian relaxation used is 
very strong, in the sense that it provides tight lower bounds; this is because the 
solution of the Lagrangian relaxed problem amounts to first solving one knapsack 
problem for each depot and then an additional knapsack problem to select depots. 
The Lagrangian bounds are therefore consistently much stronger than the linear 
programming bounds, and the improvement is in the range of 96.3–97.2%.

Table  1 provides results for the Lagrangian heuristic. It shows, for each 
instance, the number of Pareto points found by the �-constraint method ( |P�| ), and 
by using problem (17) for the K weights ( |Pw| ), respectively, the number of fea-
sible solutions found by the heuristic, and how many out of these that are mutu-
ally non-dominated ( |ND| ). Further, we report how many points in ND that coin-
cide with points in P� and how many that are not dominated by such points. (As 
described in Sect. 3.3, the Pareto points are found by the �-constraint method with 
501 increments in  CO2 emission.) To assess the overall quality of the set ND ver-
sus the known Pareto points in P� , we apply the hypervolume (dominated-space) 
metric introduced in Zitzler and Thiele (1998). We report normalised metric val-
ues with respect to the ideal and anti-ideal points as suggested in Medaglia and 
Fang (2003). We also apply the coverage measure described in Mesquita-Cunha 
et al. (2022, eq. (1)), using Euclidean distance. The same analyses are made for 
the set Pw.

As can be seen, the number of Pareto points, feasible solutions, and non-domi-
nated solutions vary a lot between the instances. This is due to the varying properties 
of the problem instances, but also to the varying number of subgradient iterations 
made (see Table 2). Further, some of the solutions found by the heuristic are Pareto 
optimal. For the vast majority of the heuristic solutions it is not known whether they 
are Pareto optimal, but the fact that they are not dominated by the large number of 
known Pareto optimal solutions indicates that they are at least near Pareto optimal.

We note that the hypervolume measure is consistently better for ND compared 
with Pw , and that the coverage measure of ND is always at least as good as that of 
Pw and often much better. One reason for ND being superior is that the Lagrangian 

Fig. 6  Known Pareto points and mutually non-dominated objective points found by the heuristic for 
instance No. 3. A red dot shows a Pareto point and a plus sign shows a non-dominated objective point 
found by the heuristic. To the right is a magnification of the cluster indicated by the black box in the pic-
ture to the left (colour figure online)
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heuristic finds a diversity of non-dominated solutions, while set Pw only contains 
exposed Pareto points.

Figure 6 shows Pareto points and mutually non-dominated objective points found 
by the heuristic for instance No. 3. To the right is a magnification of a cluster of 
points in the figure to the left. Clearly, many mutually non-dominated objective 
points are found, they span the objective space within this cluster, and they are all 
near Pareto optimal.

In Appendix 3 we give plots of the known Pareto points and the mutually non-
dominated objective points found by the heuristic for all the instances. An illustra-
tion of actual locations of depots and of customer assignments in various feasible 
solutions for one instance is given in Appendix 1.

Table  2 gives some statistics for the subgradient optimization method, as 
described in Sect. 3.4. It gives the total number of iterations used for the 101 values 
of the weight w, the median number used over these values, and how many times 
the maximal number of iterations, which is 100, is reached. As can be seen, the sub-
gradient optimization is commonly terminated because (UBDk − LBDk)∕LBDk ≤ � 
holds, so that the maximal number of iterations is not needed. This indicates that 
the relative duality gap (z∗(w) − h∗(w))∕h∗(w) is, for most instances and values of 
the weight, very small, and that the reoptimization strategy used in the subgradient 
optimization works well. When the duality gap is large, the method will of course 
run the maximal number of iterations.

Figure  7 gives the run times for finding the linear programming bound, the 
Lagrangian bound (including running the heuristic), the Pareto points in Pw , and 
the Pareto points in P� . Worth noticing is that the computing times for the linear 
programming bounding is mostly less than that for the Lagrangian bounding, but 
that the time needed for the latter is never of a different magnitude, although the 
Lagrangian bounds are consistently much stronger and the Lagrangian scheme 

Table 2  Number of iterations 
used in the subgradient method

Total is the sum of iterations used for all weights, median is the 
median of iterations used over the 101 values of the weight, and max 
iterations reached is the number of times the maximal number of 
iterations is reached

Problem instance Total Median Maximum 
reached

1 7648 100 57
2 1110 11 2
3 1996 13 4
4 2678 13 11
5 7708 100 66
6 1718 12 6
7 1308 10 4
8 5249 22 44
9 4384 35 15
10 1374 12 1
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also provides a large number of feasible solutions. Also worth noticing is that the 
computation of the Pareto points in Pw and P� are typically much more expensive, 
with the latter being far more expensive.

As can be seen in Fig. 7, the computing time for the Lagrangian bounding var-
ies a lot. This is partly because it is affected by the number of depots and custom-
ers as well as the capacity ratio. The main reason is however that the computing 
time is dominated by the solution of the knapsack problems (20) in each iteration 
of the subgradient optimization, and as can be seen in Table  2, the number of 
such iterations varies considerably.

Notice also that the number of feasible solutions found, shown in Table 1, is 
strongly correlated to the number of subgradient iterations used, since the heuris-
tic run in each of these iterations.

The overall conclusion from our experiments is that the developed Lagrangian 
bounding and heuristic principle for bi-objective discrete optimization problems 
performs well on the studied application. The non-dominated solutions found are 
near Pareto optimal and diverse, and of high quality compared to the sets Pw and 
P� . The computation times for finding the Lagrangian bounding frontier are of 
the same magnitude as those for finding the linear programming bound, but the 
Lagrangian bounding is much stronger. Further, the computation times are much 
shorter compared to the times needed to find the sets Pw and P�.

We conclude this section with a few comments about our results in comparison 
to those given in Harris et al. (2011). Their heuristic first applies an evolutionary 
multi-objective optimization algorithm to find several good selections of depots 
and thereafter applies a Lagrangian relaxation based heuristic to each selection to 
assign customers. They find non-dominated solutions on the same cost levels as 
we do with our approach (and also with the �-constraint method), but in total they 
find only between 4 and 10 non-dominated solutions for every problem instance. 
This is little compared to our heuristic, which finds over 20 non-dominated solu-
tions for each instance, as shown in Table 1.

Fig. 7  For each problem instance, run times in seconds for finding the linear programming bound, the 
Lagrangian bound (including running the heuristic), the Pareto points in Pw , and the Pareto points in P� . 
Note that the scales on the y-axes are very different. The red line in the right figure corresponds to the 
upper limit on the y-axis in the left figure (colour figure online)
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As also shown in that table, the �-constraint method with 501  increments in 
 CO2  emission often produced many Pareto optimal solutions. To further examine 
the number of Pareto optimal points for the problem instances used, we ran the �
-constraint method with several thousand increments in  CO2 emission on instance 
No. 1. This run took more than 15 h and gave 1688 Pareto points. Runs on other 
instances gave similar, and even higher, results. Hence, the instances studied seem to 
have thousands of Pareto optimal points. The large numbers of Pareto optimal solu-
tions are mainly due to the many possible ways to assign customers for each selec-
tion of depots, since the number of reasonable locations of depots is quite limited.

Our heuristic finds more non-dominated solutions than that used in Harris et al. 
(2011); most likely this is because the problem  (21) finds the same selection of 
depots in several subgradient iterations and the random component of the heuris-
tic then allows it to find different assignments of customers for this selection. Even 
though our heuristic produces more non-dominated solutions than the heuristic used 
in Harris et al. (2011), the major advantage of our approach is that it also creates a 
bounding frontier for an unknown Pareto frontier, which enables an assessment of 
the quality of the non-dominated solutions found.

4  Conclusions and future work

We have derived a Lagrangian bounding and heuristic principle for the approxi-
mate solution of bi-objective discrete optimization problems for which it is com-
putationally challenging to find the Pareto frontiers. Our work extends well estab-
lished Lagrangian dual techniques for single-objective discrete optimization to the 
bi-objective case. The bounding part produces a convexified frontier that bounds 
the Pareto frontier, while the heuristic provides non-dominated objective outcomes, 
that is, candidates for Pareto optimal solutions; the bounding method and the heuris-
tic will therefore together confine the Pareto frontier. A key feature of the Lagran-
gian bounding is that it has the potential to be stronger than the linear programming 
bounding of the Pareto frontier.

To demonstrate the applicability of the derived approach we considered a bi-
objective facility location problem. The numerical results presented are very encour-
aging. First, the Lagrangian bounding frontier is tight to the Pareto frontier and it 
is much stronger than the linear programming bounding; this is due to the use of a 
strong, tailored Lagrangian relaxation for the application at hand. Second, the heu-
ristic used succeeds to find a large number of feasible solutions, and the feasible 
solutions that are non-dominated are very close to the Pareto frontier. Further, the 
computation times are very favourable compared to using the �-constraint method or 
the weighted-sum scalarisation method.

Our results are promising for further applications of bi-objective discrete optimi-
zation. Further, the overall strategy of using Lagrangian relaxation and Lagrangian 
heuristics allows for many different realisations for a specific application, such as 
choice of relaxation, choice of solution method for the Lagrangian dual problem, 
and design of the Lagrangian heuristic.
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Worth noticing is that the Lagrangian dual problem can often be solved with a 
cutting plane method, which in the primal space is equivalent to column generation 
(Dantzig–Wolfe decomposition). Suppose that the set X consists of N points, say xj , 
j = 1,… ,N , and let �j , j = 1,… ,N , be convexity weights for these points. Then the 
characterisation (6) can be rewritten as 

 This is a linear optimization problem that can be solved by column generation. Let-
ting y ∈ ℝ

m
+
 and v ∈ ℝ be given values of the linear programming dual variables for 

constraints (23b) and (23c), respectively, the column generation problem is

that is, the minimization of a linear objective over X. If problem (23) is solved for 
all values w ∈ [0, 1] , then the bounding frontier bd(ZLD) will be found exactly. The 
theory concerning this column generation strategy for bi-objective discrete optimi-
zation has been outlined in Larsson and Quttineh (2023). Its practical application is 
a topic for further research.

Finally, an obvious topic for continued research is the extension of our approach 
to discrete optimization problems with more that two objectives, although this is, in 
principle, straightforward.

Appendix 1: Bounds on integrals of concave functions

The functions z∗ , UBD, z∗
LP

 and h∗ are all piecewise linear and concave, but they 
lack explicit expressions and can have large numbers of breakpoints, which can 
be demanding to generate with guarantees that all have actually been found. It can 
therefore become demanding to calculate their integrals exactly, which is trou-
blesome since Γ and Γ̄r are only measures for evaluating bounding quality. It is 
therefore natural to consider calculating approximate values of the integrals from 
discretisations of the interval of integration. Further, because of the concavity 

(23a)h∗(w) = min

N∑

j=1

[
wcT

1
xj + (1 − w)cT

2
xj
]
�j

(23b)s.t.

N∑

j=1

(
Axj

)
�j ≥ b,

(23c)
N∑

j=1

�j = 1,

(23d)�j ≥ 0, j = 1,… ,N.

min
x∈X

{[
wc1 + (1 − w)c2 − ATy

]T
x − v

}
,
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property, such integrals can be be approximated from both above and below. The 
information required to calculate the bounds are values and subgradients of the 
function at the discrete argument values. The derivation of the bounds is based on 
geometric arguments that are straightforward and illustrated in Fig. 8.

To make our analysis generic, we let the function f ∶ [0, 1] ↦ ℝ++ be continu-
ous and concave, and thus subdifferentiable, and consider approximations of the 
integral of f over the interval [0, 1]. Let the sequence {wk}

K
k=0

⊂ [0, 1] be strictly 
increasing with w0 = 0 and wK = 1 , and let Δwk = wk+1 − wk , k = 0,… ,K − 1 . Let 
�k ∈ �f (wk) , k = 0,… ,K . Note that the concavity of f implies that the sequence 
{�k}

K
k=0

 is non-increasing.
The lower bounding of the integral is obtained from an inner approximation 

of f, that is, from the trapezoidal rule. From concavity follows that

The upper bounding is given by a piecewise linear outer approximation of f, called 
f̂ ∶ [0, 1] ↦ ℝ++ and with f̂ (w) = mink=0,…,K f (wk) + 𝛾k(w − wk) . By using the 
concavity and the discretisation we then have that

We next study each of the integrals in the right-hand side. If �k+1 = �k then the inte-
gral becomes the area of a single right trapezoid, that is,

(24)�
1

0

f (w) dw ≥
K−1∑

k=0

f (wk) + f (wk+1)

2
Δwk.

(25)�
1

0

f (w) dw ≤ �
1

0

f̂ (w) dw =

K−1∑

k=0
�

wk+1

wk

f̂ (w) dw.

∫
wk+1

wk

f̂ (w) dw =
f (wk) + f (wk+1)

2
Δwk.

Fig. 8  Inner and outer approxi-
mations of integral
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If 𝛾k+1 < 𝛾k then it becomes the summed areas of two right trapezoids, which can be 
expressed as

where

is the intersection between the two linear approximations f (wk) + �k(w − wk) and 
f (wk+1) + �k+1(w − wk+1) of f.

If f is piecewise linear and the discretisation is equidistant, that is, Δwk = 1∕K  , 
k = 0,… ,K − 1 , then the upper bound (25) is exact when K is sufficiently large, 
while the lower bound (24) tends to the exact value as K tends to infinity.

We finally make a remark about the calculation of the relative bound devia-
tion Γ̄r , according to expression (15), when the lower bounding is based on the 
Lagrangian dual problem (5), under the assumption that h∗ is a positive function. 
We assume that a near Pareto optimal frontier has been generated, and that this 
frontier gives the function UBD. Depending on the situation at hand, the integral 
of UBD can then be calculated exactly, or approximated by making a discretisa-
tion and using the upper bound (25). The latter will result in an overestimate of 
the correct value of Γ̄r . The tightest possible choice of lower bounding integral is 
clearly ∫ 1

0
h∗(w) dw , but this choice can be practically impossible, both because 

h∗ is implicitly defined and because it can be expensive to evaluate exactly. A 
practical approach is then to consider only some values of w and to replace 
h∗ with a function LBD that is defined through an approximate solution of the 
Lagrangian dual problem (5). (Then there is of course not any explicit expres-
sion for the function LBD, and it is only possible to evaluate it for given values 
of w.) Let uk be near-optimal in the Lagrangian dual problem maxu∈ℝm

+
h(wk, u) , 

with h(wk, u
k) > 0 . Since h∗ is concave (see comment after Proposition  2), the 

lower bound (24) can be used. Further, since h(wk, u
k) ≲ h∗(wk) , k = 0,… ,K  , it 

is then immediate that

∫
wk+1

wk

f̂ (w) dw =

2f (wk) + 𝛾k

(
w
k+

1

2

− wk

)

2

(
w
k+

1

2

− wk

)

+

2f (wk+1) + 𝛾k+1

(
w
k+

1

2

− wk+1

)

2

(
wk+1 − w

k+
1

2

)
,

w
k+

1

2

=
f (wk+1) − �k+1wk+1 − f (wk) + �kwk

�k − �k+1

�
1

0

h∗(w) dw ≥
K−1∑

k=0

h∗(wk) + h∗(wk+1)

2
Δwk

≳

K−1∑

k=0

h(wk, u
k) + h(wk+1, u

k+1)

2
Δwk.
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Hence, using the approximation in the right-hand side to calculate Γ̄r will overesti-
mate the value that should have been obtained by using the tightest possible lower 
bounding integral.

Appendix 2: Problem instances

The names of the problem instances taken from Harris  et  al. (2011) are given 
in Table  3, together with the numbering that we use. The instances are named 
according to their properties. For example, the first problem instance includes 
10  possible depots and 2000  customers, its capacity ratio is  4.0, and its ratio 
between fixed cost and capacity is 1.25.

Appendix 3: Illustrations of Pareto points and non‑dominated points

Figure 9 gives plots of the Pareto points found by the �-constraint method with 
501 increments in  CO2 emission and the mutually non-dominated objective points 
found by the heuristic for all the instances, as summarised in Table 1. Note that 
both many Pareto points and many non-dominated points are very close to each 
other.

Illustration of feasible solutions

The problem instances used, from Harris et al. (2011), are randomly generated over 
a square in the plane with coordinates given for the possible location sites and the 
customers. Feasible solutions can therefore easily be illustrated in the plane.

The upper left picture in Fig. 10 shows objective points for three feasible solu-
tions to problem instance No.  3 found with the Lagrangian heuristic, together 

Table 3  Name and number of 
problem instances

Instance Name

1 ����_��_����_��.�_���.��

2 ����_��_����_��.�_���.��

3 ����_��_����_��.�_���.��

4 ����_��_����_��.�_���.��

5 ����_��_����_��.�_���.��

6 ����_��_����_��.�_���.��

7 ����_��_����_��.�_���.��

8 ����_��_����_��.�_���.��

9 ����_��_�����_��.�_���.��

10 ����_��_�����_��.�_���.��
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Fig. 9  Known Pareto points and mutually non-dominated objective points found by the heuristic for 
instances No. 1–10. A red dot shows a Pareto point and a plus sign shows a non-dominated objective 
point (colour figure online)
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with the linear programming and Lagrangian bounding frontiers. The actual solu-
tions are also shown in the figure. The triangles represent possible location sites 
for depots and dots locations of customers. If a triangle is black, then no depot is 
located at the site. The colour of a customer shows which depot it is assigned to. 
(These are the same illustrations as in Åkerholm (2022).)

The feasible solution that gives objective point number 1 is shown to the upper 
right. It uses three depots and is non-dominated (among all solutions found by the 
heuristic). The depots are well spread out in the square and customers are gener-
ally assigned to the nearest located depot. These properties are of course reason-
able for a non-dominated solution. The solution giving objective point number 2 
is shown to the lower left. It also uses three depots but it is dominated. Here, the 
depots are not well spread out and many customers in the upper right corner are 
assigned to the depot in the lower right corner. These deficiencies in the solution 
explain the increased  CO2 emission compared to solution number 1, and they are 

Fig. 10  To the upper left, objective points for three feasible solutions to instance No. 3, and the linear 
programming and Lagrangian bounding frontiers. The three feasible solutions are shown in detail: (1) a 
non-dominated feasible solution with three depots, (2) a dominated feasible solution with three depots, 
and (3) a non-dominated feasible solution with five depots. Here, possible depot sites are shown as trian-
gles and the dots represent customers. The colour of a customer shows to which depot it is assigned
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not unexpected since the solution is dominated. The solution giving point num-
ber 3 is shown to the lower right. It is non-dominated and uses five depots, which 
are well spread out and customers are generally assigned to the nearest located 
depot.
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