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Abstract
This paper addresses the electric vehicle routing problem with time windows 
(E-VRPTW), considering the battery’s state of charge ( SoC ) and the recharging 
process’s linearity and non-linearity. We compare two proposed models: the first 
assumes a linear charging process, and the second evaluates the impact generated by 
including the non-linearity of the battery recharging process. The non-linear model 
considers the limitation of the state of charge and restricts the deep battery discharge 
during movement. Additionally, the effect of overload on the supplied energy pro-
cess has been evaluated to extend the batteries’ useful life. The models are tested on 
instances commonly used in the literature. The obtained results verify that including 
the non-linearity recharging process reduces the total time of the routes. Indeed, by 
accessing the upper sections of the recharge curve ( > 85% SoC , the more significant 
degradation), autonomy is obtained to avoid unnecessary visits to stations. In addi-
tion, including the option to carry out a fast recharge could reduce the total time, 
even reducing the number of vehicles necessary to carry out the delivery tasks and 
the maximum time defined by each route.
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1 Introduction

According to EPA (2022), a typical fuel vehicle emits about 4.6 metric tons of car-
bon dioxide annually. This situation generates that a vehicle on the road has a fuel 
economy of about 22.0 miles per gallon and drives around 11,500 miles per year 
(EPA 2022). Every gallon of gasoline burned creates about 8887 g of  CO2. A gal-
lon of diesel emissions is 10,180  g of  CO2 (EPA 2022). Therefore, new research 
has recently focused on solving the vehicle routing problem by considering sustain-
ability. Various works have advanced from basic models to formulations that better 
capture real situations. Environmental issues have led to updated logistics operations 
in the last two decades. Companies are looking for mechanisms to reduce the envi-
ronmental effects of delivering goods by considering the conflict between climate 
change and disruptive technological advances through better planning or less pollut-
ing transportation modes.

Developed countries have implemented incentives, tax advantages, and various 
benefits of using vehicles with alternative fuels. Therefore, a growing research com-
munity has been generated around using electric vehicles as a sustainable alternative 
to conventional transportation. Recently, several approximate algorithms have been 
formulated based on electric vehicles. For an electric vehicle, the battery is one of 
its main components. The batteries have a valuable life whose longevity depends on 
various factors associated with their use, limiting the autonomy of vehicles. This 
paper studies battery electric vehicles (VEBs) with an entirely electric propulsion 
scheme. VEBs have high efficiency, and their driving range varies depending on the 
battery power capacity. The vehicle must be charged from the electrical network 
(Gómez-Gélvez et al. 2016).

The battery of electric vehicles constitutes approximately 1/3 of its sale price 
(Gómez-Gélvez et al. 2016). The lithium battery (LB) is one of the most promising 
technologies, with high energy and power density. A LB is light, cheap, nontoxic, 
and can accept fast charging (Young et al. 2015). LBs have a useful life, and their 
capacity decreases according to use and time. The reparation of the LB reduces their 
degradation and lengthens their life within the daily use of the vehicle. The main 
factors affecting battery degradation are the charge cycle, power, charge depth, and 
high temperature, among other factors (Barré et al. 2013).

This paper studies the E-VRPTW considering the recharging process’s battery 
charge status, linearity, and non-linearity. We propose exact models based on the 
previous works proposed by Schneider et al. (2014) and Montoya et al. (2017) for 
solving the problem using benchmark instances from the literature. This paper’s 
main objective is to evaluate the impact of restricting recharging by comparing 
the linear and non-linear charging processes, limiting the battery’s state of charge 
(SoC), and representing the energy transfer process more realistically.

Several papers have studied the EVRP, assuming that the charging battery process 
is only carried out in the linear portion of the recharging function, which is far from 
reality. Allowing the battery to charge for exceeding the threshold or the breaking 
point where the curve begins to degrade, generates better solutions, avoiding addi-
tional unscheduled visits to charging stations. This paper proposes a mathematical 
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model, including the non-linearity of the stations’ recharging process and the bat-
tery’s degradation within different states of charge, generating less expensive solu-
tions, represented as a decreased battery value or as a minimum number of electric 
vehicles composing the fleet.

The rest of the paper has been structured as follows. Section 2 describes the Lit-
erature Review section related to electric vehicles. Section  3 details the proposed 
mathematical model. The computational results of the benchmarking instance are 
shown in Sect.  4. Finally, concluding remarks and future work are described in 
Sect. 5.

2  Literature review

Battery University (2020) indicates that a deep discharge stresses the battery more 
than a partial discharge. A deep discharge of a battery occurs when the battery’s 
capacity has been exhausted. It means that battery cells cease to function. The deep 
discharging process originates an increased internal resistance, making the battery 
difficult to charge. Indeed, the deep discharge causes 1.5–2 times as much electric 
discharge as the battery can support (EPPower 2023). However, a battery affected 
by a deep discharge could be difficult to charge. Therefore, charging a battery fre-
quently is better than discharging it entirely. In this work, the battery’s dynamic 
stress reflects its capacity loss for different charge and discharge band cycles.

The SoC is the current ratio of the electrical charge within the battery relative 
to the maximum possible charge (Pelletier et  al. 2017). A charge battery cycle 
between 25 and 100% of battery capacity generates further degradation. Even higher 
than a total discharge (reach of 0%). Between 65 and 75% SoC , the battery’s life is 
extended. However, it is only possible to maintain the SoC within a margin since its 
autonomy would be minimal, requiring a close charging station that supplies energy 
every time. Between 50 and 100% SoC , more than 5.000 charge and discharge cycles 
are achieved. However, problems associated with battery overload would arise while 
the vehicle’s autonomy remains limited. Between 25 and 85%, the SoC (keeping the 
battery capacity at 60%) could reach up to 5.000 cycles and provide sufficient auton-
omy to carry out the delivery tasks (Pelletier et al. 2017).

Although different approaches expose the battery charge as a linear function, this 
situation does not occur in the real world. The charging functions are generally non-
linear due to the terminal voltage and changes during the charging process (Mon-
toya et al. 2017). In the first stage, the charging process remains constant. Therefore, 
the battery level increases linearly with time. The first charging phase continues 
until the battery terminal voltage rises to a specified maximum value. In the second 
phase, the energy decreases exponentially, and the voltage at the terminals remains 
constant to prevent damage to the battery. The battery level increases concavely 
over time (Pelletier et al. 2017). Generally, the behavior of the charging process is 
challenging to model with differential equations. However, given the difficulty, the 
charging functions have been approximated. One alternative is performing a piece-
wise linear approximation (Montoya et al. 2017).
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The well-known capacity vehicle routing problem (CVRP) does not consider 
the action of fuel loading because it is assumed to be of unlimited accessibility 
(Bernal et  al. 2018; Kalatzantonakis et  al. 2023), which is irrelevant to the prob-
lem. However, this situation does not restrict the autonomy of vehicles whose fleets 
commonly consist of combustion vehicles. The extension of the EVRP considering 
time windows is called the E-VRPTW (Daza et al. 2009). The E-VRPTW is a chal-
lenging NP-hard combinatorial optimization problem due to its high computational 
complexity (Schneider et al. 2014). The E-VRPTW considers a fleet of a fixed num-
ber of capable vehicles with limited autonomy departing from a depot, where they 
are fully recharged. The vehicles leave the depot to serve customers and visit sta-
tions, searching for battery energy during their planning horizon and thus extending 
their autonomy to meet customer demand within the corresponding time window 
(Lin et al. 2021). In the last decade’s research on the use of electric vehicles, there 
have been various contributions related to minimizing the fleet size or the number of 
recharging stations (Cataldo-Díaz et al. 2022). Generally, the published works deal 
with electric vehicle routing problems and their variants. Their objectives are to find 
the best routes considering the location of various recharging stations at different 
geographical points.

Schneider et al. (2014) consider the linear recharging process at stations, constant 
speed, and recharging time related to the battery’s remaining capacity. This paper 
introduces the electric vehicle routing problem with time windows and recharging 
stations (E-VRPTW), which incorporates the possibility of recharging at any avail-
able stations using an appropriate recharging scheme—a hybrid heuristic approach, 
combining a variable neighborhood search algorithm with a tabu search, has been 
proposed to solve the considered problem. The instances generated by Schneider 
et al. (2014) have been widely used to solve different variants of the EVRP. Time 
windows for the recharging stations have been proposed by Desaulniers et al. (2016), 
Keskin and Çatay (2016), Felipe et al. (2014), and Sassi et al. (2014).

Other published papers include multiple recharging options and fast charging 
with so–called "superchargers" (Kobayashi et  al. 2011; Keskin and Çatay 2016; 
Felipe et al. 2014). Felipe et al. (2014) combine partial recharging with fast charging 
options. This work proposes several heuristics for a variation of the vehicle rout-
ing problem in which the transportation fleet comprises electric vehicles with lim-
ited autonomy. Some authors have added physical variables to the problem to attach 
more reality to the formulations. For example, Sassi et al. (2014) include power grid 
limitations. Preis et al. (2014) consider the components of resistance to air, slope, 
wheels, and regenerative braking. Basso et al. (2019) use coefficients with informa-
tion on topography, speed, powertrain efficiency, and the effect of acceleration and 
braking at traffic lights and intersections. Alesiani and Maslekar (2014) restrict the 
number of simultaneous vehicles at recharging stations. Goeke and Schneider (2015) 
consider information associated with the vehicle’s mass, speed, and road shape.

Several contributions consider battery recharging a linear function. However, 
Montoya et  al. (2017) model the batteries (Sweda and Klabjan 2012). The main 
objective of this work is to minimize the number of routes, considering that the bat-
tery charge is always above a minimum threshold below its capacity, without allow-
ing it to reach zero, and thus protect the battery from deep discharges. The problem 
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of finding a minimum-cost route for an electric vehicle when it must recharge along 
the way is modeled as a dynamic program by Sweda et al. (2017). In particular, the 
optimal charge level at recharging stations along a given route significantly extends 
the batteries’ useful life. The optimal level and the stops are determined by adding 
a recharging cost and a penalty factor (based on the total cost of the recharging sta-
tion) to the successive and frequent stops.

Recently, the battery swap at stations has been studied by considering technologi-
cal advances to reduce cost and time. Highlighted contributions on this topic have 
been proposed by Yang and Sun (2015), Verma (2018), and Hof et al. (2017). These 
works consider exchanging batteries with the stations that must be located. Yang 
and Sun (2015) present an electric battery swap station location routing problem 
(BSS–EV–LRP), which aims to determine the location strategy of battery swap sta-
tions (BSSs) and the routing plan of a fleet of electric vehicles (EVs) simultaneously 
under battery driving range limitation. The problem is formulated as an integer pro-
gramming model under the basic and extended scenarios. Two heuristic algorithms 
are proposed to solve the problem (SIGALNS and TS–MCWS). Verma (2018) pre-
sent a variant of the Electric Vehicle Routing Problem with Time Windows and 
Recharging Stations by allowing the available stations to serve both as Recharging 
Stations (RSs) and Battery Swapping Stations (BSSs). A model and algorithm for 
this problem are presented. Hof et al. (2017) propose an Adaptive Variable Neigh-
borhood Search (AVNS) algorithm to solve the battery swap station location-routing 
problem with capacitated electric vehicles. Raeesi et al. (2020) introduce a new for-
mulation that considers changing batteries through "mobile stations." Futalef et al. 
(2020) address the EVRP using a genetic algorithm. This work considers the limi-
tation of the battery charge status (38% and 82% of its capacity) to safeguard its 
useful life and protect it from degradation. This situation affects vehicle autonomy 
and considers a charging infrastructure (limited capacity) and a non-linear charging 
function.

Xu et  al. (2021) address the electric vehicle fleet size problem by considering 
vehicle allocation and charging strategies for profit maximization. A charge-on-
demand strategy is proposed to determine the fleet size to avoid battery degradation 
and to achieve long-term cost savings. This work considers the nonlinear battery 
cost incurred during the charging and discharging. A piecewise linear approximation 
approach is used to linearize the problem. Reyes-Rubiano et al. (2019) analyze a real 
electric vehicle routing problem, considering driving range constraints and stochas-
tic travel times. The objective function minimizes the expected cost based on the 
time required to complete the planned routes. Finally, Zang et al. (2022) adopt three 
methods of battery degradation over time, calculating the valuable life with greater 
precision; these are (1) a nonlinear discharge function, (2) a linear charge function 
and discharge cycle, and (3) a linear function of the total travel distance.

Several authors have studied diverse variants of E-VRPTW. Lebeau et al. (2015) 
consider time windows, vehicle capacity, and service time for customer deliveries 
using a mixed fleet formulation of electric vehicles. The location routing problem 
for electric vehicles (E–LRP) has been considered by Hof et al. (2017), Yang and 
Sung (2015), Qin et  al. (2021), and Hulagu and Celikoglu (2021). Hierman et  al. 
(2016) propose a formulation for the Electric Fleet Size and Mix Vehicle Routing 
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Problem with Time Windows and recharging stations, E–FSMFTW. Van Duin et al. 
(2013) only consider routes with electric vehicles, determining the ideal fleet to 
transport a known cargo demand located at a central depot to a known set of recipi-
ents using vehicles of varying types. Conrad and Figliozzi (2011) formulated a 
model considering the time windows and vehicle capacity for battery recharging at 
customer locations for the EVRP. Erdoğan and Miller-Hooks (2012) introduced the 
green vehicle routing problem (green VRP), which considers the recharging of vehi-
cles with alternative fuels, minimizing the traveled distance, and considering driving 
autonomy with the location of the charging stations. Finally, Omidvar and Tavakkoli 
Moghaddam (2012) studied the integration and the effect of traffic congestion.

Table 1 shows the research from the last decade, considering the particular char-
acteristics of each published work and their differences from ours. The standard 
variables of the literature are the partial recharge time window, the penalty of deep 
discharge, energy overload at the stations by the transfer process, and the formula-
tions characterizing the recharging curve as a nonlinear function.

3  Materials and methods

This section introduces the E-VRPTW. Additionally, the proposed models consider 
constraints on the SoC during the performed routes and the energy transfer process 
in the stations.

3.1  Problem description

The E-VRPTW, considering the SoC and the linearity or non-linearity of the 
recharging process, implies a set of geographically distributed customers that must 
be visited. Each customer has a specific demand and time window. A homogeneous 
electric vehicle fleet with a fixed capacity and limited autonomy is available at each 
depot to satisfy the customers. While the vehicle moves, it consumes energy propor-
tional to the traveled distance. Therefore, the vehicle must frequently go to recharg-
ing stations distributed at various nodes. The battery must be recharged efficiently, 
and its energy must be managed to complete the route. The battery recharging time 
depends on the SoC state where the vehicle arrives at the station and the amount of 
supplied energy. The recharging process follows a non-linear behavior over time.

The main objective is determining the routes to be performed with the minimum 
cost (time). The routes must begin and end at the depot—besides, each customer 
must be visited once to satisfy its demand. The problem considers that a fleet’s size 
contributes to achieving this objective by seeking to attend the stations as few times 
as possible. The visits to the stations allow partial recharges, implying transferring 
only enough energy to complete the route (recharging efficiency), trying to avoid a 
deep discharge of the battery during the route, and overloading the energy transfer 
process. This situation extends the useful life of batteries.
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3.2  Mathematical general structure

Two mixed-integer linear programming models, linear charging (Sect.  3.3) and 
non-linear charging (Sect. 3.4), have been proposed to solve the E-VRPTW con-
sidering the load state. Both models have a similar structure. The linear model 
is inspired by the work proposed by Schneider et al. (2014). Unlike those com-
ponents proposed by Schneider et  al. (2014), we allow partial recharge of the 
vehicles on stations and limitation of deep discharge. The objective function for 
the non-linear model is derived from Montoya et  al. (2017). Unlike those pro-
posed by Montoya et al. (2017), we consider the limitation of deep discharges and 
penalization of the overload of the charge on stations, improving the useful life of 
batteries (as usual in real-life cases). Besides, we have considered different charge 
rates for the section greater than 85% of SoC . We have defined a variable set 
and specific constraints on its composition to represent the different behaviors of 
the SoC . Although both models can solve the problem efficiently, the non-linear 
formulation allows for evaluating the impact generated by including the non-lin-
earity performance of the recharging curve process. Otherwise, the linear model 
considers the energy transfer linearly.

Let V ′ be a set of nodes with V � = V ∪ F , where V  denotes the set of custom-
ers, and F denotes the real and fictitious charging station. F = FR ∪ FF , where FR 
corresponds to the real charging stations, and FF is an array containing copies of 
each station to allow multiple visits (fictitious charging stations allow visiting 
the stations several times). The nodes 0 and N denote the depot from each route 
that starts and ends. Let be V �

0
= V ∪ F ∪ {0} the set of nodes including charging 

stations and depot 0, V0 = V ∪ {0} the set of customers including the depot 0 , 
V �
N
= V ∪ F ∪ {N} the set of customers including charging stations and depot N , and 

V �
0,N

= V ∪ F ∪ {0} ∪ {N} includes the charging stations and depot 0 and N.
The E-VRPTW considering the charge of the batteries could be defined with a 

complete directed graph G =
(
V �
0,N

, A
)
 , with the set A =

{
(i, j)|i, j ∈ V �

0,N
, i ≠ j

}
 

associated with a Euclidean distance dij between nodes i and j ( i ∈ V �
0
, j ∈ V �

N
 ) (1), 

and a travel time tij between nodes i and j ( i ∈ V �
0
, j ∈ V �

N
 ), with a constant battery 

consumption rate h (linear model) and different battery consumption rates (non-lin-
ear model) for each traveled edge between i and j ( i ∈ V �

0
, j ∈ V �

N
 ). The fleet com-

prises electric vehicles with similar characteristics, with a load capacity of Q and a 
battery capacity of C . Each node i ∈ V is associated with a positive demand qi 
( i ∈ V; is 0 if i ∉ V) . Additionally, the set of nodes i ∈ V’ have a service time called 
Si

(
S0, SN = 0;i ∈ V �

0,N

)
 , and each node i ∈ V �

0,N
 is associated with time windows 

[ei, li] where a service cannot start before ei nor after li . Also, g indicates the recharg-
ing battery rate until it gets 85% of its capacity on stations (linear model) and differ-
ent recharging battery rates (non-linear model). Finally, m is defined as fleet size 
(number of electric vehicles), and vel indicates the average driving speed.

The calculation of dij is carried out using Expressions (1). Considering that the 
average driving speed ( vel ) and the rate of energy consumption ( h ) are constant 
and have a unit value (linear model), it is possible to calculate the time between 
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nodes ( tij) and the amount of consumed energy when making this movement ( zij) by 
Eqs. (2) and (3), respectively:

The SoC must not drop 25% below to avoid battery degradation. The SoC can 
only exceed that threshold in the final section of the route, which includes the last 
visited customer and the depot. The decision variables are generated with a single 
index, which tracks different states of the vehicle during its route. These variables 
are �i , indicating the arrival time (hour) at node i ( i ∈ V �

0,N
 ), ui indicating the load 

remaining at node i , and yi the remanent capacity of the battery SoC (battery’s state 
of charge) at node i , where i ∈ V�

0,N
 . Additionally, wi is defined as the amount of 

supplied energy to the battery at charging station i , with a transfer rate g (linear) 
and different rates (non-linear), allowing the battery to be recharged up to 85% of its 
capacity, where i ∈ F.

The non-linearity of the recharging process incorporates new variables represent-
ing the behavior of the real recharging curve, generating the possibility of exceed-
ing the recommended maximum threshold of the SoC (85%) and assuming its cost 
(time). The value of pi is defined as the supplied energy between 85 and 95% of the 
recharging curve at a transfer rate G , and bi includes the supply of 95–100% of the 
curve at a rate R . The binary decision variable xij with i ∈ V �

0
, j ∈ V �

N
 takes the value 

1 if the edge is traversed and 0 otherwise.
The objective function seeks to minimize the total time of the routes, consider-

ing the travel time between nodes, the recharging time of the batteries, and the ser-
vice time. Likewise, the optimal fleet size is calculated for the considered problem. 
Therefore, given a fleet of vehicles, it could be reduced by considering the optimal 
number of electric vehicles.

3.3  Mathematical model assuming lineal recharge time

The linear model restricts the deep battery discharge to 25% of its capacity, prioritiz-
ing surface discharge. It allows partial recharges at the stations. However, an upper 
threshold is defined to limit the overload of the energy transfer process, which main-
tains the SoC within the recommended range. This range is set to [25–85%], con-
sidering 60% autonomy, which, according to the dynamic stress tests carried out by 
Battery University (2020), would allow the long-term battery life to be extended. A 
linear recharge process is assumed, where energy is transferred to the battery at a 
rate of g . The time for this process depends on the SoC at the station and the amount 
of supplied energy. The mathematical model is expressed by (4)–(23):

(1)dij =

√(
xj − xi

)2
+
(
yj − yi

)2
∀i ∈ V0, j ∈ V �

N
, i ≠ j

(2)tij =
dij

vel
(seconds) ∀i ∈ V0, j ∈ V �

N
, i ≠ j

(3)zij = dij ∗ h(kWh) ∀i ∈ V0, j ∈ V �
N
, i ≠ j



 C. Cataldo-Díaz et al.

1 3

1 Page 10 of 35

Subject to

(4)MinZ =
∑

i∈V �
0
,j∈V �

N
,i≠j

tijxij +
∑

i∈F

gwi +
∑

i∈V �
0
,j∈V �

N
,i≠j

Sjxij

(5)
∑

j∈V �
N
,i≠j

xij = 1 ∀i ∈ V

(6)
∑

j∈V �
N
,i≠j

xij ≤ 1 ∀i ∈ F

(7)x0N = 0

(8)
∑

i∈V �

x0i ≤ m

(9)xij = 0 ∀i ∈ F, j ∈ F

(10)
∑

i∈V �
N
,i≠j

xji −
∑

i∈V �
0
,i≠j

xij = 0 ∀j ∈ V �

(11)τi +
(
tij + Si

)
xij − l0

(
1 − xij

)
≤ τj ∀i ∈ V0, j ∈ V �

N
, i ≠ j

(12)τi + tijxij + gwi + Si −
(
l0 + gC

)(
1 − xij

)
≤ τj ∀i ∈ F, j ∈ V �

N
, i ≠ j

(13)ej ≤ τj ≤ lj ∀j ∈ V �
0,N

(14)uj ≤ ui − qixij + Q
(
1 − xij

)
∀i ∈ V �

0
, j ∈ V �

N
, i ≠ j

(15)u0 ≤ Q

(16)yj ≤ yi − zijxij + C
(
1 − xij

)
∀i ∈ V0, j ∈ V �

N
, i ≠ j

(17)yj ≤
(
yi + wi

)
− zijxij ∀i ∈ F, j ∈ VN , i ≠ j

(18)(C ∗ 0.25) ≤ yi ∀i ∈ V �

(19)
(
yi + wi

)
≤ (C ∗ 0.85) ∀i ∈ F
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Equation (4) is the objective function and minimizes the total time of the routes, 
considering the travel time between nodes, the recharging time of the battery at the 
stations, and the service time at the customer’s location and the recharging stations. 
For the linear model, we assume that the energy transfer curve is linear and limited 
to 85% of the maximum battery capacity ( SoC ). Equations (5) guarantee customer 
connectivity, allowing only one edge to travel to another customer, the recharging 
station, or the final depot.

Equations  (6) allow an output edge to another customer or depot from the 
recharging station. In addition, Expression (7) does not allow a connection between 
depots. Equation (8) determines the number of electric vehicles leaving the depot. 
Constraints (9) prevent the existence of consecutive recharges, restricting immediate 
visits to charging stations. Equations  (10) ensure the continuity of the route con-
sidering a flow equilibrium. Indeed, the number of output edges must be equal to 
the number of input edges at each node. Equations (11) address the edges’ tempo-
ral viability, leaving the customers and the depot. These expressions consider the 
arrival, service, and travel times between nodes. Constraints (12) guarantee the tem-
porary viability of the vehicles leaving the charging station, considering the service 
time to recharge the battery. Equations (13) guarantee compliance with each node’s 
time window, including the depot. Expressions (11), (12) and (13) are responsible 
for eliminating the subtours. Equations (14) and (15) ensure compliance with cus-
tomer demand.

Expressions (16) control the SoC of the depot and the customers, considering the 
energy consumption between nodes. Constraints (17) control the SoC when arriving 
and leaving the station, recharging only enough energy to continue the route. Equa-
tions (18) indicate the value of SoC . The SoC cannot decrease below 25% of its total 
capacity. Constraints (19) define a maximum threshold to charge the battery in a 
station (85% of its capacity). Equations (20) determine the SoC at the initial depot. 
Expressions (21)–(23) define the nature of the decision variables.

3.4  Mathematical model considering the nonlinearity of the energy transfer 
process

The non-linear formulation, similar to the linear mathematical model, restricts the 
battery’s deep discharge, allows partial recharging, and does not limit overcharging. 
The transfer of energy follows a non-linear curve over time. We have extended the 
linearization of the recharge curve proposed by Montoya et al. (2017) for the EVRP 

(20)y0 ≤ C ∀i ∈ V �
0
, j ∈ V �

N

(21)xij ∈ {0, 1} ∀i ∈ V �
0
, j ∈ V �

N

(22)τi, ui, yi ≥ 0 ∀i ∈ F

(23)wi ≥ 0 ∀i ∈ F
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without considering a limited deep discharge to our problem by dividing the non-
linear behavior into three linear sections. For the non-linear model, a recharge rate 
given in h∕Wh is assigned to each defined section, representing the real–time ( h ) the 
vehicle must pass through the station according to the amount of supplied energy 
( Wh ) to the battery. When the threshold of 85% ( SoC ) is exceeded, the time begins 
to increase non-linearly due to the curve’s concavity at that breakpoint, generating 
a more significant impact on the objective function. Therefore, it is necessary to 
decide if it is convenient to access the upper sections of the curve (exceeding 85% 
SoC ) and assume the cost (time), or attend a more significant number of stations and 
thus fulfill the task of delivering goods within the recommended charging interval 
(25% and 85%).

The stations define a single recharging option for the present work. The slow 
recharge curve represents the nonlinear behavior in Fig.  1. The breakpoints are 
assumed to be 85%, 95% and 100%.

Figure 2 shows the recharge curve. We assign a letter representing each section 
according to the corresponding recharge rate. Therefore, it is possible to define the 
sections of the recharge curve for the development of the proposed approach:

• 25–85% SoC , recharging rate g
(

h

Wh

)
 (less degradation of the battery).

• 85–95% SoC , recharging rate G
(

h

Wh

)
.

• 95–100% SoC , recharging rate R
(

h

Wh

)
.

Note that the proposed mathematical model is flexible and can be adapted by 
adding more letters considering different recharging sections. In addition, based on 
the slopes obtained between the breakpoints, it is possible to define the equivalence 
between the recharge rates of the upper sections concerning the first fraction of the 
curve (25–85%). We defined the following values of the recharging rate:

Battery 

Level 

SoC 

(kWh) 

Source: Owner

Fig. 1  Piecewise linear approximation recharge rate.  Source: Owner
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The values of the battery recharging rate G and R are generated for instances 
based on different existing battery charging technologies (Anseán et al. 2013; Zhu 
et al. 2019; He et al. 2020; Duru et al. 2021; Al-Saadi et al. 2021), including fast 
chargers that are very useful during daytime operations and slow chargers that can 
be used at night. The different values can be found in Tables 2, 3, 4, 5, 6.

(24)G = 2.5 ∗ g

(25)R = 6.25 ∗ g

Fig. 2  Model (a), Instance R203C10_S5. Mathematical model assuming limited lineal recharge time.  
Source: Owner

Table 2  Main parameters of 
instance R203C10_S5.  Source: 
Owner

Description Value

Battery capacity ( C) 60.63 kWh
Vehicle capacity ( Q) 1000 units
Energy consumption rate ( h) 1 kWh/m
Charging rate
(25–85% SoC) g = 0.49 s/kWh
(85–95% SoC) G = 1.225 s/kWh
(95–100% SoC) R = 3.062 s/kWh
Speed driving average 1 m/s
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3.4.1  Notation

The non-linear model considers the same sets and parameters as the linear model. 
However, the following parameters and variables referring to energy recharge in the 
upper sections of the curve are added.

G = Battery charging rate for the section 85–95% SoC.
R = Battery charging rate for the section 95–100% SoC.
pi = Amount of supplied energy to the battery at charging station i considering a 

recharging rate G ( i ∈ F).
bi = Amount of supplied energy to the battery at charging station i considering a 

recharging rate R ( i ∈ F).
The mathematical formulation is the following:

Subject to
(26)

MinZ =
∑

i∈V �
0
,j∈V �

N
,i≠j

tijxij +
∑

i∈F

g(wi − pi − bi) +
∑

i∈V �
0
,j∈V �

N
,i≠j

Sjxij +
∑

i∈F

G ∗ pi +
∑

i∈F

R ∗ bi

(27)

τi + tijxij + g(wi − pi − bi) + G ∗ pi + R ∗ bi + Si −
(
l0 + gC

)(
1 − xij

)
≤ τj

∀i ∈ F, j ∈ V �
N
, i ≠ j

(28)
(
yi + wi

)
≤ (0, 85 ∗ C) + pi + bi ∀i ∈ F

(29)pi ≤ 0, 1 ∗ C ∀i ∈ F

(30)bi ≤ 0, 05 ∗ C ∀i ∈ F

Table 6  Main parameters of 
instance tc0c10s3ct1.  Source: 
Owner

Description Value

Battery capacity ( C) 16.000 kWh
Vehicle capacity ( Q) 20 units
Energy consumption rate ( h) 120 kWh/m
Charging rate
(25–85% SoC) g = 0.02279 h/kWh
(85–95% SoC) G = 0.0500 h/kWh
(95–100% SoC) R = 0.150 h/kWh
Speed driving average ( vel) 40 km/sec
Demand of the node i  

(
qi
)

1 unit
Maximum time for a route 10 h
Service time (customers and stations)(Si) 0,5 h
Type of charge Fast (charging speed 

between 7 and 
22 kW)
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Additionally, to constraints (5)–(11), (13)–(18) and (20)–(23).
Objective function (26) is similar to the linear model. However, it includes the 

time to recharge the battery at the station, following a non-linear behavior, and con-
sidering a penalty for exceeding the threshold of 85% and 95% SoC . Equations (27) 
guarantee the temporary viability of the edges leaving the station, considering the 
energy transfer time to the battery and the recharge rate for each section of the curve. 
Equations  (28) define a maximum threshold to recharge the battery, correspond-
ing to 85% of its total capacity. However, the model allows the option of exceeding 
that limit if needed. Equations (29) limit the second section of the recharging curve 
(85–95%) to 10% of the battery capacity. Equations (30) limit the third section of the 
recharging curve (95–100%) to 5% of the battery capacity. Equation (31) guarantees 
that the curve’s recharge rate is higher in the upper sections. Finally, Eqs. (32) define 
the nature of the decision variables.

Defining the number of electric vehicles ( m ) for the complete fleet is necessary to 
solve the problem by replacing objective functions (4) and (26) with (33).

Equation (33) minimizes the number of vehicles leaving the depot.

4  Computational experiments

This section presents the obtained computational results. First, the problem is solved 
using the benchmarking instances proposed for the EVRP by Schneider et al. (2014). 
Some additional parameters have been added. Both models are tested to clearly show 
the impact of the non-linearity of the recharge curve and to evaluate their behavior 
concerning fleet size, route distribution, and the total time of the routes. New input 
data have been added for the second set of instances proposed by Montoya et  al. 
(2017).

The proposed models have been implemented in the Julia programming language 
and solved using the commercial solver Gurobi Optimizer version 9.5.0. The com-
puter used where the experiments were carried out has the following characteristics:

• Processor Intel® Core™ i7-7700 K CPU @ 4.2 GHz
• Memory (RAM) 32 GB
• Type of System: 64 Bit Operation System, processor × 64.

(31)g < G < R

(32)pi, bi ≥ 0 ∀i ∈ F

(33)MinZ =
∑

j∈V�

x0j
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4.1  Set of instances by Schneider et al. (2014)

For this set of instances, different distributions, numbers of customers, and recharg-
ing stations have been considered to determine the proposed models’ efficiency. An 
associated service time on each visit to a station (34) is assumed.

The instances consider 5, 10 and 15 customers, whose distribution can be consid-
ered in three ways: “C” (grouped customers), “R” (randomly distributed customers), 
and “RC” (grouped and randomly distributed customers) (Schneider et  al. 2014). 
The minimum fleet size ( m ) calculated according to (33) is presented. The num-
ber of vehicles has been estimated using the linear model’s expressions to evalu-
ate the possibility of reducing the fleet size by considering the nonlinear recharging 
behavior. The matrices corresponding to the distances, travel times and energy con-
sumption between nodes present equivalent values for this case. Next, Figs. 2 and 
3 present the solution of the instance R203C10_S5 described by the two proposed 
models. Table 2 shows the main parameters of the R203C10_S5 instance.

4.2  Summary of results for all test instances

Tables  3, 4, 5 summarize the obtained results for the two proposed models on 
instances of different sizes and distributions.

(34)Si = 10 ∀i ∈ F

Fig. 3  Model (b), Instance R203C10_S5. Mathematical model considering nonlinearity in the energy 
transfer process.  Source: Owner
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4.3  Analysis of results by Schneider et al. (2014)

Based on the computational experiments carried out on instances of 5, 10, and 15 
customers, we note that the non-linear model (b) can find feasible and optimal solu-
tions (Gap of 0%) for all the instances proposed by Schneider et al. (2014). However, 
the linear formulation (a) could only achieve 92% of the cases. This fact is mainly 
due to the limitation of the SoC since the linear model grants only 60% autonomy 
(25–85% SoC ) to develop the routes.

For any customer distribution, the computing time considering five customers 
is less than a second for both models. The non-linear model (b) cannot reduce the 
fleet size for 63% of all the cases. Additionally, the objective function decreases as 
the number of visits to the recharging stations due to the energy transfer process 
exceeds 85% SoC (60% of the cases). For the non-linear model, this situation allows 
accessing the curve’s upper reaches and generating savings (travel time + service 
time + recharge time) by not visiting a new station.

The objective function does not decrease for the non-linear model in 40% of the 
cases, keeping the performed routes. Besides, the number of vehicles decreases with 
an increment of the objective function for the 37% of instances with five customers 
(non-linear model). This situation is generated mainly due to a growth in the number 
of times electric vehicles exceed the threshold of 85% SoC and attend a new station 
searching for energy to try to supply the reduced number of vehicles.

The fleet size is kept for 63% of cases by considering instances with ten custom-
ers and solving the non-linear model. Besides, for these cases, the objective function 
and the number of visits to the charging stations are reduced. The reduction of the 
objective function is directly related to the possibility of accessing the upper sec-
tions of the non-linear recharge curve. The number of vehicles is reduced for 37% 
of the instances by executing the non-linear model, and the objective function value 
increases for 75% of the cases.

The computing time for both models is strictly related to the particular distribu-
tion of the parameters. The computing times range from a minimum of 1 to a maxi-
mum of 249 s. Finally, for the non-linear model, the number of electric vehicles is 
maintained, and the total time decreases since the algorithm unnecessarily recharges 
vehicles to increase their autonomy by overcharging the battery (> 85% SoC).

4.4  Set of instances by Montoya et al. (2017)

Montoya et  al. (2017) solved the EVRP with a non-linear objective function. The 
authors propose a benchmarking set of 120 different instances. For the E-VRPTW, 
we have selected the instances that can be solved within a reasonable time (7200 s). 
The structure of the instances proposed by Montoya et al. (2017) is the following:

• Customers are evenly distributed, clustered, or a mix of both.
• Recharging stations are located using the P-median heuristic or randomly.
• There is not a time window for customers.
• The vehicles have a given time for performing a route.
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• The actual recharging curve of a commercial battery is provided.
• Slow, moderate, and fast recharge options are considered.
• There is no vehicle capacity.
• The demand is unitary.

We have performed the following analyses:

• The maximum time of each route corresponds to the upper time window of the 
final depot, thus ensuring that all vehicles composing the fleet arrive at the depot 
before the established time.

Battery 

Level 

SoC 

(kWh) 

Time (hours) 

Fig. 4  Piecewise linear approximation with slow recharging.  Source: Owner

Battery 

Level 

SoC 

(kWh) 

Time (hours) 

Fig. 5  Piecewise linear approximation with moderate recharging.  Source: Owner
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• The service time is considered both by customers and in recharging stations (as 
instances generated by Schneider et al. 2014).

• There is only one recharge option at the station.

Battery 

Level 

SoC 

(kWh) 

Time (hours) 

Fig. 6  Piecewise linear approximation, fast recharging.  Source: Owner

Fig. 7  Model (b), Maximum time 10 h, instance tc0c10s3ct1.  Source: Owner
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4.4.1  Description of the set of instances

An example of a structured instance is formulated based on the distribution of nodes 
by Montoya et  al. (2017). The instance tc0c10s3ct1 considers ten customers and 
three charging stations, where both sets are randomly distributed. Table 6 shows the 
details of the input data.

The set of instances by Montoya et al. (2017) is solved using the non-linear model 
because it can represent the behavior of the recharge curve. A scenario is proposed 
in which the maximum time of each route decreases to 8 h, representing a typical 
effective working day. Figures 5 and 6 graphically show the results when solving 
the tc0c10s3ct1 instance. Table 7 shows the solution in some instances where the 
customers and stations are uniformly distributed. The associated curves are shown 
in Figs. 4, 5, and 6.

4.5  Analysis of obtained results on set of Montoya et al. (2017)

The non-linear model can solve the instances within a reasonable time by reduc-
ing the maximum time of each route to 8 h, regardless of the charging station. For 
84% of the instances, the fleet size was maintained or increased to comply with the 
limitation for each associated route. The fast-charging option reduces the total time 
compared to the other scenarios where the curve is slow or moderate.

For 100% of the cases, the vehicles exceeded the threshold of 85% SoC , increas-
ing their autonomy and avoiding new visits to recharging stations. In 75% of the 

Fig. 8  Model (b), Maximum time 8 h, instance tc0c10s3ct1.  Source: Owner
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cases, the number of vehicles was reduced since, by reducing the recharging time, 
the vehicles extended their range within the maximum defined time. Generally, 
reducing the number of vehicles composing the fleet is possible. However, the 
objective function could increase since the number of edges must increase due to a 
fleet with fewer vehicles. Moreover, the size of the instance and the distribution of 
customers and charging stations directly affect the solution time of the model. Fig-
ures 7 and 8 show the obtained results considering ten and eight-hour solutions, for 
instance, tc0c10s3ct1.

Table 8  Obtained results by considering a sensitivity analysis of the energy threshold.  Source: Owner

Instance Objective 
value base

Objec-
tive value 
case 1

Objec-
tive value 
case 2

Time of base Time of case 1 Time of case 2

C101C5S3 1299.8 1102.5 1133.6 0.11 0.16 0.15
C103C5S2 677.7 677.7 677.7 0.06 0.07 0.08
C208C5S3 1033.0 934.8 960.8 0.16 0.26 0.38
R104C5S3 206.3 206.3 206.2 0.02 0.03 0.03
R105C5S3 258.9 238.3 242.6 0.02 0.02 0.03
R202C5S3 264.1 232.5 249.5 0.10 0.11 0.18
R203C5S4 395.5 322.8 341.2 0.17 0.21 0.25
RC105C5S4 311.6 311.6 311.6 0.05 0.06 0.07
RC108C5S4 434.0 372.3 382.7 0.10 0.16 0.17
RC204C5S4 311.0 300.6 293.6 0.22 0.34 0.35
RC208C5S3 312.2 284.6 286.9 0.22 0.18 0.21
C101C10S5 2156.4 2020.6 1997.5 2.37 13.55 57.50
C202C10S5 1582.9 1533.9 1556.5 24.36 48.98 87.94
C205C10S3 2026.9 1495.8 1649.3 5.38 8.83 84.00
R102C10S4 444.9 418.5 415.8 1.20 1.57 2.32
R103C10S3 415.6 379.2 395.8 298.37 173.09 950.73
R201C10S4 435.3 386.8 404.9 8.02 3.57 7.83
R203C10S5 560.3 442.2 467.8 7.64 7.83 20.10
RC102C10S4 594.2 584.5 583.9 0.43 0.78 0.81
RC108C10S4 582.4 558.0 536.7 10.33 12.39 11.60
RC201C10S4 609.8 543.7 542.6 6.27 3.58 8.11
RC205C10S4 613.3 533.9 561.7 1.02 1.18 5.13
C103C15S5 2432.2 2319.8 2408.3 3600.01 3600.01 3600.01
C106C15S3 2157.7 2101.8 1937.1 3600.01 3600.00 218.18
C208C15S4 2473.5 2193.2 2300.7 3600.01 1046.88 3600.01
R105C15S6 643.8 585.6 602.0 15.68 30.38 47.88
R102C15S8 690.0 681.2 669.9 28.13 138.58 97.28
R209C15S5 749.0 611.1 621.4 3600.00 3600.01 3600.00
RC103C15S5 643.9 634.0 630.2 298.40 1427.59 337.65
RC108C15S5 648.2 638.9 615.8 299.23 3600.00 3600.01
RC202C15S5 770.0 725.4 715.7 154.47 1112.04 2396.94
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We have performed a sensitivity analysis of the non-linear model to analyze the 
effect of the energy threshold and the charging rate on the objective function. Four 
experiments have compared the objective function and computing time results. 
Tables 8 and 9 summarize the obtained results by the performed experiments con-
sidering the following notation:

Table 9  Obtained results by considering a sensitivity analysis of the charging rate.  Source: Owner

Instance Objective 
value base

Objective 
value case 3

Objective 
value case 4

Time of base Time of case 3 Time of 
case 4

C101C5S3 1299.8 1156.2 1219.6 0.11 0.10 0.11
C103C5S2 677.7 677.7 677.7 0.06 0.07 0.08
C208C5S3 1033.0 1033.0 1033.0 0.16 0.17 0.18
R104C5S3 206.3 206.2 206.2 0.02 0.02 0.02
R105C5S3 258.9 256.1 256.4 0.02 0.02 0.02
R202C5S3 264.1 264.0 264.0 0.10 0.10 0.10
R203C5S4 395.5 387.0 388.4 0.17 0.13 0.13
RC105C5S4 311.6 311.6 311.6 0.05 0.05 0.05
RC108C5S4 434.0 430.2 430.6 0.10 0.10 0.09
RC204C5S4 311.0 307.7 308.0 0.22 0.33 0.25
RC208C5S3 312.2 291.9 296.0 0.22 0.16 0.14
C101C10S5 2156.4 2154.4 2154.6 2.37 4.40 3.93
C202C10S5 1582.9 1558.2 1560.9 24.36 23.85 19.42
C205C10S3 2026.9 1878.7 1911.8 5.38 6.80 8.87
R102C10S4 444.9 416.5 438.8 1.20 0.77 1.53
R103C10S3 415.6 400.3 401.7 298.37 118.86 266.81
R201C10S4 435.3 426.9 427.8 8.02 6.87 6.72
R203C10S5 560.3 544.0 546.6 7.64 6.59 7.32
RC102C10S4 594.2 584.4 586.9 0.43 0.46 0.47
RC108C10S4 582.4 578.0 578.5 10.33 4.90 6.53
RC201C10S4 609.8 586.8 591.3 6.27 5.41 6.78
RC205C10S4 613.3 610.7 611.0 1.02 1.03 1.15
C103C15S5 2432.2 2344.4 2345.7 3600.01 3600 3600
C106C15S3 2157.7 2019.2 2025.9 3600.01 523 583
C208C15S4 2473.5 2322.3 2357.1 3600.01 3600 3600
R105C15S6 643.8 643.7 643.7 15.68 12.98 20.52
R102C15S8 690.0 675.1 677.1 28.13 31.14 17.90
R209C15S5 749.0 719.1 726.0 3600.00 3600 3600
RC103C15S5 643.9 640.3 640.9 298.40 284.58 168.86
RC108C15S5 648.2 616.5 617.4 299.23 78 131
RC202C15S5 770.0 760.0 761.8 154.47 329.71 178.76
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• Objective Value Base: Objective function obtained with the original parameters 
(results described in Tables 3, 4, 5)

• Objective Value Case 1: Objective function obtained considering complete deep 
discharge until arriving at 0% SoC (i.e., relaxing the constraints of full deep dis-
charge)

• Objective Value Case 2: Objective function obtained considering linear recharge 
until arriving 100% SoC (i.e., imposing linear charging rate of the non-linear 
model for the part 85% –100% SoC)

• Objective Value Case 3: Objective function obtained considering a factor of 1.10 
instead of “2.5” for Eq. (24) and a factor of 1.20 instead of “6.25” for Eq. (25).

• Objective Value Case 3: Objective function obtained considering a factor of 1.25 
instead of “2.5” for Eq. (24) and a factor of 3.125 instead of “6.25” for Eq. (25).

• Time OF Base: Time required to obtain Objective Value Base.
• Time OF Case 1: Time required to obtain Objective Value Case 1.
• Time OF Case 2: Time required to obtain Objective Value Case 2.
• Time OF Case 3: Time required to obtain Objective Value Case 3.
• Time OF Case 4: Time required to obtain Objective Value Case 4.

Table 8 shows obtained results by considering the effect of the energy thresh-
old. Note that naturally, the objective function decreases, relaxing some con-
straints. Table 9 shows the obtained results for different charging rates. Indeed, 
considering a significant charging rate, the objective function increases according 
to (26). This performance is independent of the type of set of instances.

5  Concluding remarks and future work

This paper studies the E-VRPTW considering the battery charge state and the lin-
earity and nonlinearity of the recharging process. The impact of solving the prob-
lem by considering an efficient recharge process avoiding deep discharge has been 
considered. Additionally, scenarios have been implemented restricting the autonomy 
of electric vehicles through recommended charge and discharge intervals to extend 
the useful life of the batteries. In addition, this paper considers the non-linear com-
ponent of the recharging process and thus studies its behavior with the fleet size, 
total time, and the number of visits to the recharging stations. Using benchmarking 
instances, two mathematical models are compared (linear and non-linear) to repre-
sent the recharging process.

Based on the obtained results, it is possible to conclude that the proposed mod-
els accurately represent the different behaviors of the battery charge status and can 
quickly find optimal solutions for small instances. The obtained results demonstrate 
that the inclusion of nonlinearity in the recharging process produces a reduction 
in the total time of the routes due to the threshold of 85% ( SoC ) being exceeded 
by accessing the upper sections of the curve, producing more significant degrada-
tion and, at the same time, greater autonomy. Therefore, avoiding unnecessary vis-
its to recharging stations is possible, reducing the distance traveled. In some cases, 
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the objective function increases, but the fleet size decreases, fulfilling customers’ 
demand with a minimum number of vehicles.

Future work should focus on studying the different variants of the problem and 
adding new variables to convert the problem into a rich electric vehicle routing 
problem (electric vehicle routing problem by considering real-life constraints and 
computational and operational real implementation schemes). The scope can be 
extended by incorporating heterogeneous fleets or different types of batteries. 
Likewise, it is possible to limit the capacity of the electrical network, the num-
ber of vehicles simultaneously recharging, the geographical layout of the land, 
consider the energy from the regenerative brake, and include traffic constraints, 
among other adjustments. However, heuristic techniques such as those based on 
a granular search aspect could be considered for solving significant problems. 
Granular search approaches within trajectory-based metaheuristics allow for 
generating high-quality solutions within short computing times for vehicle rout-
ing problems (Bernal et al. 2017, 2018, 2021; Escobar 2014; Linfati et al. 2014; 
Escobar et al. 2017, 2022).
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