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Abstract
This paper studies the bicriteria problem of non-preemptively scheduling n jobs, 
each of which is associated with a due date and comprises a standard and a specific 
component, on a single fabrication machine to minimize makespan and maximum 
lateness simultaneously. The specific components are processed individually and 
the standard components are grouped into batches for processing. A setup time is 
required before each batch of standard components is processed. A standard compo-
nent is available (i.e., ready for delivery to the next production stage) only when the 
batch it belongs to is totally completed, whereas a specific component is available on 
completion of its processing. The completion time of a job is defined as the moment 
when both its two components have been processed and are available. An O(n2 log n)
-time algorithm with linear memory requirements is presented which can generate 
all Pareto optimal points and find a corresponding Pareto optimal schedule for each 
Pareto optimal point.

Keywords Scheduling · Batch processing · Bicriteria optimization · Two-component 
jobs · Maximum lateness · Single machine

Mathematics Subject Classification 90B35 · 68Q25

1 Introduction

In this paper, we study a scheduling problem related to the two-component jobs. Let 
J = {J1, J2,… , Jn} be a set of n jobs, to be non-preemptively processed on a single 
machine. Each job Jj has two components: a standard component O(1)

j
 and a specific 

component O(2)

j
 . The two components of Jj have processing times p(1)

j
 and p(2)

j
 , respec-
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tively. On the machine, the specific components are processed individually, and the 
standard components are processed in batches with a setup time s incurred for each 
batch. (Since setups for specific components depend on the particular jobs, the process-
ing times of the specific components are assumed to include the relevant setup times.) 
We assume batch availability of the standard components (Santos and Magazine 1985) 
in this paper. That is, a standard component is available (i.e., ready for delivery to the 
next production stage) only when the batch it belongs to is completed. On the other 
hand, a specific component is available when its processing is completed. A job is com-
pleted when both its standard and specific components have been processed and are 
available.

The problem of scheduling two-component jobs is introduced in Baker (1988) and 
has a variety of applications (Baker 1988; Yang 2004). Consider a production envi-
ronment where a fabrication machine manufactures two-component products (jobs). 
Usually there is an assembly machine which subsequently assembles the manufactured 
components into end products. Since the components are all processed on the fabrica-
tion machine, this machine is a bottleneck facility in the production process. Therefore, 
as in most studies, we assume that the assembly stage is not a bottleneck and can be 
ignored.

In the area of production management, timeliness of product delivery is usually cru-
cial to meeting market demands and customer satisfaction. As a result, due date con-
straints are introduced and extensively studied (Brucker 2007). In this paper, each job 
Jj is associated with a due date dj , representing the interest of a decision-maker, e.g., 
the completion time expected by the consumer or the producer. Given a schedule, let 
Cj and Lj = Cj − dj denote the completion time and lateness of Jj in this schedule. Let 
Cmax = maxj{Cj} and Lmax = maxj{Lj} denote the makespan and maximum lateness 
of the schedule.

The problem studied in this paper is to simultaneously minimize makespan Cmax and 
maximum lateness Lmax by enumerating all Pareto optimal points and finding a corre-
sponding Pareto optimal schedule for each Pareto optimal point. Following (Brucker 
2007; Hoogeveen 2005; T’Kindt and Billaut 2006), it can be denoted by 
1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax) , where “ (p(1)

j
, p

(2)

j
) ” means “two-component jobs”, and 

“batch” means “batch availability”.
A feasible schedule � is Pareto optimal with respect to Cmax and Lmax if there is no 

feasible schedule �′ such that Cmax(�
�) ≤ Cmax(�) and Lmax(�

�) ≤ Lmax(�) , where at 
least one of the inequalities is strict. When � is Pareto optimal, the objective vector 
(Cmax(�), Lmax(�)) is called a Pareto optimal point (Hoogeveen 2005).

The paper is organized as follows. In Sect.  2, we provide a literature review. In 
Sect.  3, an O(n3)-time algorithm for 1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax) is presented. In 

Sect.  4, the time complexity of the obtained algorithm is improved to O(n2 log n) . 
Finally, some concluding remarks are drawn in Sect. 5.
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2  Literature review

Multicriteria scheduling has been extensively studied in the last decades. The 
fundamental notations, principles and methodologies can be found in Hoogeveen 
(2005), T’Kindt and Billaut (2006), Herzel et al. (2021). Scheduling with batch-
ing and/or with setups has also been widely studied in the literature. We refer the 
reader to the surveys (Potts and Kovalyov 2000; Allahverdi et al. 2008). We next 
only mention the results on fabrication scheduling of two-component jobs.

Baker (1988) initiated problem 1�(p(1)
j
, p

(2)

j
), batch�

∑
Cj (minimizing total com-

pletion time of the jobs). Under the agreeability assumption (i.e., the jobs can be 
ordered such that the standard and specific components both appear in non-
decreasing order of their processing times), he designed an O(n2)-time dynamic 
programming algorithm. Coffman et al. (1990) further improved the complexity 
to O(n log n) . Aneja and Singh (1990) later extended Baker’s work to a more gen-
eral case, where each job has a specific component and M standard components 
(each requiring a separate setup). Gerodimos et  al. (2000) presented an O(n2)-
time dynamic programming algorithm for 1|(p(1)

j
, p

(2)

j
), batch|Lmax . They also 

proved that 1�(p(1)
j
, p

(2)

j
), batch�

∑
Uj (minimizing total number of late jobs) is NP-

hard and gave a pseudo-polynomial time dynamic programming algorithm for it, 
where Uj = 1 if Cj > dj and Uj = 0 otherwise. Moreover, for 
1�(p(1)

j
= p, p

(2)

j
), batch�

∑
Uj (all standard components have equal processing 

times), they obtained an O(n4 log n)-time dynamic programming algorithm. 
Wagelmans and Gerodimos (2000) gave an improved algorithm for 
1|(p(1)

j
, p

(2)

j
), batch|Lmax which runs in O(n log n) time.

Vickson et al. (1993) studied problem 1�(p(1)
j
, p

(2)

j
), item�

∑
Cj ( item availability 

of the standard components: a standard component is available immediately after 
the completion of its processing). Under the assumption that all standard compo-
nents have equal processing times, they presented an O(n3)-time algorithm. Rana 
and Singh (1994) presented a scheme for 1�(p(1)

j
, p

(2)

j
), item�Lex(

∑
Cj,Cmax,HC) 

which can obtain all optimal scheduling alternatives efficiently with minimization 
of total completion time, makespan, and total holding cost (HC denotes the total 
holding cost of all jobs) being primary, secondary and tertiary criteria respec-
tively. Lin (2002) presented an O(n5)-time dynamic programming algorithm for 
1|(p(1)

j
, p

(2)

j
), item|Tmax , where Tmax = maxj{max{Cj − dj, 0}} denotes the maximum 

tardiness of all jobs. He also showed NP-hardness proof and designed a pseudo-
polynomial time dynamic programming algorithm for 1�(p(1)

j
, p

(2)

j
), item�

∑
Uj . 

Gerodimos et  al. (2001) studied problems 1�(p(1)
j
, p

(2)

j
), item�

∑
Cj , 

1|(p(1)
j
, p

(2)

j
), item|Lmax and 1�(p(1)

j
, p

(2)

j
), item�

∑
Uj . They gave an O(n log n)-time 

algorithm for 1�(p(1)
j
, p

(2)

j
), item�

∑
Cj under the agreeability assumption, and an 

O(n2)-time algorithm for 1|(p(1)
j
, p

(2)

j
), item|Lmax . They also proved that 

1�(p(1)
j
, p

(2)

j
), item�

∑
Uj is NP-hard and gave a pseudo-polynomial time dynamic 

programming algorithm for it. Moreover, for 1�(p(1)
j

= p, p
(2)

j
), item�

∑
Uj , they 
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obtained an O(n5 log n logP)-time dynamic programming algorithm, where P is 
the sum of processing times of all specific components. Wagelmans and Gerodi-
mos (2000) gave an improved algorithm for 1|(p(1)

j
, p

(2)

j
), item|Lmax which runs in 

O(n log n) time.

3  The algorithm

In this section we will present an O(n3)-time algorithm for 
1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax).

From now on, we assume that all jobs have been reindexed according to EDD 
(earliest due date) rule such that d1 ≤ d2 ≤ ⋯ ≤ dn.

Since Cmax and Lmax are regular functions (i.e., non-decreasing functions of the 
job completion times), following (Gerodimos et al. 2000), we get:

Lemma 1 For each Pareto optimal point of 1|(p(1)
j
, p

(2)

j
), batch|(Cmax, Lmax) , there 

exists a corresponding Pareto optimal schedule in which the standard component of 
each job appears in the batch immediately preceding the specific component.

Proof Consider a Pareto optimal schedule. If there is a job Jj such that its specific 
component O(2)

j
 precedes the standard component O(1)

j
 , then we move O(2)

j
 to be the 

first specific component after the batch containing O(1)

j
 . Clearly, the two objective 

function values Cmax and Lmax keep unchanged. Therefore, the modified schedule is 
also Pareto optimal. Repetition of this argument shows that for each Pareto optimal 
point, there is a corresponding Pareto optimal schedule in which the standard com-
ponent of each job precedes its specific component.

Consider such a Pareto optimal schedule. If there are other batches of standard 
components processed between the batch containing O(1)

j
 and O(2)

j
 , then we move O(1)

j
 

into the last batch of standard components preceding O(2)

j
 . Clearly, the modified 

schedule is also Pareto optimal. Repetition of this argument shows that for each 
Pareto optimal point, there is a corresponding Pareto optimal schedule in which the 
standard component of each job appears in the batch immediately preceding the spe-
cific component.   ◻

Lemma 2 For each Pareto optimal point of 1|(p(1)
j
, p

(2)

j
), batch|(Cmax, Lmax) , there 

exists a corresponding Pareto optimal schedule in which the jobs are sequenced in 
EDD order.

Proof Consider a Pareto optimal schedule described in Lemma 1. If there are two 
consecutive jobs Jj and Jk such that dj < dk but the components of Jk precedes 
those of Jj in the schedule, then we move the components of Jk immediately after 
the relevant components of Jj (the standard components of Jj and Jk are thus in the 
same batch). Only Jk is completed later as a result of the move. Since dj < dk , the 
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maximum lateness of Jj and Jk is no-worse in the modified schedule. Clearly, the 
modified schedule is also Pareto optimal. Repetition of this argument shows that for 
each Pareto optimal point, there is a corresponding Pareto optimal schedule in which 
the jobs are sequenced in EDD order.   ◻

The above two lemmas reveal the structure of Pareto optimal schedules 
we are searching for. By the two lemmas, a feasible schedule can be sim-
ply represented as a sequence of job-blocks F1,F2,… ,Fn , where job-block 
Fi = {Jji , Jji+1,… , Jji+1−1} consists of the jobs in the i-th batch of the sched-
ule, i = 1, 2,… , n , 1 = j1 < j2 < ⋯ < jn+1 = n + 1 . The last l job-blocks 
Fn−l+1,Fn−l+2,… ,Fn are nonempty, and the first n − l job-blocks F1,F2,… ,Fn−l 
are empty.

The last job Jji+1−1 of Fi is called the decision job of this job-block. Clearly, 
a schedule is specified by the decision jobs of its job-blocks. Further, the sub-
schedule for the jobs in Fi can be represented as �i�i , where �i is a batch consist-
ing of the standard components of the jobs in Fi , and �i is a specific-block consist-
ing of the specific components of the jobs in Fi , i = 1, 2,… , n.

In the schedule, the standard components in each batch and the specific com-
ponents in each specific-block are processed in EDD order respectively. Let 
p(�i) =

∑
j∈Fi

p
(1)

j
 and p(�i) =

∑
j∈Fi

p
(2)

j
 denote the processing times of the batch 

and the specific-block of Fi , respectively. Let p(Fi) = p(�i) + p(�i) denote the pro-
cessing time of Fi . Moreover, the processing time of any empty job-block is zero.

Let s(�i) denote the setup time of batch �i , which is s if �i is nonempty, and 0 
otherwise. Let S(Fi) and C(Fi) denote the start time and completion time of Fi , 
respectively. We have: C(Fi) = S(Fi) + p(Fi).

Since both criteria Cmax and Lmax are regular, we can consider only the sched-
ules without idle times. Therefore, we have:

Lemma 3 In a feasible schedule � =
(

F1,F2,… ,Fn
) , S(F1) = s(�1) , S(Fi) = C(Fi−1) + s(�i) , 

i = 2,… , n.

In Algorithm EDD-MoveLeft, to search for the Pareto optimal schedules for 
constructing Pareto set Ω(J) , we will apply the following well-known generic 
approach for multicriteria scheduling (Hoogeveen 2005).

Lemma 4 (Hoogeveen 2005) Let y be the optimal value of problem 𝛼|f ≤ x̂|g , and 
let x be the optimal value of problem �|g ≤ y|f  . Then (x, y) is a Pareto optimal point 
for problem �||(f , g).

Let Π(J) denote the set of all feasible schedules for J  . We concentrate our 
attention to the schedules in Π(J) which have the properties described in Lemmas 
1, 2 and 3. Let Π(J, y) denote the set of the schedules in Π(J) with Lmax less than 
y. We have Π(J,+∞) = Π(J).
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In the forthcoming algorithm, the cyclic queue data structure will be used. 
Please refer to (Cormen et  al. 2009) for cyclic queue and its elementary opera-
tions DEQUEUE and ENQUEUE.

Remark 1 About Step 1: In schedule �(h) , for i = 1, 2,… , n , the standard components 
of the jobs in F(h)

i
 are first processed as a batch in EDD order, and the specific com-

ponents of the jobs in F(h)

i
 are then processed individually in EDD order (by Lemma 

1).

Remark 2 About Step 2.1: When the rightmost, i.e., the last, empty job-block 
becomes non-empty, the lateness values of all jobs need to be updated. Otherwise, 
only the lateness values of the jobs in F(h)

i
 and F(h)

i−1
 need to be updated.
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Step 1 of Algorithm EDD-MoveLeft can be implemented in O(n log n) time. Step 
2 can be done in O(n) time for each inequality violation adjustment. Steps 3 and 4 
can be done in O(1) time in each iteration.

In each inequality violation adjustment, there is at least one job which has to be 
moved to the left. Actually, it is worth stressing that in Algorithm EDD-MoveLeft 
we never move a job to the right. Later, we will prove that any job can only be 
moved to the left; no job can be moved to the right (Lemma 6). Hence, the total 
number of inequality violation adjustments is O(n2) . The running time of Algorithm 
EDD-MoveLeft is O(n3).

Given a schedule � = (F1,F2,… ,Fn) , for any job Jj ∈ J  let O(j, �) = i denote 
the ordinal number of job Jj if Jj ∈ Fi in � . We have:

Lemma 5 Let �(h) = (F
(h)

1
,F

(h)

2
,… ,F(h)

n
) be the schedule obtained at iteration h 

( h = 0, 1,… ) of Algorithm EDD-MoveLeft, where the last lh job-blocks 
F
(h)

n−lh+1
,F

(h)

n−lh+2
,… ,F(h)

n
 are nonempty. Let � = (F1,F2,… ,Fn) be any feasible 

schedule in Π
(
J, y(h)

)
 , where the last l job-blocks Fn−l+1,Fn−l+2,… ,Fn are non-

empty. Then the following properties hold: 

(1) lh ≤ l;
(2) S(F

(h)

i
) ≤ S(Fi) , i = 1, 2,… , n;

(3) C(F
(h)

i
) ≤ C(Fi) , i = 1, 2,… , n;

(4) ∀Jj ∈ J  , O(j, �(h)) ≥ O(j, �);
(5) ∀Jj ∈ J  , if O(j, �(h)) = O(j, �) , then Cj(�

(h)) ≤ Cj(�).

Proof We prove the lemma by induction on h.
The base case trivially holds, which can be checked by comparing 

�(0) = (∅,∅,… ,J) with any schedule in Π
(
J, y(0)

)
= Π(J).

Now assume that for �(h) and any schedule in Π
(
J, y(h)

)
 , the lemma holds. We 

consider �(h+1) and any schedule � ∈ Π
(
J, y(h+1)

)
 . Since y(h+1) < y(h) , � ∈ Π

(
J, y(h)

)
 . 

By the inductive assumption, the lemma holds for �(h) and �.
Assume that there is a job Jj ∈

⋃n

a=i+1
F(h)
a

 but Jj ∈ F
(h+1)

i
 . Then we can 

find a truly moved job Jk ∈ F
(h)

i+1
 in (modified) �(h) which violates its inequality 

L
(h)

k
< y(h+1) . We know that Jj and Jk are in the same job-block F(h)

i+1
 in (modified) 

�(h) and Jj precedes Jk . If O(k, �) = i + 1 , since L(h)
k

≥ y(h+1) and Ck(�
(h)) ≤ Ck(�) 

(by the inductive assumption, the fifth Property), we have: Lk(�) ≥ L
(h)

k
≥ y(h+1) . If 

O(k, 𝜎) > i + 1 , certainly we also have: Lk(�) ≥ L
(h)

k
≥ y(h+1) . Hence, it must be true 

that Jk ∉
⋃n

a=i+1
Fa in � , i.e., O(k, �) ≤ i . We get: O(j, �) ≤ i = O(j, �(h+1)) . By the 

principle of induction, we have proved the fourth property of the lemma.
In fact, we have shown that for i = n, n − 1,… , 1 , 

⋃n

a=i
Fa ⊆

⋃n

a=i
F(h)
a

 holds, 
h = 0, 1,… . Equivalently we get: for i = 1, 2,… , n , 

⋃i

a=1
F(h)
a

⊆
⋃i

a=1
Fa . Hence the 

first four properties of the lemma are proved easily.
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Let us continue to prove the fifth property of the lemma. Assume that there is a job Jj 
such that O(j, �(h+1)) = O(j, �) = i . Clearly, the decision job of F(h+1)

i
 has an index �h+1

i
 

no more than the index �i of the decision job of Fi . The number �h+1
i

 of nonempty job-
blocks in {F(h+1)

1
,F

(h+1)

2
,… ,F

(h+1)

i
} is no more than the number �i of nonempty job-

blocks in {F1,F2,… ,Fi} . Since Cj(�
(h+1)) = �h+1

i
⋅ s +

∑�h+1
i

q=1
p(1)
q

+
∑j

q=1
p(2)
q

 and 

Cj(�) = �i ⋅ s +
∑�i

q=1
p(1)
q

+
∑j

q=1
p(2)
q

 , we get: Cj(�
(h+1)) ≤ Cj(�) . By the principle of 

induction, we complete the proof of the fifth property of the lemma.   ◻

Algorithm EDD-MoveLeft generates nonempty job-blocks every now and 
then. Consider the nonempty job-blocks in �(h) = (F

(h)

1
,F

(h)

2
,… ,F(h)

n
) obtained at 

iteration h. In �(h) , for i = n − lh + 2, n − lh + 3,… , n , the decision job in F(h)

i−1
 can-

not be included in F(h)

i
 (and all the subsequent job-blocks F(h)

i+1
,F

(h)

i+2
,… ,F(h)

n
 ) in 

any feasible schedule in Π
(
J, y(h)

)
 , because this job is moved from the i-th job-

block into F(h)

i−1
 truly due to the inequality violation in one of the preceding itera-

tions. When this job is moved from the i-th job-block into the left adjacent job-
block, the earlier jobs in the i-th job-block also need to be moved together with it; 
Otherwise one of these jobs has to be completed no earlier than the former com-
pletion time of the decision job, incurring an inequality violation since its due 
date is no more than that of the decision job. This means that Algorithm EDD-
MoveLeft does not affect the feasibility of any schedule in Π

(
J, y(h)

)
 . Each such 

job needs a separate job-block in any feasible schedule in Π
(
J, y(h)

)
 . Algorithm 

EDD-MoveLeft actually assigns each such job to a separate job-block and these 
job-blocks are all nonempty job-blocks in �(h) . By this observation, we know that 
after a new nonempty job-block is generated, it will never become empty, nor will 
its due date (which is defined to be the largest due date of the jobs in it, i.e., the 
due date of its decision job) decrease, since otherwise an inequality violation will 
occur in its left adjacent job-block. Hence, in Step 2.1 of Algorithm EDD-Move-
Left, if Jk violates the inequality and it has the largest due date in F(h)

i
 , which 

implies Π
(
J, y(h+1)

)
= ∅ , then we simply set �(h+1) = ∅.

Let �(h) = (F
(h)

1
,F

(h)

2
,… ,F(h)

n
)(�(h+1) = (F

(h+1)

1
,F

(h+1)

2
,… ,F(h+1)

n
) ) be the sched-

ule obtained at iteration h ( h + 1 ) of Algorithm EDD-MoveLeft, where the last lh 
( lh+1 ) job-blocks are nonempty. Since y(h+1) < y(h) , �(h+1) ∈ Π

(
J, y(h)

)
 . By Lemma 

5, for i = 1, 2,… , n , the decision job of F(h)

i
 has an index �h

i
 no more than the 

index �h+1
i

 of the decision job of F(h+1)

i
 . The number �h

i
 of nonempty job-blocks 

in {F(h)

1
,F

(h)

2
,… ,F

(h)

i
} is no more than the number �h+1

i
 of nonempty job-blocks in 

{F
(h+1)

1
,F

(h+1)

2
,… ,F

(h+1)

i
} . By this analysis, we can prove the following lemma.

Lemma 6 In Algorithm EDD-MoveLeft, any job cannot be moved to the right.

Proof We prove the lemma by contradiction.
In initial schedule �(0) , all jobs are in the rightmost job-block F(0)

n
= J  . Certainly, 

none of them can be moved to the right.
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Suppose that at iteration h ( h > 0 ), job Jk ∈ F
(h−1)

i
 has to be moved to the left 

because L(h−1)
k

≥ y(h) , but after iteration h′(h′ ≥ h ), Jk ∈ F
(h�)

i
 . Since y(h�) < y(h) , 

�(h�) ∈ Π
(
J, y(h)

)
 . From the above analysis, similarly to the proof of the fifth prop-

erty of Lemma 5, we get: Ck(�
(h−1)) ≤ Ck(�

(h�)) . It follows that L(h
�)

k
≥ y(h) > y(h

�) . 
Therefore, Jk ∉ F

(h�)

i
 , a contradiction.   ◻

By Lemma 5, we get:

Lemma 7 Let �(h) be the schedule obtained at iteration h ( h = 0, 1,… ) of Algorithm 
EDD-MoveLeft. If �(h) = ∅ , then Π

(
J, y(h)

)
= ∅ ; Otherwise �(h) is a schedule which 

has minimum makespan among all schedules in Π
(
J, y(h)

)
.

Proof Suppose that in Step 2.1 of Algorithm EDD-MoveLeft, we find a job Jk such 
that dk = max{dj| Jj ∈ F

(h−1)

i
∧ L

(h−1)

j
≥ y(h)} . By Lemma 2, all the jobs with due 

dates no more than dk in F(h−1)

i
 need to be moved into F(h−1)

i−1
 . If i = 1 , then job Jk can-

not be scheduled with its lateness less than y(h) in any schedule in Π
(
J, y(h)

)
 , imply-

ing that Π
(
J, y(h)

)
= ∅ . If Jk has the largest due date in F(h−1)

i
 , then we also know 

that Π
(
J, y(h)

)
= ∅ . The reason has been explained above (after the proof of Lemma 

5). Thus, in these two cases, we simply set �(h) = ∅ and return.
On the other hand, if �(h) ≠ ∅ , then by property (3) of Lemma 5, �(h) has mini-

mum Cmax among all schedules in Π
(
J, y(h)

)
 .   ◻

Combining Lemmas 4 and 7, we get:

Theorem  8 Algorithm EDD-MoveLeft solves 1|(p(1)
j
, p

(2)

j
), batch|(Cmax, Lmax) in O(n3) 

time. It returns Pareto set Ω(J) which consists of all Pareto optimal points together with 
the corresponding Pareto optimal schedules. The last generated schedule �∗ has minimum 
makespan among all optimal schedules for single criterion Lmax.

4  An O(n2 logn)‑time implementation

In this section we will illustrate how to improve the time complexity of the obtained 
algorithm to O(n2 log n) . The basic idea is to use AVL trees and max-heaps to store 
the lateness values of the jobs so that it takes only O(log n) time to find a job violat-
ing its inequality. Please refer to Cormen et al. (2009) for AVL trees and max-heaps 
as well as their elementary operations.

During the implementation of Algorithm EDD-MoveLeft, we will maintain an 
array, Aglobal, to store the completion times of all the jobs in the current schedule. 
The j-th position of Aglobal stores the completion time of job Jj (i.e., the comple-
tion time of its specific component), j = 1, 2,… , n . Each job-block has an indicator 
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which shows the position of its decision job in Aglobal. By these indicators, we 
immediately know the content of each job-block.

For each job-block, there is an AVL tree which stores the lateness values of its 
jobs. Let the lateness of the job-block be defined as the largest lateness value of its 
jobs. We use a max-heap, Hglobal, to store the lateness values of all nonempty job-
blocks in the current schedule. Hence, we can extract the Lmax value of the schedule 
(stored in the root of Hglobal) in O(log n) time, ensuring to find a job violating its 
inequality in O(log n) time.

Suppose that we are adjusting �(h) = (F
(h)

1
,F

(h)

2
,… ,F(h)

n
) in Step 2.1 of Algorithm 

EDD-MoveLeft, and we find job Jk ∈ F
(h)

i
 violating its inequality. We illustrate how 

to maintain the array, the AVL trees and the max-heap efficiently. Let F(h)

i,1
 denote the 

set of the jobs to be moved from F(h)

i
 to F(h)

i−1
 (i.e., F(h)

i,1
 is the set of all the jobs with 

due dates no more than dk in F(h)

i
 ). Accordingly, let �(h)

i,1
 and �(h)

i,1
 denote the standard 

and specific components of the jobs in F(h)

i,1
 , respectively. Let p(�(h)

i,1
) =

∑
O

(1)

j
∈�

(h)

i,1

p
(1)

j
.

Consider the following two different cases.
Case 1. F(h)

i−1
≠ ∅.

After the jobs in F(h)

i,1
 are moved into F(h)

i−1
 , the completion times of the jobs in 

F
(h)

i−1
 (before its update), and thus their lateness values, will increase by p(�(h)

i,1
) . 

The completion times and lateness values of the jobs in F(h)

i,1
 will also change. All 

the other jobs keep their completion times and lateness values unchanged.
It is easy to update the lateness values of the jobs in F(h)

i−1
 . We just add a new 

field called increment, denoted by inc(F(h)

i−1
) , in the AVL tree T(F(h)

i−1
) which 

stores the lateness values of the jobs in F(h)

i−1
 . The initial value of the increment 

is zero. At this moment, we set inc(F(h)

i−1
) = inc(F

(h)

i−1
) + p(�

(h)

i,1
) . With the help of 

inc(F
(h)

i−1
) , we can lazily update the lateness values of the jobs in F(h)

i−1
 which are 

stored in T(F(h)

i−1
) ; we do not change these values at all. When a value is extracted 

from T(F(h)

i−1
) in O(log n) time, we can get the true lateness by simply adding the 

amount inc(F(h)

i−1
) to the extracted value.

It is also easy to update the lateness values of the jobs in F(h)

i,1
 , since we know the com-

pletion time of F(h)

i−1
 , C(F(h)

i−1
) , which is equal to the completion time of the decision job of 

F
(h)

i−1
 stored in Aglobal. At this moment, we update C(F(h)

i−1
) to be C(F(h)

i−1
) + inc(F

(h)

i−1
) . 

Suppose that the jobs in F(h)

i,1
 are Ji1 , Ji1+1,… , Ji1+x . Then, their lateness values are 

C(F(h)
i−1) + p(2)i1

− di1 ,C(F
(h)
i−1) + p(2)i1

+ p(2)i1+1
− di1+1,… ,C(F(h)

i−1) + p(2)i1
+ p(2)i1+1

+⋯ + p(2)i1+x
− di1+x. 

We remove from T(F(h)

i
) the old lateness values of the jobs in F(h)

i,1
 , and insert their new 

lateness values minus inc(F(h)

i−1
) into T(F(h)

i−1
) . Update F(h)

i
 to be F(h)

i
�F

(h)

i,1
 . Update F(h)

i−1
 to 

be F(h)

i−1
∪ F

(h)

i,1
.

Update Hglobal accordingly. Only the lateness values of F(h)

i
 and F(h)

i−1
 in 

Hglobal need to be updated. The new lateness value of F(h)

i
 ( F(h)

i−1
 , resp.) is equal 
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to the maximum value stored in T(F(h)

i
) ( T(F(h)

i−1
) , resp.) plus the corresponding 

increment.
Since moving a job to the left once can be accomplished in O(log n) time and 

there are O(n2) movements, it takes O(n2 log n) time to deal with this case.
Case 2. F(h)

i−1
= ∅.

After the jobs in F(h)

i,1
 are moved into F(h)

i−1
 , the completion times of all the jobs 

will change, since there is a necessary setup time s in F(h)

i−1
 . Thus, we recalculate 

the completion times of all the jobs and store them in Aglobal. We build an AVL 
tree for storing the lateness values of the jobs in F(h)

i−1
 in O(n log n) time. Update 

inc(F(h)
q
) to be its old value plus s, q = i, i + 1,… , n . Update Hglobal accordingly. 

The lateness values of all nonempty job-blocks need to be updated. Since this 
case occurs at most n − 1 times, it takes O(n2 log n) time to deal with it.

The array Aglobal and max-heap Hglobal have sizes of n. The AVL trees have 
n nodes in total. Hence, we get:

Theorem  9 A careful implementation of Algorithm EDD-MoveLeft leads to an 
O(n2 log n)-time algorithm for 1|(p(1)

j
, p

(2)

j
), batch|(Cmax, Lmax) with O(n) memory 

requirements.

5  Conclusions

In this paper we studied the bicriteria problem of scheduling jobs with due dates 
and two components on a single fabrication machine to minimize makespan and 
maximum lateness simultaneously, under the assumption of batch availability of 
the standard components. We presented an O(n2 log n)-time algorithm with linear 
memory requirements which can generate all Pareto optimal points and find a cor-
responding Pareto optimal schedule for each Pareto optimal point. Note that there 
are several recent papers on Pareto optimization batch scheduling which dealt 
with makespan and maximum cost (Geng et al. 2018; He et al. 2020, 2022; Gao 
2022; Gao et  al. 2022). These research papers discussed the problems (such as 
serial batch or parallel batch) which are different from that studied in this paper. 
Since maximum lateness is a special case of maximum cost, for future research, a 
vexing problem is to consider Pareto optimization scheduling of two-component 
jobs for maximum cost instead of makespan, in combination with maximum cost 
or a general min-sum objective function.
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