
Vol.:(0123456789)

Operational Research (2023) 23:58
https://doi.org/10.1007/s12351-023-00799-1

1 3

ORIGINAL PAPER

Bicriteria fabrication scheduling of two‑component jobs
on a single machine

Yijie Li1

Received: 6 July 2022 / Revised: 13 December 2022 / Accepted: 11 September 2023 /
Published online: 3 October 2023
© The Author(s) 2023

Abstract
This paper studies the bicriteria problem of non-preemptively scheduling n jobs,
each of which is associated with a due date and comprises a standard and a specific
component, on a single fabrication machine to minimize makespan and maximum
lateness simultaneously. The specific components are processed individually and
the standard components are grouped into batches for processing. A setup time is
required before each batch of standard components is processed. A standard compo-
nent is available (i.e., ready for delivery to the next production stage) only when the
batch it belongs to is totally completed, whereas a specific component is available on
completion of its processing. The completion time of a job is defined as the moment
when both its two components have been processed and are available. An O(n2 log n)
-time algorithm with linear memory requirements is presented which can generate
all Pareto optimal points and find a corresponding Pareto optimal schedule for each
Pareto optimal point.

Keywords Scheduling · Batch processing · Bicriteria optimization · Two-component
jobs · Maximum lateness · Single machine

Mathematics Subject Classification 90B35 · 68Q25

1 Introduction

In this paper, we study a scheduling problem related to the two-component jobs. Let
J = {J1, J2,… , Jn} be a set of n jobs, to be non-preemptively processed on a single
machine. Each job Jj has two components: a standard component O(1)

j
 and a specific

component O(2)

j
 . The two components of Jj have processing times p(1)

j
 and p(2)

j
 , respec-

 * Yijie Li
 yjliyt@hotmail.com

1 School of Computer Science, University of St Andrews, St Katharine’s West, St Andrews,
Fife KY16 9SX, Scotland, UK

http://orcid.org/0000-0002-4867-8158
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-023-00799-1&domain=pdf

 Y. Li

1 3

58 Page 2 of 13

tively. On the machine, the specific components are processed individually, and the
standard components are processed in batches with a setup time s incurred for each
batch. (Since setups for specific components depend on the particular jobs, the process-
ing times of the specific components are assumed to include the relevant setup times.)
We assume batch availability of the standard components (Santos and Magazine 1985)
in this paper. That is, a standard component is available (i.e., ready for delivery to the
next production stage) only when the batch it belongs to is completed. On the other
hand, a specific component is available when its processing is completed. A job is com-
pleted when both its standard and specific components have been processed and are
available.

The problem of scheduling two-component jobs is introduced in Baker (1988) and
has a variety of applications (Baker 1988; Yang 2004). Consider a production envi-
ronment where a fabrication machine manufactures two-component products (jobs).
Usually there is an assembly machine which subsequently assembles the manufactured
components into end products. Since the components are all processed on the fabrica-
tion machine, this machine is a bottleneck facility in the production process. Therefore,
as in most studies, we assume that the assembly stage is not a bottleneck and can be
ignored.

In the area of production management, timeliness of product delivery is usually cru-
cial to meeting market demands and customer satisfaction. As a result, due date con-
straints are introduced and extensively studied (Brucker 2007). In this paper, each job
Jj is associated with a due date dj , representing the interest of a decision-maker, e.g.,
the completion time expected by the consumer or the producer. Given a schedule, let
Cj and Lj = Cj − dj denote the completion time and lateness of Jj in this schedule. Let
Cmax = maxj{Cj} and Lmax = maxj{Lj} denote the makespan and maximum lateness
of the schedule.

The problem studied in this paper is to simultaneously minimize makespan Cmax and
maximum lateness Lmax by enumerating all Pareto optimal points and finding a corre-
sponding Pareto optimal schedule for each Pareto optimal point. Following (Brucker
2007; Hoogeveen 2005; T’Kindt and Billaut 2006), it can be denoted by
1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax) , where “ (p(1)

j
, p

(2)

j
) ” means “two-component jobs”, and

“batch” means “batch availability”.
A feasible schedule � is Pareto optimal with respect to Cmax and Lmax if there is no

feasible schedule �′ such that Cmax(�
�) ≤ Cmax(�) and Lmax(�

�) ≤ Lmax(�) , where at
least one of the inequalities is strict. When � is Pareto optimal, the objective vector
(Cmax(�), Lmax(�)) is called a Pareto optimal point (Hoogeveen 2005).

The paper is organized as follows. In Sect. 2, we provide a literature review. In
Sect. 3, an O(n3)-time algorithm for 1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax) is presented. In

Sect. 4, the time complexity of the obtained algorithm is improved to O(n2 log n) .
Finally, some concluding remarks are drawn in Sect. 5.

1 3

Bicriteria fabrication scheduling of two‑component jobs… Page 3 of 13 58

2 Literature review

Multicriteria scheduling has been extensively studied in the last decades. The
fundamental notations, principles and methodologies can be found in Hoogeveen
(2005), T’Kindt and Billaut (2006), Herzel et al. (2021). Scheduling with batch-
ing and/or with setups has also been widely studied in the literature. We refer the
reader to the surveys (Potts and Kovalyov 2000; Allahverdi et al. 2008). We next
only mention the results on fabrication scheduling of two-component jobs.

Baker (1988) initiated problem 1�(p(1)
j
, p

(2)

j
), batch�

∑
Cj (minimizing total com-

pletion time of the jobs). Under the agreeability assumption (i.e., the jobs can be
ordered such that the standard and specific components both appear in non-
decreasing order of their processing times), he designed an O(n2)-time dynamic
programming algorithm. Coffman et al. (1990) further improved the complexity
to O(n log n) . Aneja and Singh (1990) later extended Baker’s work to a more gen-
eral case, where each job has a specific component and M standard components
(each requiring a separate setup). Gerodimos et al. (2000) presented an O(n2)-
time dynamic programming algorithm for 1|(p(1)

j
, p

(2)

j
), batch|Lmax . They also

proved that 1�(p(1)
j
, p

(2)

j
), batch�

∑
Uj (minimizing total number of late jobs) is NP-

hard and gave a pseudo-polynomial time dynamic programming algorithm for it,
where Uj = 1 if Cj > dj and Uj = 0 otherwise. Moreover, for
1�(p(1)

j
= p, p

(2)

j
), batch�

∑
Uj (all standard components have equal processing

times), they obtained an O(n4 log n)-time dynamic programming algorithm.
Wagelmans and Gerodimos (2000) gave an improved algorithm for
1|(p(1)

j
, p

(2)

j
), batch|Lmax which runs in O(n log n) time.

Vickson et al. (1993) studied problem 1�(p(1)
j
, p

(2)

j
), item�

∑
Cj (item availability

of the standard components: a standard component is available immediately after
the completion of its processing). Under the assumption that all standard compo-
nents have equal processing times, they presented an O(n3)-time algorithm. Rana
and Singh (1994) presented a scheme for 1�(p(1)

j
, p

(2)

j
), item�Lex(

∑
Cj,Cmax,HC)

which can obtain all optimal scheduling alternatives efficiently with minimization
of total completion time, makespan, and total holding cost (HC denotes the total
holding cost of all jobs) being primary, secondary and tertiary criteria respec-
tively. Lin (2002) presented an O(n5)-time dynamic programming algorithm for
1|(p(1)

j
, p

(2)

j
), item|Tmax , where Tmax = maxj{max{Cj − dj, 0}} denotes the maximum

tardiness of all jobs. He also showed NP-hardness proof and designed a pseudo-
polynomial time dynamic programming algorithm for 1�(p(1)

j
, p

(2)

j
), item�

∑
Uj .

Gerodimos et al. (2001) studied problems 1�(p(1)
j
, p

(2)

j
), item�

∑
Cj ,

1|(p(1)
j
, p

(2)

j
), item|Lmax and 1�(p(1)

j
, p

(2)

j
), item�

∑
Uj . They gave an O(n log n)-time

algorithm for 1�(p(1)
j
, p

(2)

j
), item�

∑
Cj under the agreeability assumption, and an

O(n2)-time algorithm for 1|(p(1)
j
, p

(2)

j
), item|Lmax . They also proved that

1�(p(1)
j
, p

(2)

j
), item�

∑
Uj is NP-hard and gave a pseudo-polynomial time dynamic

programming algorithm for it. Moreover, for 1�(p(1)
j

= p, p
(2)

j
), item�

∑
Uj , they

 Y. Li

1 3

58 Page 4 of 13

obtained an O(n5 log n logP)-time dynamic programming algorithm, where P is
the sum of processing times of all specific components. Wagelmans and Gerodi-
mos (2000) gave an improved algorithm for 1|(p(1)

j
, p

(2)

j
), item|Lmax which runs in

O(n log n) time.

3 The algorithm

In this section we will present an O(n3)-time algorithm for
1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax).

From now on, we assume that all jobs have been reindexed according to EDD
(earliest due date) rule such that d1 ≤ d2 ≤ ⋯ ≤ dn.

Since Cmax and Lmax are regular functions (i.e., non-decreasing functions of the
job completion times), following (Gerodimos et al. 2000), we get:

Lemma 1 For each Pareto optimal point of 1|(p(1)
j
, p

(2)

j
), batch|(Cmax, Lmax) , there

exists a corresponding Pareto optimal schedule in which the standard component of
each job appears in the batch immediately preceding the specific component.

Proof Consider a Pareto optimal schedule. If there is a job Jj such that its specific
component O(2)

j
 precedes the standard component O(1)

j
 , then we move O(2)

j
 to be the

first specific component after the batch containing O(1)

j
 . Clearly, the two objective

function values Cmax and Lmax keep unchanged. Therefore, the modified schedule is
also Pareto optimal. Repetition of this argument shows that for each Pareto optimal
point, there is a corresponding Pareto optimal schedule in which the standard com-
ponent of each job precedes its specific component.

Consider such a Pareto optimal schedule. If there are other batches of standard
components processed between the batch containing O(1)

j
 and O(2)

j
 , then we move O(1)

j

into the last batch of standard components preceding O(2)

j
 . Clearly, the modified

schedule is also Pareto optimal. Repetition of this argument shows that for each
Pareto optimal point, there is a corresponding Pareto optimal schedule in which the
standard component of each job appears in the batch immediately preceding the spe-
cific component. ◻

Lemma 2 For each Pareto optimal point of 1|(p(1)
j
, p

(2)

j
), batch|(Cmax, Lmax) , there

exists a corresponding Pareto optimal schedule in which the jobs are sequenced in
EDD order.

Proof Consider a Pareto optimal schedule described in Lemma 1. If there are two
consecutive jobs Jj and Jk such that dj < dk but the components of Jk precedes
those of Jj in the schedule, then we move the components of Jk immediately after
the relevant components of Jj (the standard components of Jj and Jk are thus in the
same batch). Only Jk is completed later as a result of the move. Since dj < dk , the

1 3

Bicriteria fabrication scheduling of two‑component jobs… Page 5 of 13 58

maximum lateness of Jj and Jk is no-worse in the modified schedule. Clearly, the
modified schedule is also Pareto optimal. Repetition of this argument shows that for
each Pareto optimal point, there is a corresponding Pareto optimal schedule in which
the jobs are sequenced in EDD order. ◻

The above two lemmas reveal the structure of Pareto optimal schedules
we are searching for. By the two lemmas, a feasible schedule can be sim-
ply represented as a sequence of job-blocks F1,F2,… ,Fn , where job-block
Fi = {Jji , Jji+1,… , Jji+1−1} consists of the jobs in the i-th batch of the sched-
ule, i = 1, 2,… , n , 1 = j1 < j2 < ⋯ < jn+1 = n + 1 . The last l job-blocks
Fn−l+1,Fn−l+2,… ,Fn are nonempty, and the first n − l job-blocks F1,F2,… ,Fn−l
are empty.

The last job Jji+1−1 of Fi is called the decision job of this job-block. Clearly,
a schedule is specified by the decision jobs of its job-blocks. Further, the sub-
schedule for the jobs in Fi can be represented as �i�i , where �i is a batch consist-
ing of the standard components of the jobs in Fi , and �i is a specific-block consist-
ing of the specific components of the jobs in Fi , i = 1, 2,… , n.

In the schedule, the standard components in each batch and the specific com-
ponents in each specific-block are processed in EDD order respectively. Let
p(�i) =

∑
j∈Fi

p
(1)

j
 and p(�i) =

∑
j∈Fi

p
(2)

j
 denote the processing times of the batch

and the specific-block of Fi , respectively. Let p(Fi) = p(�i) + p(�i) denote the pro-
cessing time of Fi . Moreover, the processing time of any empty job-block is zero.

Let s(�i) denote the setup time of batch �i , which is s if �i is nonempty, and 0
otherwise. Let S(Fi) and C(Fi) denote the start time and completion time of Fi ,
respectively. We have: C(Fi) = S(Fi) + p(Fi).

Since both criteria Cmax and Lmax are regular, we can consider only the sched-
ules without idle times. Therefore, we have:

Lemma 3 In a feasible schedule � =
(

F1,F2,… ,Fn
) , S(F1) = s(�1) , S(Fi) = C(Fi−1) + s(�i) ,

i = 2,… , n.

In Algorithm EDD-MoveLeft, to search for the Pareto optimal schedules for
constructing Pareto set Ω(J) , we will apply the following well-known generic
approach for multicriteria scheduling (Hoogeveen 2005).

Lemma 4 (Hoogeveen 2005) Let y be the optimal value of problem 𝛼|f ≤ x̂|g , and
let x be the optimal value of problem �|g ≤ y|f . Then (x, y) is a Pareto optimal point
for problem �||(f , g).

Let Π(J) denote the set of all feasible schedules for J . We concentrate our
attention to the schedules in Π(J) which have the properties described in Lemmas
1, 2 and 3. Let Π(J, y) denote the set of the schedules in Π(J) with Lmax less than
y. We have Π(J,+∞) = Π(J).

 Y. Li

1 3

58 Page 6 of 13

In the forthcoming algorithm, the cyclic queue data structure will be used.
Please refer to (Cormen et al. 2009) for cyclic queue and its elementary opera-
tions DEQUEUE and ENQUEUE.

Remark 1 About Step 1: In schedule �(h) , for i = 1, 2,… , n , the standard components
of the jobs in F(h)

i
 are first processed as a batch in EDD order, and the specific com-

ponents of the jobs in F(h)

i
 are then processed individually in EDD order (by Lemma

1).

Remark 2 About Step 2.1: When the rightmost, i.e., the last, empty job-block
becomes non-empty, the lateness values of all jobs need to be updated. Otherwise,
only the lateness values of the jobs in F(h)

i
 and F(h)

i−1
 need to be updated.

1 3

Bicriteria fabrication scheduling of two‑component jobs… Page 7 of 13 58

Step 1 of Algorithm EDD-MoveLeft can be implemented in O(n log n) time. Step
2 can be done in O(n) time for each inequality violation adjustment. Steps 3 and 4
can be done in O(1) time in each iteration.

In each inequality violation adjustment, there is at least one job which has to be
moved to the left. Actually, it is worth stressing that in Algorithm EDD-MoveLeft
we never move a job to the right. Later, we will prove that any job can only be
moved to the left; no job can be moved to the right (Lemma 6). Hence, the total
number of inequality violation adjustments is O(n2) . The running time of Algorithm
EDD-MoveLeft is O(n3).

Given a schedule � = (F1,F2,… ,Fn) , for any job Jj ∈ J let O(j, �) = i denote
the ordinal number of job Jj if Jj ∈ Fi in � . We have:

Lemma 5 Let �(h) = (F
(h)

1
,F

(h)

2
,… ,F(h)

n
) be the schedule obtained at iteration h

(h = 0, 1,…) of Algorithm EDD-MoveLeft, where the last lh job-blocks
F
(h)

n−lh+1
,F

(h)

n−lh+2
,… ,F(h)

n
 are nonempty. Let � = (F1,F2,… ,Fn) be any feasible

schedule in Π
(
J, y(h)

)
 , where the last l job-blocks Fn−l+1,Fn−l+2,… ,Fn are non-

empty. Then the following properties hold:

(1) lh ≤ l;
(2) S(F

(h)

i
) ≤ S(Fi) , i = 1, 2,… , n;

(3) C(F
(h)

i
) ≤ C(Fi) , i = 1, 2,… , n;

(4) ∀Jj ∈ J , O(j, �(h)) ≥ O(j, �);
(5) ∀Jj ∈ J , if O(j, �(h)) = O(j, �) , then Cj(�

(h)) ≤ Cj(�).

Proof We prove the lemma by induction on h.
The base case trivially holds, which can be checked by comparing

�(0) = (∅,∅,… ,J) with any schedule in Π
(
J, y(0)

)
= Π(J).

Now assume that for �(h) and any schedule in Π
(
J, y(h)

)
 , the lemma holds. We

consider �(h+1) and any schedule � ∈ Π
(
J, y(h+1)

)
 . Since y(h+1) < y(h) , � ∈ Π

(
J, y(h)

)
 .

By the inductive assumption, the lemma holds for �(h) and �.
Assume that there is a job Jj ∈

⋃n

a=i+1
F(h)
a

 but Jj ∈ F
(h+1)

i
 . Then we can

find a truly moved job Jk ∈ F
(h)

i+1
 in (modified) �(h) which violates its inequality

L
(h)

k
< y(h+1) . We know that Jj and Jk are in the same job-block F(h)

i+1
 in (modified)

�(h) and Jj precedes Jk . If O(k, �) = i + 1 , since L(h)
k

≥ y(h+1) and Ck(�
(h)) ≤ Ck(�)

(by the inductive assumption, the fifth Property), we have: Lk(�) ≥ L
(h)

k
≥ y(h+1) . If

O(k, 𝜎) > i + 1 , certainly we also have: Lk(�) ≥ L
(h)

k
≥ y(h+1) . Hence, it must be true

that Jk ∉
⋃n

a=i+1
Fa in � , i.e., O(k, �) ≤ i . We get: O(j, �) ≤ i = O(j, �(h+1)) . By the

principle of induction, we have proved the fourth property of the lemma.
In fact, we have shown that for i = n, n − 1,… , 1 ,

⋃n

a=i
Fa ⊆

⋃n

a=i
F(h)
a

 holds,
h = 0, 1,… . Equivalently we get: for i = 1, 2,… , n ,

⋃i

a=1
F(h)
a

⊆
⋃i

a=1
Fa . Hence the

first four properties of the lemma are proved easily.

 Y. Li

1 3

58 Page 8 of 13

Let us continue to prove the fifth property of the lemma. Assume that there is a job Jj
such that O(j, �(h+1)) = O(j, �) = i . Clearly, the decision job of F(h+1)

i
 has an index �h+1

i

no more than the index �i of the decision job of Fi . The number �h+1
i

 of nonempty job-
blocks in {F(h+1)

1
,F

(h+1)

2
,… ,F

(h+1)

i
} is no more than the number �i of nonempty job-

blocks in {F1,F2,… ,Fi} . Since Cj(�
(h+1)) = �h+1

i
⋅ s +

∑�h+1
i

q=1
p(1)
q

+
∑j

q=1
p(2)
q

 and

Cj(�) = �i ⋅ s +
∑�i

q=1
p(1)
q

+
∑j

q=1
p(2)
q

 , we get: Cj(�
(h+1)) ≤ Cj(�) . By the principle of

induction, we complete the proof of the fifth property of the lemma. ◻

Algorithm EDD-MoveLeft generates nonempty job-blocks every now and
then. Consider the nonempty job-blocks in �(h) = (F

(h)

1
,F

(h)

2
,… ,F(h)

n
) obtained at

iteration h. In �(h) , for i = n − lh + 2, n − lh + 3,… , n , the decision job in F(h)

i−1
 can-

not be included in F(h)

i
 (and all the subsequent job-blocks F(h)

i+1
,F

(h)

i+2
,… ,F(h)

n
) in

any feasible schedule in Π
(
J, y(h)

)
 , because this job is moved from the i-th job-

block into F(h)

i−1
 truly due to the inequality violation in one of the preceding itera-

tions. When this job is moved from the i-th job-block into the left adjacent job-
block, the earlier jobs in the i-th job-block also need to be moved together with it;
Otherwise one of these jobs has to be completed no earlier than the former com-
pletion time of the decision job, incurring an inequality violation since its due
date is no more than that of the decision job. This means that Algorithm EDD-
MoveLeft does not affect the feasibility of any schedule in Π

(
J, y(h)

)
 . Each such

job needs a separate job-block in any feasible schedule in Π
(
J, y(h)

)
 . Algorithm

EDD-MoveLeft actually assigns each such job to a separate job-block and these
job-blocks are all nonempty job-blocks in �(h) . By this observation, we know that
after a new nonempty job-block is generated, it will never become empty, nor will
its due date (which is defined to be the largest due date of the jobs in it, i.e., the
due date of its decision job) decrease, since otherwise an inequality violation will
occur in its left adjacent job-block. Hence, in Step 2.1 of Algorithm EDD-Move-
Left, if Jk violates the inequality and it has the largest due date in F(h)

i
 , which

implies Π
(
J, y(h+1)

)
= ∅ , then we simply set �(h+1) = ∅.

Let �(h) = (F
(h)

1
,F

(h)

2
,… ,F(h)

n
)(�(h+1) = (F

(h+1)

1
,F

(h+1)

2
,… ,F(h+1)

n
)) be the sched-

ule obtained at iteration h (h + 1) of Algorithm EDD-MoveLeft, where the last lh
(lh+1) job-blocks are nonempty. Since y(h+1) < y(h) , �(h+1) ∈ Π

(
J, y(h)

)
 . By Lemma

5, for i = 1, 2,… , n , the decision job of F(h)

i
 has an index �h

i
 no more than the

index �h+1
i

 of the decision job of F(h+1)

i
 . The number �h

i
 of nonempty job-blocks

in {F(h)

1
,F

(h)

2
,… ,F

(h)

i
} is no more than the number �h+1

i
 of nonempty job-blocks in

{F
(h+1)

1
,F

(h+1)

2
,… ,F

(h+1)

i
} . By this analysis, we can prove the following lemma.

Lemma 6 In Algorithm EDD-MoveLeft, any job cannot be moved to the right.

Proof We prove the lemma by contradiction.
In initial schedule �(0) , all jobs are in the rightmost job-block F(0)

n
= J . Certainly,

none of them can be moved to the right.

1 3

Bicriteria fabrication scheduling of two‑component jobs… Page 9 of 13 58

Suppose that at iteration h (h > 0), job Jk ∈ F
(h−1)

i
 has to be moved to the left

because L(h−1)
k

≥ y(h) , but after iteration h′(h′ ≥ h), Jk ∈ F
(h�)

i
 . Since y(h�) < y(h) ,

�(h�) ∈ Π
(
J, y(h)

)
 . From the above analysis, similarly to the proof of the fifth prop-

erty of Lemma 5, we get: Ck(�
(h−1)) ≤ Ck(�

(h�)) . It follows that L(h
�)

k
≥ y(h) > y(h

�) .
Therefore, Jk ∉ F

(h�)

i
 , a contradiction. ◻

By Lemma 5, we get:

Lemma 7 Let �(h) be the schedule obtained at iteration h (h = 0, 1,…) of Algorithm
EDD-MoveLeft. If �(h) = ∅ , then Π

(
J, y(h)

)
= ∅ ; Otherwise �(h) is a schedule which

has minimum makespan among all schedules in Π
(
J, y(h)

)
.

Proof Suppose that in Step 2.1 of Algorithm EDD-MoveLeft, we find a job Jk such
that dk = max{dj| Jj ∈ F

(h−1)

i
∧ L

(h−1)

j
≥ y(h)} . By Lemma 2, all the jobs with due

dates no more than dk in F(h−1)

i
 need to be moved into F(h−1)

i−1
 . If i = 1 , then job Jk can-

not be scheduled with its lateness less than y(h) in any schedule in Π
(
J, y(h)

)
 , imply-

ing that Π
(
J, y(h)

)
= ∅ . If Jk has the largest due date in F(h−1)

i
 , then we also know

that Π
(
J, y(h)

)
= ∅ . The reason has been explained above (after the proof of Lemma

5). Thus, in these two cases, we simply set �(h) = ∅ and return.
On the other hand, if �(h) ≠ ∅ , then by property (3) of Lemma 5, �(h) has mini-

mum Cmax among all schedules in Π
(
J, y(h)

)
 . ◻

Combining Lemmas 4 and 7, we get:

Theorem 8 Algorithm EDD-MoveLeft solves 1|(p(1)
j
, p

(2)

j
), batch|(Cmax, Lmax) in O(n3)

time. It returns Pareto set Ω(J) which consists of all Pareto optimal points together with
the corresponding Pareto optimal schedules. The last generated schedule �∗ has minimum
makespan among all optimal schedules for single criterion Lmax.

4 An O(n2 logn)‑time implementation

In this section we will illustrate how to improve the time complexity of the obtained
algorithm to O(n2 log n) . The basic idea is to use AVL trees and max-heaps to store
the lateness values of the jobs so that it takes only O(log n) time to find a job violat-
ing its inequality. Please refer to Cormen et al. (2009) for AVL trees and max-heaps
as well as their elementary operations.

During the implementation of Algorithm EDD-MoveLeft, we will maintain an
array, Aglobal, to store the completion times of all the jobs in the current schedule.
The j-th position of Aglobal stores the completion time of job Jj (i.e., the comple-
tion time of its specific component), j = 1, 2,… , n . Each job-block has an indicator

 Y. Li

1 3

58 Page 10 of 13

which shows the position of its decision job in Aglobal. By these indicators, we
immediately know the content of each job-block.

For each job-block, there is an AVL tree which stores the lateness values of its
jobs. Let the lateness of the job-block be defined as the largest lateness value of its
jobs. We use a max-heap, Hglobal, to store the lateness values of all nonempty job-
blocks in the current schedule. Hence, we can extract the Lmax value of the schedule
(stored in the root of Hglobal) in O(log n) time, ensuring to find a job violating its
inequality in O(log n) time.

Suppose that we are adjusting �(h) = (F
(h)

1
,F

(h)

2
,… ,F(h)

n
) in Step 2.1 of Algorithm

EDD-MoveLeft, and we find job Jk ∈ F
(h)

i
 violating its inequality. We illustrate how

to maintain the array, the AVL trees and the max-heap efficiently. Let F(h)

i,1
 denote the

set of the jobs to be moved from F(h)

i
 to F(h)

i−1
 (i.e., F(h)

i,1
 is the set of all the jobs with

due dates no more than dk in F(h)

i
). Accordingly, let �(h)

i,1
 and �(h)

i,1
 denote the standard

and specific components of the jobs in F(h)

i,1
 , respectively. Let p(�(h)

i,1
) =

∑
O

(1)

j
∈�

(h)

i,1

p
(1)

j
.

Consider the following two different cases.
Case 1. F(h)

i−1
≠ ∅.

After the jobs in F(h)

i,1
 are moved into F(h)

i−1
 , the completion times of the jobs in

F
(h)

i−1
 (before its update), and thus their lateness values, will increase by p(�(h)

i,1
) .

The completion times and lateness values of the jobs in F(h)

i,1
 will also change. All

the other jobs keep their completion times and lateness values unchanged.
It is easy to update the lateness values of the jobs in F(h)

i−1
 . We just add a new

field called increment, denoted by inc(F(h)

i−1
) , in the AVL tree T(F(h)

i−1
) which

stores the lateness values of the jobs in F(h)

i−1
 . The initial value of the increment

is zero. At this moment, we set inc(F(h)

i−1
) = inc(F

(h)

i−1
) + p(�

(h)

i,1
) . With the help of

inc(F
(h)

i−1
) , we can lazily update the lateness values of the jobs in F(h)

i−1
 which are

stored in T(F(h)

i−1
) ; we do not change these values at all. When a value is extracted

from T(F(h)

i−1
) in O(log n) time, we can get the true lateness by simply adding the

amount inc(F(h)

i−1
) to the extracted value.

It is also easy to update the lateness values of the jobs in F(h)

i,1
 , since we know the com-

pletion time of F(h)

i−1
 , C(F(h)

i−1
) , which is equal to the completion time of the decision job of

F
(h)

i−1
 stored in Aglobal. At this moment, we update C(F(h)

i−1
) to be C(F(h)

i−1
) + inc(F

(h)

i−1
) .

Suppose that the jobs in F(h)

i,1
 are Ji1 , Ji1+1,… , Ji1+x . Then, their lateness values are

C(F(h)
i−1) + p(2)i1

− di1 ,C(F
(h)
i−1) + p(2)i1

+ p(2)i1+1
− di1+1,… ,C(F(h)

i−1) + p(2)i1
+ p(2)i1+1

+⋯ + p(2)i1+x
− di1+x.

We remove from T(F(h)

i
) the old lateness values of the jobs in F(h)

i,1
 , and insert their new

lateness values minus inc(F(h)

i−1
) into T(F(h)

i−1
) . Update F(h)

i
 to be F(h)

i
�F

(h)

i,1
 . Update F(h)

i−1
 to

be F(h)

i−1
∪ F

(h)

i,1
.

Update Hglobal accordingly. Only the lateness values of F(h)

i
 and F(h)

i−1
 in

Hglobal need to be updated. The new lateness value of F(h)

i
 (F(h)

i−1
 , resp.) is equal

1 3

Bicriteria fabrication scheduling of two‑component jobs… Page 11 of 13 58

to the maximum value stored in T(F(h)

i
) (T(F(h)

i−1
) , resp.) plus the corresponding

increment.
Since moving a job to the left once can be accomplished in O(log n) time and

there are O(n2) movements, it takes O(n2 log n) time to deal with this case.
Case 2. F(h)

i−1
= ∅.

After the jobs in F(h)

i,1
 are moved into F(h)

i−1
 , the completion times of all the jobs

will change, since there is a necessary setup time s in F(h)

i−1
 . Thus, we recalculate

the completion times of all the jobs and store them in Aglobal. We build an AVL
tree for storing the lateness values of the jobs in F(h)

i−1
 in O(n log n) time. Update

inc(F(h)
q
) to be its old value plus s, q = i, i + 1,… , n . Update Hglobal accordingly.

The lateness values of all nonempty job-blocks need to be updated. Since this
case occurs at most n − 1 times, it takes O(n2 log n) time to deal with it.

The array Aglobal and max-heap Hglobal have sizes of n. The AVL trees have
n nodes in total. Hence, we get:

Theorem 9 A careful implementation of Algorithm EDD-MoveLeft leads to an
O(n2 log n)-time algorithm for 1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax) with O(n) memory

requirements.

5 Conclusions

In this paper we studied the bicriteria problem of scheduling jobs with due dates
and two components on a single fabrication machine to minimize makespan and
maximum lateness simultaneously, under the assumption of batch availability of
the standard components. We presented an O(n2 log n)-time algorithm with linear
memory requirements which can generate all Pareto optimal points and find a cor-
responding Pareto optimal schedule for each Pareto optimal point. Note that there
are several recent papers on Pareto optimization batch scheduling which dealt
with makespan and maximum cost (Geng et al. 2018; He et al. 2020, 2022; Gao
2022; Gao et al. 2022). These research papers discussed the problems (such as
serial batch or parallel batch) which are different from that studied in this paper.
Since maximum lateness is a special case of maximum cost, for future research, a
vexing problem is to consider Pareto optimization scheduling of two-component
jobs for maximum cost instead of makespan, in combination with maximum cost
or a general min-sum objective function.

Declarations

 Conflict of interest The authors certify that they have no affiliations with or involvement in any organiza-
tion or entity with any financial interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

 Y. Li

1 3

58 Page 12 of 13

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Allahverdi A, Ng CT, Cheng TE, Kovalyov MY (2008) A survey of scheduling problems with setup
times or costs. Eur J Oper Res 187(3):985–1032

Aneja Y, Singh N (1990) Scheduling production of common components at a single facility. IIE Trans
22(3):234–237

Baker KR (1988) Scheduling the production of components at a common facility. IIE Trans
20(1):32–35

Brucker P (2007) Scheduling algorithms, 5th edn. Springer, Berlin
Coffman E, Yannakakis M, Magazine M, Santos C (1990) Batch sizing and job sequencing on a single

machine. Ann Oper Res 26(1):135–147
Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT press,

Cambridge
Gao Y (2022) Min-max scheduling of batch or drop-line jobs under agreeable release and processing

times. Asia-Pacific J Oper Res 39(02):2150023
Gao Y, Yuan J, Ng C, Cheng T (2022) Pareto-scheduling with family jobs or ND-agent on a parallel-

batch machine to minimize the makespan and maximum cost. 4OR 20(2):273–287
Geng Z, Yuan J, Yuan J (2018) Scheduling with or without precedence relations on a serial-batch

machine to minimize makespan and maximum cost. Appl Math Comput 332:1–18
Gerodimos AE, Glass CA, Potts CN (2000) Scheduling the production of two-component jobs on a

single machine. Eur J Oper Res 120(2):250–259
Gerodimos A, Glass C, Potts C (2001) Scheduling of customized jobs on a single machine under item

availability. IIE Trans 33(11):975–984
He C, Xu C, Lin H (2020) Serial-batching scheduling with two agents to minimize makespan and

maximum cost. J Sched 23(5):609–617
He C, Wu J, Lin H (2022) Two-agent bounded parallel-batching scheduling for minimizing maximum

cost and makespan. Discret Optim 45:100698
Herzel A, Ruzika S, Thielen C (2021) Approximation methods for multiobjective optimization problems:

A survey. INFORMS J Comput 33(4):1284–1299
Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167(3):592–623
Lin BM (2002) Fabrication scheduling on a single machine with due date constraints. Eur J Oper Res

136(1):95–105
Potts CN, Kovalyov MY (2000) Scheduling with batching: a review. Eur J Oper Res 120(2):228–249
Rana S, Singh N (1994) Group scheduling jobs on a single machine: A multi-objective approach with

preemptive priority structure. Eur J Oper Res 79(1):38–50
Santos C, Magazine M (1985) Batching in single operation manufacturing systems. Oper Res Lett

4(3):99–103
T’Kindt V, Billaut JC (2006) Multicriteria scheduling: theory, models and algorithms, 2nd edn. Springer,

Berlin
Vickson R, Magazine M, Santos C (1993) Batching and sequencing of components at a single facility. IIE

Trans 25(2):65–70
Wagelmans APM, Gerodimos AE (2000) Improved dynamic programs for some batching problems

involving the maximum lateness criterion. Oper Res Lett 27(3):109–118
Yang W-H (2004) Scheduling two-component products on parallel machines. Omega 32(5):353–359

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Bicriteria fabrication scheduling of two‑component jobs… Page 13 of 13 58

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Bicriteria fabrication scheduling of two-component jobs on a single machine
	Abstract
	1 Introduction
	2 Literature review
	3 The algorithm
	4 An -time implementation
	5 Conclusions
	References

