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Abstract
The facility location problem and the vehicle routing problem are highly interde-
pendent and critical parts of any efficient and cost-effective supply chain. The loca-
tion of facilities heavily affects the design of distribution routes between the facili-
ties and various demand nodes. Within locational analysis, the location-routing 
problem is a mathematical optimization problem that considers the underlying 
issues of vehicle routing and simultaneously optimizes the location of facilities and 
the design of distribution routes. Since, in real-life applications, it is common that 
decision-makers encounter more than one, often conflicting objectives, the problem 
can be stated in term of multi-objective optimization. This paper reviews 80 journal 
articles published in the field of bi- and multi-objective location-routing problems 
between 2014 and 2020. Included papers are classified based on several factors cov-
ering model assumptions and characteristics, objectives, solution approaches, and 
application area. For each application area, individual papers are presented and dis-
cussed. The paper concludes with remarks and suggestions for future research.

Keywords Multi-objective location-routing · Waste management · Disaster relief · 
Perishable supply chain · Inventory

1 Introduction

Efficient and cost-effective distributions are a critical part of any supply chain. 
Location decisions and vehicle routing are two problems that highly influence the 
efficiency of the distribution and emerge in many real-life situations. In addition, 
location and distribution are closely dependent. The location of various facilities, 
such as plants, warehouses, depots, cross-dockings, etc., heavily affects the design 
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of distribution routes, and the establishment of a new facility in an existing distri-
bution network disrupts the previous conditions and requires a re-optimization of 
distribution routes between facilities and demand nodes. As a research area within 
locational analysis location-routing problems (LRP) is a mathematical optimization 
problem that considers the underlying issues of vehicle routing and simultaneously 
optimizes the location of facilities and the design of distribution routes. Typically, 
decisions such as the number, size, and location of facilities and the allocation of 
demand points to facilities in the combination of the design of routes are combined 
in LRPs. The simultaneous optimization means that the decision on facilities is not 
an implicit result of the routing but that both decisions are made inter-dependently. 
Drexl and Schneider (2015) lists three different situations when that is the case; if 
opening a facility is associated with a fixed cost or a variable cost for using that 
facility, there is either a given number or an upper limit on the number of facilities 
that must be selected from a larger set, and lastly, if the facilities are subject to any 
capacity limitation.

Supply chain optimization problems can be strategic, tactical, or operational. 
Strategic problems regards decisions which require significant capital investments 
and which can be hard to change after a decision has been implemented. They thus 
typically address questions regarding the characteristics of facilities such as number, 
size, type, capacity, type of technology, quality, and location (Farahani et al. 2014). 
Decisions regarding and problems considering transportation, inventory, procure-
ment policy, or information technology are seen as tactical while operational deci-
sions could for example concern which service level or prices should be offered. 
Location-routing problems have been studied for a long time, and scholars have over 
the years used different definitions of what constitutes an LRP. Bruns (1998) con-
siders LRPs as “location planning with tour planning aspects taken into account.” 
Nagy and Salhi (2007) defines the LRP with a hierarchal point of view. In order to 
solve the master problem (facility location), one has to solve the sub-problem simul-
taneously, which is the vehicle routing problem. Such a definition thus also entails 
an integrated solution approach. The authors also point out the important aspect of 
including tour planning in LRP models; routes should consist of multiple stops and 
is necessary when demand is less than a full truckload for any given demand node. 
Considering the two components of the problem, the facility location problem and 
the vehicle routing problem, they can be seen as special cases of the LRP (Nagy and 
Salhi 2007). If all demand nodes were directly linked to a facility, the LRP reduces 
to an FLP. On the contrary, if the location of the facilities were to be fixed, the prob-
lem would transform into an ordinary VRP.

It is a known fact that LRPs are NP-hard since they incorporate two NP-hard 
problems (Prodhon and Prins 2014). Traditionally, the approach of treating these 
two problems separately by deciding the location first and then designing routes 
has been challenged by scholars and gradually replaced by the integrated approach 
(Lopes et al. 2013). Salhi and Rand (1989) argues that they should not be optimized 
separately since they are so strongly linked. However, even if the inter-dependency 
is a known fact, it is often ignored by researchers and practitioners (Lopes et  al. 
2013). Nagy and Salhi (2007) highlights three possible reasons for this; the first one 
is that it might not be required to consider routing aspects in practical situations, 
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researchers object to an integrated approach based on the different levels of deci-
sions (where facility location being strategic decisions and thereby have a longer 
planning horizon than the tactical decisions of routing). Lastly, the LRP is harder 
to solve conceptually, making the location problem easier. Several of such argu-
ments have been impugned previously in the literature. Especially that FLP being 
a strategic problem and the VRP a tactical where routes can be re-designed and re-
calculated and that it is therefore inappropriate to combine these was challenged by 
Salhi and Nagy (1999) who showed that a separated approach could lead to sub-
optimal decisions compared to LRP for long planning horizons. In addition, Lopes 
et al. (2013) argues that in some situations, it is even more critical to utilize an LRP 
approach rather than a separate approach. In situations where the cost or character-
istics of the transported products have a significant impact, the authors exemplify a 
situation where hazardous material is being transported. Another instance could, for 
example, be when planning a disaster relief network where the routing has a consid-
erable impact on the evaluation of the system.

The capacitated LRP is by Prodhon and Prins (2014) described as a complete, 
weighted, and undirected network consisting of potential facilities to be located and 
customers to be served. Furthermore, the facilities share a homogeneous vehicle fleet, 
and the traveling cost for using an edge satisfies the triangle inequality. A solution is 
obtained by determining which facilities should be opened, from which depot each 
customer should be served, and by designing routes for servicing all customers. At 
the same time, several constraints must be upheld; facilities and vehicles are capaci-
tated, which means that the total demand of the customers assigned to a facility cannot 
exceed the capacity of the facility, and the total demand of the customers serviced 
by a vehicle cannot exceed the capacity of the vehicle. Each vehicle performs at 
most one route, no split deliveries are allowed, and each vehicle starts and ends their 
route at the same facility. Now, consider the multi-objective version of the problem; 
min (f1(x),… , fp(x)) are the objectives to be minimized subject to x ∈ X . There is in 
total p objective functions and a Pareto optimal solution is a feasible solution x̂ ∈ X if 
there exist no solution x ∈ X such that fk(x) ≤ fk(x̂) for k ∈ {1,… , p} and fi(x) ≤ fi(x̂) 
for any i ∈ {1,… , p} . A Pareto optimal solution is sometimes referred to as a non-
dominated solution, whereas a Pareto optimal set is formed by all Pareto optimal alter-
natives and their corresponding objective values.

In real-life practical optimization problems, it is seldom that only one objective 
is preferable by the decision-makers. Therefore, to more accurately mimic real-life 
decision-making in routing problems, multiple objectives can be optimized (Zajac 
and Huber 2021). Due to the nature of multi-objective optimization, objectives are 
often conflicting; there is typically no single solution that simultaneously optimizes 
each objective. Instead, decision-makers, based on their preferences, have to choose 
a solution from a Pareto optimal set. Naturally, due to the increased complexity, 
these problems are more complicated than the single-objective version.

This paper presents an overview of multi-objective LRPs and reviews 80 journal 
articles. Other surveys covering the location-routing problem in recent years include 
Nagy and Salhi (2007) who presented a comprehensive review on location-routing 
papers published until 2006. Lopes et al. (2013) presented a taxonomical analysis on 
methods and objectives for papers published in 2013 and earlier. An updated review 
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of Nagy and Salhi (2007) was presented by Prodhon and Prins (2014) which cov-
ered the standard version and variants of the LRP as well as compact overviews of 
the reviewed papers spanning from 2006 to 2014. Drexl and Schneider (2015) focus 
on extensions and variants of the LRP, and Schneider and Drexl (2017) surveys the 
standard LRP while the focus in the paper by Cuda et al. (2015) is on multi-echelon 
VRPs and LRPs. However, the increasing number of publications in the field and 
the practical relevance makes it necessary for a review focusing on multi-objective 
LRPs.

2  Research design

The purpose of this paper is to present an overview of the main contributions to the 
field of multi-objective LRPs. We limit our study to journal articles published between 
2014 and 2020 written in English, thus omitting conference precedings, technical 
reports, books, and PhD-dissertations. We do not claim to cover all contributions 
made in the field but rather a representative sample of the work presented in recent 
years. Furthermore, we define the multi-objective location routing problem similar to 
Nagy and Salhi (2007) and Prodhon and Prins (2014) as the integrated approach to 
solve the two inherent problems based on at least two objectives and where the aspect 
of tour-planning has a central part of the problem. This means that any two-stage mod-
els, where the location of facilities is first determined and routes designed afterward, 
are not included in the survey. The same applies to problems not considering tour-
planning aspects, for example, when the tour-planning can be reduced to the transpor-
tation problem rather than multi-stop routes.

The databases Web of Science and Scopus were used to retrieve published arti-
cles using both “location-routing” and “location-routing” combined with multi-
objective, multi-criteria, bi-objective, and bi-criteria. Table 1 depicts the combina-
tion of searched keywords and their unique hits, as well as the number of papers 
excluded for not meeting the inclusion criteria mentioned above. The papers were 
first screened based on the abstract, problem description, and model formulation. If 
there still were doubts about whether they would be included or not, the entire paper 
was read in order to make that decision.

3  Classification and terminology used

LRPs can be classified on a large variety of characteristics. However, in this survey, 
we have limited ourselves to characteristics that essentially change the basic proper-
ties of the problem. A brief description of these characteristics is presented below 
for which the included papers were read and classified according to.

Number of objectives Papers included could either be bi-objective, exactly two 
objectives, or multi-objective, more than two objectives.

Data assumption Data, in most cases the customer demand or travel times, can 
be deterministic or stochastic. In deterministic models, all the data is known before-
hand. On the contrary, for stochastic models, the data is uncertain and given by a 
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probability distribution. Some researchers even differentiate between fuzzy data, 
i.e., in the form of fuzzy numbers. Our view is that fuzzy data is also stochastic data, 
and hence papers included in this survey are classified as either deterministic or sto-
chastic models.

Planning horizon Models can be classified as either static or dynamic. In static 
models, only a single planning period is considered, whereas, for dynamic models, 
multiple planning periods are considered. Dynamic models aim to determine a visit-
ing pattern or how to design a supply chain over time, i.e., the sequence of which each 
customer should be visited in each time-period or in which period various facilities 
should be used. Previous classifications differ between dynamic and periodic models. 
That is, while both include multiple periods, in dynamic models, some information is 
initially unknown and becomes available over time as opposed to periodic models in 
which all relevant data is known beforehand (Drexl and Schneider 2015). However, if 
the data involves more than one time period, whether it is known beforehand or not, 
the problem is classified as dynamic in this paper.

Solution method Both exact i.e. optimizing and heuristic solution methods occurs 
in the literature. By heuristic we mean solution methods which produce an approx-
imate solution of good quality or an optimal solution, however, without proof of 
its optimality. Due to the NP-hard nature of the LRP, only small examples can be 
solved using exact methods. Naturally, most of the surveyed papers utilize some 
heuristic method to solve the problem.

Papers can also be classified as discrete or continuous problems. The difference 
between continuous and discrete models is linked to their respective decision space, 
wherein discrete models’ possible locations that could be selected are restricted to 

Table 1  Screening and selection of papers

Item Description

Keywords Location-routing OR ”location routing” AND (multi-objective OR 
multiobjective OR ”multi objective”)

Location-routing OR ”location routing” AND (multi-criteria OR mul-
ticritera OR ”multi criteria”)

Location-routing OR ”location routing” AND (bi-objective OR biob-
jective OR ”bi objective”)

Location-routing OR ”location routing” AND (bi-criteria OR bicriteria 
OR ”bi criteria”)

Databases ISI Web of Science, Scopus
Search fields Title, Abstract, Keywords
Publication type Journal articles
Time window 2014–2020
Uniqe hits 116
Exclusion criterias Papers not considering an integrated solution aproach

Papers not considering tour planning aspects
Excluded based on abstract 25
Excluded based on entire paper 11
Final sample 80
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a finite set of candidates. These candidates have previously been determined eligi-
ble within the decision space. For continuous models, it is possible to locate facili-
ties at every single point within the decision space. However, all papers included in 
the survey were classified as discrete, and no continuous model could be identified. 
Furthermore, LRPs may be differentiated based on aspects that do not necessarily 
change the basic properties of the problem, such as capacitated or incapacitated 
facilities or vehicles, fixed costs or no fixed costs for opening facilities, or if the 
vehicle fleet is assumed heterogeneous or homogeneous. Figure 1 provides an over-
view of the classified papers based on the characteristics mentioned above.

By analyzing objectives commonly used, one can identify combinations of objec-
tives that have not been studied or received much attention. To that end, objectives 
have been categorized and grouped based on their characteristics. Based on the 
included papers, we have identified six different groups of objectives, that is, costs, 
profit, coverage, environmental, risks, and social objectives.

Table 2 shows the grouping and classification scheme of the objectives identified, 
while Table 3 describe the use of different objective category combinations for bi- 
and multi-objective models, Table 3a, b respectively.

Operations research as a discipline can be described as application-based. Typi-
cally, the aim of a paper and its contribution is to make recommendations based on 
some analysis; the data may be randomly generated or originating from a real-world 
case study. Therefore, the practical applications of LRPs should not be ignored. 
Table 4 provides the classification of surveyed papers according to their application 
area. Note that most of these concerns are the distribution of goods; however, appli-
cations such as disaster relief or hazardous waste management have received some 
attention in the literature. Models do share similarities across these areas. However, 
factors such as objectives are commonly shared within each area. To facilitate an 
overview of each area, the individual papers will be presented and discussed based 
on this classification. Furthermore, Table 5 depicts the different solution approaches 
and in which paper the individual approaches have been used

4  Applications

Papers have been classified based on application area. In this section individual 
papers are reviewed and discussed according to such a classification. Some papers 
could fit several application areas, however, they are presented within the applica-
tion area judged best fitted.

4.1  Waste management

Waste management supply chains incorporate activities such as collection and 
transportation, storage, transfer, and processing. Furthermore, different waste 
types require different treatment and processing, while waste management sys-
tems become more complex as volumes increase and processes differentiate. 
Industrial waste has a significant impact on the environment and human health. 
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Consequently, a large number of published works are concerned with modelling 
such risk aspects, particularly in connection to transportation and site location 
and management. Almost all papers reviewed handle risks in addition to cost.

Zhao and Verter (2015) presented a bi-objective model to minimize the total 
cost and total environmental risk when simultaneously locating storage facilities 
for used oil and routing it from generation nodes to the storage facilities. Their 
model combined two parts; risk assessment and a two-commodity flow vehicle 

Bi-
objective

Deterministic

Static

Exact: Adrang et al. (2020), Li et al. (2019), Rabbani et al.
,)5102(retreVdnaoahZ,)8102(züykAdnaakA,)0202(

Toro et al. (2017b,a)

Exact & Heuristic: Ghezavati and Beigi (2016), Burkart et al. (2017), Amini
et al. (2020), Basirati et al. (2020)

Heuristic: Tang et al. (2016), Martinez-Salazar et al. (2014), Liu and
Kachitvichyanukul (2015), Golmohammadi et al. (2016),
Validi et al. (2021), Leng et al. (2020a,c), Liu et al. (2021),
Leng et al. (2020b), Wang et al. (2020, 2018a), Chen et al.
(2018), Validi et al. (2020), Wei et al. (2020), Leng et al.
(2019a), Nedjati et al. (2017), Hadian et al. (2019), Jamali
(2019), Rabbani et al. (2018b, 2017), Farrokhi-Asl et al.
(2017), Zhao and Ke (2017)

Dynamic

Exact: Lerhlaly et al. (2016), Zandkarimkhani et al. (2020b), Tri-
coire and Parragh (2017)

Exact & Heuristic: Fallah-Tafti and Vahdatzad (2018), Beiki et al. (2020), Li
and Keskin (2014)

Heuristic: Govindan et al. (2014), Li et al. (2014), Mamaghani and
Davari (2020), Faraji and Afshar-Nadjafi (2018), Forouzan-
far et al. (2018)

Stochastic

Static

Exact: Govindan et al. (2020), Karimi and Setak (2018)

Exact & Heuristic: Shahsavari-Pour et al. (2020)

Heuristic: Nikzamir and Baradaran (2020), Zhong et al. (2020),
Adarang et al. (2020), Momenikiyai et al. (2018), Wang
et al. (2018b)

Dynamic

Exact: Fallah-tafti et al. (2019), Zandkarimkhani et al. (2020a),
Gholipour et al. (2020)

Heuristic: Nekooghadirli et al. (2014), Nasrollahi et al. (2018)

Multi-
objective

Deterministic

Static

Exact Rath and Gutjahr (2014), Ghezavati and Morakabatchian
(2015)

Heuristic Qiu et al. (2020), Liu et al. (2019), Wang et al. (2014),
Hu et al. (2019), Farrokhi-Asl et al. (2020), Rabbani et al.
(2018a), Leng et al. (2019b), Rabbani et al. (2018c), Ta-
jabadi and Kazemi (2016)

Dynamic
Exact: Ahlaqqach et al. (2020)

Heuristic: Navazi et al. (2019), Vahdani et al. (2018), Goerigk et al.
(2014)

Stochastic

Static
Exact: Veysmoradi et al. (2018)

Heuristic: Shen et al. (2019), Zhang et al. (2018), Chang et al. (2017)

Dynamic
Exact: Bozorgi-Amiri and Khorsi (2016)

Heuristic: Biuki et al. (2020), Rabbani et al. (2019)

Fig. 1  Classification of included papers
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Table 2  Identified groups of objectives

Cost
Difference between min and max costs of vehicle 

allocated to each route
Basirati et al. (2020)

Min cost Adrang et al. (2020), Beiki et al. (2020), Fallah-Tafti 
and Vahdatzad (2018), Farrokhi-Asl et al. (2017), 
Forouzanfar et al. (2018), Jamali (2019), Li and 
Keskin (2014), Nikzamir and Baradaran (2020), 
Qiu et al. (2020), Rabbani et al. (2017, 2018), 
Shahsavari-Pour et al. (2020) and Wang et al. 
(2018)

Min CVaR-R Cost Zhong et al. (2020)
Min facility cost Rath and Gutjahr (2014)
Min operational cost Rath and Gutjahr (2014) and Toro et al. (2017b, 

2017a)
Min relief cost Zhang et al. (2018)
Min total cost Martinez-Salazar et al. (2014), Adarang et al. 

(2020), Amini et al. (2020), Asgari et al. (2017), 
Basirati et al. (2020), Biuki et al. (2020), Bozorgi-
Amiri and Khorsi (2016), Burkart et al. (2017), 
Chen et al. (2018), Fallah-tafti et al. (2019), Faraji 
and Afshar-Nadjafi (2018), Farrokhi-Asl et al. 
(2020), Ghezavati and Morakabatchian (2015), 
Ghezavati and Beigi (2016), Gholipour et al. 
(2020), Golmohammadi et al. (2016), Govindan 
et al. (2014, 2020), Hadian et al. (2019), Hu et al. 
(2019), Karimi and Setak (2018), Leng et al. 
(2019, 2019, 2020, 2020, 2020), Lerhlaly et al. 
(2016), Li et al. (2014, 2019), Liu and Kachitvi-
chyanukul (2015), Liu et al. (2021), Mamaghani 
and Davari (2020), Momenikiyai et al. (2018), 
Nasrollahi et al. (2018), Navazi et al. (2019), 
Nekooghadirli et al. (2014), Rabbani et al. (2018, 
2018, 2019, 2020), Shen et al. (2019), Tajabadi 
and Kazemi (2016), Tang et al. (2016), Tricoire 
and Parragh (2017), Vahdani et al. (2018), Validi 
et al. (2020, 2021), Veysmoradi et al. (2018), 
Wang et al. (2014, 2018, 2020), Wei et al. (2020), 
Zandkarimkhani et al. (2020, 2020), Zhao and 
Verter (2015) and Zhao and Ke (2017)

Min total distribution cost Chang et al. (2017)
Coverage
Maintain workload balance Martinez-Salazar et al. (2014)
Max coverage Li and Keskin (2014) and Tajabadi and Kazemi 

(2016)
Max covered demand Rath and Gutjahr (2014)
Max customer satisfaction Wang et al. (2018)
Max customer satisfaction (vehicle punctuality) Wang et al. (2018)
Max delivery flow by LAT Karimi and Setak (2018)
Max demand served Aka and Akyüz (2018) and Liu and Kachitvichya-

nukul (2015)
Max of worst path satisfaction Chang et al. (2017)
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Table 2  (continued)

Max path transport capacity Chang et al. (2017)
Max reliability Vahdani et al. (2018) and Wang et al. (2014)
Max satisfaction level for customers Hu et al. (2019)
Maxmin route reliability Veysmoradi et al. (2018)
Min avg waiting time Qiu et al. (2020)
Min client waiting time Leng et al. (2019)
Min CVaR-R waiting time Zhong et al. (2020)
Min delivery time Shen et al. (2019)
Min difference traveling distance Hadian et al. (2019)
Min distance Aka and Akyüz (2018)
Min distribution time Wang et al. (2020)
Min earliness/lateness Momenikiyai et al. (2018)
Min evacuation time Goerigk et al. (2014)
Min expected cost failure Shahsavari-Pour et al. (2020)
Min imbalanced distance traveled Golmohammadi et al. (2016)
Min makespan Amini et al. (2020)
Min max loss of demand nodes Liu et al. (2019)
Min max time required for nodes to receive relief Liu et al. (2019)
Min number of injured not transferred to hospitals Mansoori et al. (2020)
Min relief time Adarang et al. (2020)
Min service duration Leng et al. (2019)
Min shortage Gholipour et al. (2020) and Govindan et al. (2020)
Min time Adrang et al. (2020)
Min time between two stages Forouzanfar et al. (2018)
Min time win violation Wei et al. (2020) and Mamaghani and Davari (2020)
Min total delivery time Li et al. (2019)
Min total loss of all nodes Liu et al. (2019)
Min total time Ghezavati and Beigi (2016) and Li et al. (2014)
Min total unmet relief commodity needs Mansoori et al. (2020)
Min total waiting time Leng et al. (2020)
Min travel time Bozorgi-Amiri and Khorsi (2016), Vahdani et al. 

(2018) and Wang et al. (2014)
Min unserved demand Burkart et al. (2017), Nedjati et al. (2017) and Zand-

karimkhani et al. (2020)
Min vehicle waiting time Leng et al. (2019)
MinMax delivery time Nekooghadirli et al. (2014)
Minmax shortage Bozorgi-Amiri and Khorsi (2016)
Minmax travel time Veysmoradi et al. (2018) and Zhang et al. (2018)
Minmax unserved demand Beiki et al. (2020)
Number of shelters used Goerigk et al. (2014)
Total weightet waiting time Nedjati et al. (2017)
Workload balance Rabbani et al. (2018)
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routing formulation. The weighted goal programming method was proposed using 
a percentage normalization technique to solve it as a mixed-integer programming 
(MIP) problem. Applied to a real-world case study, the presented model outper-
formed the traditional VRP formulation obtaining both lower cost and lower envi-
ronmental risk with a smaller optimality gap gap and shorter CPU time.

A fuzzy goal programming method was used by Aka and Akyüz (2018) to 
determine the location of waste containers and the routing between those. They 
proposed a covering model to maximize the demand served and minimize the 
routing distance. It was developed for a specific region, the Siteler district in 

Table 2  (continued)

Environmental
Min co2 Chen et al. (2018), Lerhlaly et al. (2016), Shen et al. 

(2019), Tang et al. (2016), Tricoire and Parragh 
(2017), Validi et al. (2020, 2021) and  Zhang et al. 
(2018)

Min emissions Faraji and Afshar-Nadjafi (2018), Nikzamir and 
Baradaran (2020) and Qiu et al. (2020)

Min environmental impact Biuki et al. (2020), Govindan et al. (2014), Liu et al. 
(2021), Navazi et al. (2019) and Rabbani et al. 
(2018)

Min fuel consumption Nasrollahi et al. (2018), Rabbani et al. (2018) and 
Toro et al. (2017b, 2017a)

Min total pollution Tajabadi and Kazemi (2016)
Risk
Min damage of prod Leng et al. (2020)
Min damage of quality Leng et al. (2020)
Min pollution risk Rabbani et al. (2020)
Min risk Ahlaqqach et al. (2020), Asgari et al. (2017) and 

Jamali (2019)
Min risk exposure Goerigk et al. (2014)
Min site risk Farrokhi-Asl et al. (2020), Ghezavati and Moraka-

batchian (2015) and Rabbani et al. (2018, 2019)
Min total environmental risk Zhao and Verter (2015)
Min total Risk Fallah-tafti et al. (2019), Hu et al. (2019) and Zhao 

and Ke (2017)
Min transportation risk Ghezavati and Morakabatchian (2015), Fallah-Tafti 

and Vahdatzad (2018), Farrokhi-Asl et al. (2020) 
and Rabbani et al. (2018, 2019)

Social
Max job creation Ahlaqqach et al. (2020) and Biuki et al. (2020)
Max social effects Farrokhi-Asl et al. (2017), Rabbani et al. (2017) and 

Zandkarimkhani et al. (2020)
Utility of personnel and customers Navazi et al. (2019)
Profit
Max profit Ahlaqqach et al. (2020)
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Table 5  Solution approaches

 Exact Used in (including modifications)

AUGMECON2: Augmented �-constraint method 2 Amini et al. (2020), Basirati et al. (2020) and Fallah-
Tafti and Vahdatzad (2018)

Chance constrained fuzzy goal programming: Zandkarimkhani et al. (2020a)
Decomposition method: Tricoire and Parragh (2017)
�-Constraint: Adrang et al. (2020), Bozorgi-Amiri and Khorsi 

(2016), Burkart et al. (2017), Fallah-tafti et al. 
(2019), Ghezavati and Beigi (2016), Karimi and 
Setak (2018), Li and Keskin (2014b), Rabbani 
et al. (2020), Rath and Gutjahr (2014), Shahsavari-
Pour et al. (2020) and Toro et al. (2017b, 2017a)

Fuzzy goal programming: Aka and Akyüz (2018) and Veysmoradi et al. (2018)
Weighted goal programming: Zhao and Verter (2015)
Weighted method: Karimi and Setak (2018), Lerhlaly et al. (2016), Li 

et al. (2019), Mansoori et al. (2020) and Zandka-
rimkhani et al. (2020b)

Commercial solver: Beiki et al. (2020), Gholipour et al. (2020) and 
Govindan et al. (2020)

Convertion to single objective: Ahlaqqach et al. (2020) and Ghezavati and Moraka-
batchian (2015)

Complete enumeration: Burkart et al. (2017)

Heuristics and Meta-heuristics
AWGA : Adaptive weight genetic algorithm Hu et al. (2019)
Decomposition heuristic: Li and Keskin (2014b)
(H)-GA: (Hybrid) genetic algorithm Li et al. (2014a), Zhang et al. (2018), Zhong et al. 

(2020), Biuki et al. (2020), Faraji and Afshar-
Nadjafi (2018), Chang et al. (2017) and Goerigk 
et al. (2014)

(MO)HH: (Multi-objective) hyper heuristic Qiu et al. (2020), Leng et al. (2019b, 2020b, 2020c), 
Wang et al. (2020) and Leng et al. (2019a)

Hybrid heuristic algorithm: Liu et al. (2019)
H-IA: Hybrid immune algorithm Liu et al. (2021)
NRGA : Non dominated ranked genetic algorithm Nasrollahi et al. (2018), Mamaghani and Davari 

(2020) and Tajabadi and Kazemi (2016)
MHPV: Multi objective hybrid approach Govindan et al. (2014)
MOICA: Multi-objective imperialist competitive 

algorithm
Basirati et al. (2020), Golmohammadi et al. (2016), 

Nekooghadirli et al. (2014) and Hadian et al. 
(2019)

MOFA: Multi-objective firefly algorithm Shahsavari-Pour et al. (2020)
MOGA-II: Multi-objective genetic algorithm of 

kind II
Validi et al. (2020, 2021)

MOHCGA : Multi objective hybrid cultural and 
genetic algorithm

Farrokhi-Asl et al. (2020)

MOLAHC: Multi-objective late acceptance hill 
climbing

Amini et al. (2020)

MOPSA: Multi-objective parallel simulated 
annealing

Nekooghadirli et al. (2014)
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Antalya, Turkey. By applying different tolerance ranges, it could be concluded 
that the model could obtain optimal solutions through fuzzy goals and tolerance 
ranges.

Rabbani et al. (2020) studied the industrial waste transportation system in the 
automotive industry and presented a MIP model for the capacitated location rout-
ing problem with a heterogeneous fleet of vehicles. The objectives were to mini-
mize the total cost and the population risk in transportation. Their model aims 
to determine the optimal set of routes for waste collection and the location of a 
single collection center. The authors also considered that the waste collection was 
performed in a separated form, either from multi-compartment vehicles or waste-
vehicle compatibility. An epsilon-constraint ( �-constraint) method was used to 

Table 5  (continued)

(MO)PSO: (Multi-objective) Particle swarm 
optimization

Beiki et al. (2020), Farrokhi-Asl et al. (2017), 
Forouzanfar et al. (2018), Liu and Kachitvichya-
nukul (2015), Momenikiyai et al. (2018), Navazi 
et al. (2019), Rabbani et al. (2018c, 2018a), Tang 
et al. (2016), Vahdani et al. (2018), Validi et al. 
(2021) and Shen et al. (2019)

MOSFLA: (Multi-objective) Shuffled frog leaping 
algorithm

Adarang et al. (2020)

MOWFA: Multi-objective water-glow like algo-
rithm

Nikzamir and Baradaran (2020)

NSDE: Non sorting differential evaluation algo-
rithm

Wang et al. (2014)

NSGA-II: Non sorting genetic algorithm II Martinez-Salazar et al. (2014), Amini et al. (2020), 
Basirati et al. (2020), Beiki et al. (2020), Burkart 
et al. (2017), Farrokhi-Asl et al. (2017), Forouzan-
far et al. (2018), Ghezavati and Beigi (2016), Had-
ian et al. (2019), Jamali (2019), Mamaghani and 
Davari (2020), Momenikiyai et al. (2018), Navazi 
et al. (2019), Nekooghadirli et al. (2014), Rabbani 
et al. (2017, 2018b, 2018c, 2018a), Shahsavari-
Pour et al. (2020), Tajabadi and Kazemi (2016), 
Vahdani et al. (2018), Validi et al. (2021), Wang 
et al. (2014), Zhong et al. (2020), Nedjati et al. 
(2017), Chen et al. (2018), Wang et al. (2018b) 
and Rabbani et al. (2019)

ACO: Ant colony optimization Wei et al. (2020)
PAES: Pareto archived evolution strategy Nekooghadirli et al. (2014)
PESA-II: Pareto envelope-based selection algo-

rithm II
Momenikiyai et al. (2018)

PROMETHEE-II: Preference ranking organization 
method for enrichment of evaluations II

Nasrollahi et al. (2018)

SSPMO: Scatter tabu search procedure for non-
linear multi-objective optimization

Martinez-Salazar et al. (2014)

TOPSIS: Technique for order of preference by 
similarity to ideal solution

Zhao and Ke (2017)

TS: Tabu search Wang et al. (2018a)
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solve the problem, and numerical experiments proved that the proposed MIP 
model considering heterogeneous transport fleet and waste collection separately 
was the best solution to reduce logistics costs in the presence of transportation 
risk criteria.

Jamali (2019) considered multimodal transportations and presented a bi-objective 
mathematical model, which determined the location of multimodal terminals and 
optimizes total cost and the risk associated with transportation. Both exact meth-
ods, such as the �-constraint method and the metaheuristic NSGA-II, were used 
to solve the problem. Numerical experiments showed that the NSGA-II algorithm 
outperformed the �-constraint method, based on the evaluation of Mean Ideal Dis-
tance indicator (MID), CPU time, a space metric (SM), a quality metric (QM), and 
a diversification metric (DM). In addition, sensitivity analysis was conducted, which 
confirmed the structural performance of the model.

Hu et  al. (2019) considered the influence of traffic restrictions on a hazardous 
waste management system. A multi-objective model with soft time windows was 
formulated while considering alternative paths between every origin-destination 
pair. The aim was to determine, based on a set of warehouses, which warehouses 
should be used, assigning customers to those warehouses, and determining a route 
for each group of warehouses and customers. By fulfilling the aim, three objectives 
were optimized, total cost minimization, total risk minimization, and maximizing 
satisfaction level for customers, i.e., the ability to meet the time windows. A adap-
tive algorithm and an adaptive weight genetic algorithm were proposed to solve the 
problem. It was concluded that further research is required to improve the efficiency 
of running the algorithms in order to solve problems of larger scale.

In a two-layer supply chain, Farrokhi-Asl et  al. (2017) presented a bi-objective 
model for the location of vehicle depots and disposal facilities while minimizing 
total cost and maximizing the distance of the disposal facilities from customer areas. 
Multi-compartment vehicles start their route at the depot to collect other wastes 
from customers. When all customers are served, the vehicles visit the corresponding 
disposal center to the collected waste before returning to the depot. An NSGA-II and 
a MOPSO algorithm were proposed, and the two algorithms were tested on various 
instances and then compared with respect to the number of Pareto solutions, a spac-
ing metric of the uniformity of the distribution of solutions, one spacing uniform-
ity metric for how the items in the approximation set are distributed in the objec-
tive space, and a diversification metric. The NSGA-II algorithm outperformed the 
MOPSO algorithm for the test problems in all aspects, except for the running time. 
Considering that the NSGA-II could find more Pareto solutions and search more 
regions of the solution space, the authors conclude that its higher computational 
time is rational.

Rabbani et al. (2017) extended the model proposed by Farrokhi-Asl et al. (2017) 
to include capacitataed depots and the fact that some customers are delegated to con-
tractors resulting, thus, in both open and closed routes since a contract vehicle does 
not have to return to the depot after completing the tour. An NSGA-II algorithm was 
proposed and compared to weighted sum, goal programming, and goal attainment 
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methods. Results showed that the NSGA-II was superior to the other methods in 
both large and small-sized problems in all aspects, however, with higher computa-
tional time since it searches more regions of the solution space.

Rabbani et  al. (2018b) sought to determine the location of collection and pro-
cessing centers as well as the number of vehicles needed and developed a bi-objec-
tive model to minimize cost and environmental impact. They were able to achieve 
approximate optimum solutions within an acceptable time by using an NSGA-II, 
which included an augmented epsilon constraint. The Taguchi method was used in 
parameter tuning, while the best worst method (BWM) was used to determine the 
optimal combination of parameters.

Zhao and Ke (2017) developed a bi-objective model for the combined optimiza-
tion of facility location and vehicle routing, which incorporates inventory risk when 
dealing with explosive waste management. The aim was to minimize both total cost 
and total risk. They simultaneously designed three routes; tours, direct routes, and 
return trips. Tours can be described as ordinary routes where the vehicles return to 
the origin node. Direct routes are open in the sense that vehicle do not need to return 
to the same collection center while return trips can described as direct full truck 
load shipments between collection centers and recycling facilities. Furthermore, 
the vehicle routing formulation was a modification of the capacitated vehicle rout-
ing problem based on a two-commodity network flow approach, to which location, 
inventory, and routing decisions from different levels are incorporate. A case study 
showed that the model improved cost savings and risk reduction.

Rabbani et al. (2018a) extended the model of Samanlioglu (2013) in a three ech-
elon supply chain consisting of a central depot, demand nodes, treatment, recycling, 
and disposal facilities. The aim was to determine the collection routes from demand 
nodes, locate the various facilities, determine which technologies that should be 
adopted at treatment centers, and to route the waste residues generated at differ-
ent facilities. Three objectives were considered: transportation risk, site risk, and 
total cost. The authors proposed an NSGA-II and a MOPSO algorithm to solve the 
model. A three-level Taguchi design was applied to analyze the effect of essential 
NSGA-II and MOPSO parameters. The algorithms were evaluated based on CPU 
time, the number of Pareto solutions, spacing, and a diversity metric. The results 
indicated that the NSGA-II algorithm performed better than the MOPSO in terms 
of CPU time, Pareto optimal solutions, and the spacing metric, while the MOPSO 
algorithm had better results in terms of the diversity metric.

Farrokhi-Asl et  al. (2020) considered the same objectives as (Rabbani et  al. 
2018a) in a similar supply chain. However, their model also evaluated fuel con-
sumption, carbon dioxide emissions, and their environmental impact. The authors 
proposed a hybrid meta-heuristic algorithm called multi-objective hybrid cultural 
and genetic algorithm (MOHCGA), compared to NSGA-II, SPEA-II, MOSA, and 
MOPSO. Results showed that the MOHCGA could produce competitive solutions, 
although the SPEA-II algorithm could generate more Pareto solutions distributed 
uniformly in the Pareto front.

In an attempt to minimize total cost, transportation- and site risk Ghezavati and 
Morakabatchian (2015) developed a MIP model with fuzzy time windows which 
were solved with data retrieved from the Petrochemical Special Economic Zone in 
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south-west Iran. The model sought to optimize the waste collection from generation 
nodes to warehouses, the location of warehouses and various treatment centers, and 
the routing of hazardous waste to compatible treatment centers. By converting the 
risk objectives into economic objectives, i.e., the cost of the transportation risk and 
the site risk, respectively, the model could be optimized as a single objective func-
tion, and the Pareto optimal solutions could be found automatically.

Rabbani et  al. (2019) presented a stochastic mixed-integer nonlinear program-
ming model where uncertainty was incorporated in the model by the amount of 
waste generated and the number of people at risk as a consequence of the waste 
management activities. The model covered the integrated location, vehicle routing, 
and inventory control decisions. Furthermore, the model was converted to a MIP 
using an exact linearization method. A simulation-optimization approach was devel-
oped based on a multi-objective evolutionary algorithm, integrating NSGA-II and 
Monte Carlo simulation to overcome stochastic combinatorial optimization. Results 
showed that the proposed approach could find high-quality solutions in a relatively 
reasonable computational time.

Nikzamir and Baradaran (2020) studied the health waste location routing problem 
and emphasized the stochastic emissions caused by infectious and non-infectious 
waste transported between healthcare and disposal centers. The authors presented 
a bi-objective non-linear mixed-integer programming (NL-MIP) model minimiz-
ing total cost and emissions caused considering stochastic travel times. A Multi-
Objective Water-Flow-like Algorithm (MOWFA) with two neighborhood operators 
for the local search and an analytic hierarchy process (AHP) to rank non-dominated 
solutions. In addition to a real-world case study, the algorithm was compared to the 
meta-heuristics MOICA and MOSA based on error rate (ER), spacing metric (SM), 
and maximum spread (MS). The evaluation of the results showed that the MOWFA 
performed better than the other two meta-heuristics. An overview of the waste man-
agement papers is presented in Table 6.

4.2  Disaster relief

Pre- and post-disaster decisions are mainly concerned with designing a relief net-
work and determining efficient routes to deliver relief supplies or the evacuation of 
injured people or people at risk. Disasters cause severe disruptions to infrastructure, 
safety stocks of necessary supplies, and the availability of rescue and relief person-
nel. Furthermore, any relief response must be rapid as the likelihood of survival 
decreases significantly after 72 hours in case of a severe disaster (Zhong et al. 2020). 
In addition, often, the occurrence of disasters and their severity can not be deter-
mined to an exact certainty. Several of such factors are considered when modelling 
these decision problems in the papers reviewed.

In studying disaster relief, Rath and Gutjahr (2014) developed a three-objective 
warehouse location-routing model which minimizes strategic costs such as facility 
costs and operational costs as well as it maximizes covered demand. The �-constraint 
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method was proposed as well as a metaheuristic approach, based on the MIP formu-
lation of the problem with a heuristically generated constraint pool.

With the aim to present an integrated logistics system in order to support an opti-
mal pre-disaster plan and at the same time consider post-disaster decisions, Bozorgi-
Amiri and Khorsi (2016) proposed a multi-objective dynamic stochastic program-
ming model. Three objectives were minimized; unsatisfied demand, travel time, and 
total cost. Their aim was to determine the location of distribution centers and their 
respective required inventory and the routes and amount of supplies from distribu-
tion centers to affected areas. The model was solved as a single-objective, linear 
programming problem using the �-constraint method. A specific case study is used 
to test the model.

Burkart et al. (2017), in contrast to the regular distance-based model, proposed 
a choice-based location model and introduced the element of beneficiary’s choice. 
The authors reason that while modeling approaches to the covering tour problem are 
usually based on a hypothetical assignment of demand for relief goods to the nearest 
DC; beneficiaries need not necessarily follow that assumed assignment. Moreover, 
Competitive Location Models provide the tools to model choices in terms of com-
petition between facilities. A bi-objective location-routing model to minimize total 
cost and unserved demand for opening distribution centers and deciding the routing 
of relief goods was proposed. The model’s focus is the optimal location for distribu-
tion centers and relief delivery tours in drought disasters. Three different solution 
approaches were applied; the �-constraint method, a brute-force complete enumera-
tion procedure, and NSGA-II. The algorithms were evaluated based on real-world 
instances from Mozambique. While the Pareto front could be determined exactly for 
small instances by the �-constraint method, the NSGA-II was implemented for larger 
and more realistic instances.

Genetic algorithms compose the overwhelming majority of solution methods 
used in papers concerning disaster relief. In an attempt to increase efficiency in a 
post-earthquake logistics system Li et al. (2014a) formulated a bi-objective dynamic 
location-routing model to determine the location of emergency service facilities 
and efficient routes to affected areas. The aim was to minimize total cost and total 
time. A meta-heuristic that incorporates a hybrid multi-objective genetic algorithm 
was proposed to solve the model. A numerical example indicated that the proposed 
model and its heuristic solution method were computationally affordable.

An integrated model which considered shelter location and routing, both for pub-
lic and individual traffic simultaneously, in case of evacuation, was proposed by 
Goerigk et al. (2014). The authors present a multi-criteria MIP problem that mini-
mizes total time, risk exposure of evacuees, and the number of shelters used. Private 
traffic was modeled as a dynamic network flow, while public traffic as a dynamic 
multi-commodity network flow. NSGA-II was used to solve the problem, and real-
world evacuation instances to evaluate its performance. The first instance regarded 
a bomb threat in Kaiserslautern, Germany, and consisted of a graph of 13,284 nodes 
and 32,463 arcs. The other instance concerned the evacuation after an earthquake 
in the city of Nice with a graph consisting of 6237 nodes and 13,209 arcs. The 
authors discussed the impact of the data aggregation on the solution and the trade-
off between finer granulation and smaller computations times.
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Wang et  al. (2014) presented a non-linear integer open tour location-routing 
problem which minimized total cost and travel time while maximized the reliability 
of the routes in post-earthquake situations. Two algorithms were tested and com-
pared, NSGA-II and NSDE, based on a case study of the Great Sichuan Earthquake 
in China and five generated test instances. The NSDE algorithm obtained solutions 
with larger diversity than the NSGA-II. On the other hand, the approximate Pareto 
optimal solutions generated by the NSGA-II dominated almost all solutions pro-
duced by the NSDE. Furthermore, the results of the NSGA-II algorithm for the gen-
erated test instances were obtained faster and significantly outperformed the NSDE 
with respect to quality.

Nedjati et  al. (2017) also considered post-earthquake situations and focused 
on service time restrictions, replenishment at intermediate depots, as well as cus-
tomer mobility in predefined walking distance when stating the covering tour loca-
tion routing problem. They formulated a bi-objective MIP model which minimizes 
the unserved demand and the total waiting time. A distinction was made between 
routes and trips, where routes connect two depots, while a trip is the sequence of the 
routes belonging to a vehicle. Vehicles do also remain in service up to a time limit 
and can, during that time, reload at any established depot. Furthermore, nodes were 
grouped to form in-tour, out-tour, and lost demand nodes. In-tour nodes are served 
within the tour, while out-tours are those nodes that are not included in the route but 
have an in-tour node within their walking distance and must thus be allocated to the 
nearest in-tour node. The NSGA-II algorithm with two distinct improvements, 2n 
Improvement, and First Front Improvement, was proposed as solution procedures. 
The results for 36 randomly generated test instances were analyzed in terms of QM, 
quantity, DM, CPU time, and spread of Pareto front solutions. The authors conclude 
that the NSGA-II-FFI performed better than the NSGA-II-2NI except for the com-
putational time.

Further examples of post-disaster relief include Beiki et al. (2020) who presented 
a bi-objective MIP model minimizing cost and the maximum unserved demand. 
They emphasized issues associated with post-disaster decisions such as the loca-
tion of relief facilities, allocation of resources, distribution of goods, and the transfer 
of survivors to treatment facilities. A real-life case study in Iran was solved. The �
-constraint method was used to solve the problem and NSGA-II and MOPSO. The 
two metaheuristics were evaluated based on DM, spread of non-dominated solutions 
(SNS), data envelopment analysis (DEA), percentage of domination (POD), and 
CPU time. The authors concluded that the NSGA-II was the most efficient of the 
two, highly outperforming the MOPSO.

Adrang et al. (2020) studied support efforts after a disaster in urban areas. Their 
model, a bi-objective MIP, optimizing cost and time, took into consideration both 
ambulances and helicopters as well as two groups of patients based on the severity 
of the injury. The model was solved using the �-constraint method based on ran-
domly generated instances. The authors also discussed sensitivity analysis based on 
the demand parameter, i.e., changes in injured people in each group and its effect on 
the objectives.

Vahdani et  al. (2018) considered emergency roadway repair and developed a 
multi-objective, multi-commodity, and multi-period model for the distribution of 
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relief after earthquakes. It is an open tour model, i.e. vehicles do not need to return 
to their origin after the proposed route, with split deliveries. A non-linear integer 
program (NL-IP) seeks to minimize both total cost and travel time and maximize 
the reliability of the routes. Two meta-heuristic algorithms, NSGA-II and MOPSO, 
were proposed to solve the problem. The two algorithms were compared on several 
test instances with respect to the number of POS, DM, SM, MID, and CPU time. 
The NSGA-II algorithm was superior with respect to the SM, while MOPSO per-
formed better in terms of DM, MID, and POS.

Zhong et  al. (2020) presented a bi-objective NL-MIP risk-averse optimization 
model with stochastic demand. It included conditional value at risk with regret 
(CVaR-R), defined as the expected regret of the worst-case scenario. The proposed 
objectives are the CVaR-R of the waiting time and the CVaR-R of the system cost. 
The model was linearized using the big-M method. NSGA-II was used to find the 
Pareto front, while the Nash bargaining solution guides the decision-maker to select 
the final solution from the Pareto front based on a distance function. Numerical 
examples were designed based on Solomon’s VRPTW benchmark instance RC208. 
The results demonstrated the trade-off between the waiting time and system cost and 
the effects of various parameters, including the confidence level and distance param-
eter, on the solution.

Chang et  al. (2017) presented a three-objective NL-MIP model in which half-
time windows are considered. The goal was to minimize total cost and maximize 
the minimum material satisfaction rates of affected areas and transport capaci-
ties of the worst path. In addition, uncertain demand and transportation velocities 
were assumed, and robust optimization was used to deal with these uncertainties. 
A genetic algorithm was used to solve the problem, and experimental results con-
firmed the efficiency and stability of the algorithm.

Zhang et  al. (2018) presented a multi-objective  MIP model for emergency 
response considering uncertainty and the minimization of the maximum travel time, 
emergency relief costs, and CO2 emissions. The authors utilized the main-objective 
method, taking the maximum travel time as the main objective and using chance 
constraint on the other two objectives. A hybrid algorithm that integrates uncer-
tainty simulation and a genetic algorithm was designed. Uncertainty simulation was 
first applied to simulate the inverse uncertainty distribution and uncertainty meas-
ure with uncertainty variables. Then, uncertainty simulation was integrated into the 
GA to produce a hybrid intelligent algorithm. The robustness and efficiency of the 
model are investigated through numerical examples.

Mansoori et  al. (2020) presented a rescue-relief bi-objective MIP model mini-
mizing the number of injured and homeless people not being transferred to a hos-
pital and the total shortages of three different relief commodities. They considered 
demand and travel times as uncertain parameters and developed approaches to deal 
with such uncertainty. Robust optimization with ellipsoidal uncertainty and robust 
optimization with box and polyhedral uncertainty sets. A case study in Iran was 
conducted and a sensitivity analysis of both deterministic and robust models. The 
authors concluded that robust models resulted in more conservative solutions in all 
cases and that the box and polyhedral sets outperformed the ellipsoidal.
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Adarang et  al. (2020) focused on demand uncertainty in relief planning for 
urban disasters. Injured people can be relieved either by helicopter or ambulance 
based on the severity of their injury. A robust LRP was proposed where decisions 
in the first phase were made regarding the optimal location of facilities and in the 
second phase the optimal routes for transferring patients. Two objectives were 
considered total cost and relief time. An SFLA algorithm was developed to solve 
the problem. The solution was compared to the �-constraint method for small and 
medium-sized test instances and to an NSGA-II algorithm for larger instances. 
Even if the NSGA-II was faster, the SFLA performed better; it covered a wider 
range of solutions with better quality and generated a more uniform front.

Wei et  al. (2020) aimed to design a system to delivery supplies to affected 
areas after disasters. Every affected area had a corresponding soft time window, 
and two objectives were optimized; total operational cost and the penalty for not 
meeting the time window. The authors developed a hybrid ant colony optimiza-
tion (ACO) algorithm using particles as operators. This allowed for a more com-
prehensive search in finding the optimal locations of depots and assigning areas 
to them; the ants could then find effective and balanced vehicle routes. The algo-
rithm was compared to PAO, ACO, and an H-GA. The results showed that the 
proposed algorithm outperformed the others with respect to both computational 
efficiency and solution quality.

Considering the fairness perspective Liu et  al. (2019) presented an overall 
plan for fair allocation and distribution of relief. The lexicographic order object 
method was used to develop a three objective MIP problem considering urgent 
time windows. The objectives were to minimize the maximum loss of demand 
nodes, minimize the total loss of all nodes, and minimize the maximum time 
required for demand nodes to receive relief. A hybrid heuristic algorithm (HHA) 
was developed, which combined a greedy algorithm with an ACO algorithm 
using a hierarchical sequence method. The feasibility and validity of the HHA 
algorithm was demonstrated by the study of camp distribution on the first day 
after the Wenchuan earthquake in China.

Shen et  al. (2019) proposed a fuzzy low-carbon open tour MIP problem for 
emergency logistics that seeked to minimize delivery time, total cost, and co2 
emissions. A triangular fuzzy function was used to deal with the unpredictabil-
ity of demand of the affected areas, and a hybrid two-stage particle swarm-tabu 
search algorithm was proposed. In the first stage, PSO is used to find a partial 
solution, while in the second stage, tabu search is applied to obtain a global solu-
tion. An example of a post-earthquake rescue was used to validate the established 
problem.

Veysmoradi et  al. (2018) present a NL-MIP open tour location routing model 
which considered both terrestrial and aerial transportation networks simultaneously 
for the relief from distribution centers to affected areas. The model minimizes the 
total cost, maximum travel time, and maximizes the minimum reliability of the 
routes. The robust optimization method provided by Ben-Tal and El Ghaoui (2009) 
was applied to deal with uncertainties in some model parameters, and the fuzzy 
multi-objective programming proposed by Torabi and Hassini (2008) was used to 
solve the multi-objective problem. A case study of the East Azarbaijan earthquake in 
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Iran was presented, and the certainty and uncertainty results were compared to each 
other. Table 7 presents an overview of the classified disaster relief papers.

4.3  Perishable supply chains

Food supply chains and supply chains for perishable products are, to a large 
extent, part of the class of cold supply chains, i.e. chains that utilize low-temper-
ature transportations. A perishable product can be described as one that during 
its handling, its quality or quantity decrease considerably, its value decreases as a 
function of time or if its reduced functionality results in dangerous consequences. 
Food, medicine, and chemicals are thus typical perishable products. As a con-
sequence of these special characteristics, supply chains for perishable products 
are complicated, time-sensitive, and dynamic. In its simplest form, the bi- and 
multi-objective location-routing problem included in this review aim to locate 
various distribution centers (DCs) and design efficient routes to customers from 
these locations. In some cases, the supply chain is extended with another echelon, 
including plants or suppliers. Only one of the reviewed papers considers a three-
echelon supply chain. All papers consider cost as one of the objectives. A second 
objective is set up to minimize some kind of undesirability. As cold chain logis-
tics use low-temperature transportations in order to preserve the quality of the 
products, these vehicles consume more fuel and thereby emit more greenhouse 
gases (Leng et al. 2020b). Many papers focus on minimizing the environmental 
impact while others focus on the quality of the product itself and minimize the 
undesirability in terms of waiting time or distribution time or the damage that 
may occur to the products. Only two papers did also consider the maximization 
of certain social factors such as the utilization of personnel and customers or job 
creation.

Govindan et al. (2014) considered soft time-windows and sustainability aspects in 
a two-echelon supply chain. A MIP model was presented to minimize total cost and 
environmental impact. The authors propose a hybrid heuristic algorithm combining 
adapted multi-objective PSO and adapted variable neighborhood search (VNS) to 
solve the problem. The algorithm was compared to NRGA, MOGA, and NSDA-II 
based on 12 different test instances. It was concluded that the proposed algorithm 
outperformed the others in terms of DM, SNS, POD, whereas no conclusion could 
be made based on MID.

Validi et  al. (2020) introduced a bi-objective AHP-integrated MIP model with 
a design of experiments-guided (DoE) meta-heuristic solution approach for a two-
echelon dairy supply chain. To minimize total cost and co2 , a two-phase solution 
method was used. Phase-1 finds the optimal set of open/closed plants and DCs as 
well as the optimal routing pattern connecting plants and DCs, and DCs to retail-
ers. In the second phase, using the result from the first phase as input, the optimal 
routing in-between retailers was determined. DoE guided MOGA-II was used in the 
second phase while the TOPSIS method was used to analyze the feasible optimal 
solutions sets from the first and second phases.
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The same model was considered by Validi et  al. (2021) which employed two 
GA-based and one PS-based metaheuristic, namely NSGA-II, MOGA-II, and 
MOPSO. These algorithms were also two-phased and DoE-guided. It was found 
that the NSGA-II algorithm was the more efficient when compared to MOGA-II and 
MOPSO. In addition, scenario analysis was performed on the results. Different sce-
narios showed the amount of CO2 emitted and the total costs from a closed route if 
forced to be open.

Navazi et al. (2019) considered simultaneous pick-up and delivery in a three ech-
elon supply chain minimizing the total cost, environmental impact, and maximizing 
the utility of personnel and customers. NSGA-II and MOPSO were proposed to solve 
the model, and were compared and evaluated based on ten moderate and large-scale 
instances. It was concluded that even if the MOPSO was faster than the NSGA-II algo-
rithm, NSGA-II achieved more Pareto solutions of higher quality.

Economic, ecologic, and social aspects were also considered by Biuki et  al. 
(2020) which integrated inventory decisions in their model aiming to minimize total 
cost and environmental impact caused by greenhouse gas emissions while maximiz-
ing job creation. The authors emphasized several real-life aspects such as allowing 
backlogging, discount offers in procurement, demand uncertainty and multi-period, 
and a multi-product setting for a three echelon supply chain. A two-phase solution 
strategy was proposed in which supplier selection is performed in the first phase 
applying the PROMETHEE method. The model was then converted to a crisp sin-
gle objective version. Two-hybrid metaheuristic algorithms based on parallel and 
serial combinations of GA and PSO were constructed to solve the problem. Results 
obtained from a set of small, medium and large size test instances showed the supe-
riority of the parallel hybridization over the serial.

Liu et  al. (2021) sought to minimize total cost and environmental impact for 
mixed fleets and mixed satellites for a sustainable E-grocery distribution network 
consisting of vans, robots, and parcel lockers. The authors proposed a hybrid 
immune algorithm (HIA) combining an immune algorithm with a genetic search 
technique. Furthermore, the algorithm incorporated two improvement steps, vacci-
nation, and immunization, where vaccination aims to improve fitness while immuni-
zation aims to prevent population degradation. Based on 12 generated test instances, 
the algorithm was compared to NSGA-II and MHPV. The results showed that even 
if no priority could be established between the algorithms based on MID, the HIA 
significantly outperformed NSGA-II and MHPV considering SNS, DM, and rate of 
achievement (RAS).

Turning to other factors such as time and quality of the products, Li et al. (2019) 
focused on big event logistics and the minimization total delivery time in addition 
to the total cost. They considered several aspects of the supply chain, such as multi-
commodity, combined storage strategy, multi-vehicle, and multi-point distribu-
tion in a single echelon supply chain. As part of the solution method, the objective 
coefficients were weighted according to the sensitivity of different perishable com-
modities to time and cost. Furthermore, the model was strengthened by reducing the 
number of binary variables, increasing the search space limitation, and performing 
clustering analysis. The resulting problem was solved with the CPLEX solver with 
data from a real-life case study based on the Beijing 2022 Winter Olympics.
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Leng et al. (2020b) proposed a bi-objective model with the aim to minimize total 
costs, including fuel and carbon emissions cost, and product damage for a cold chain 
logistic system. Several types of commodities were considered, such as general, 
refrigerated, and frozen. They proposed and evaluated a multi-objective hyper-heu-
ristic (MOHH) combining seven different multi-objective evolutionary algorithms 
(MOEA). Furthermore, they examined the efficiency of a proposed delivery strategy 
and performed an extensive analysis of problem parameters such as depot capacity, 
hard time windows, and fleet composition. Leng et al. (2020a) proposed a bi-objec-
tive MIP model for cold chain and low carbon supply chain and employed six well-
known MOEAs to solve the problem. Total cost and total waiting time was con-
sidered as well as simultaneously pick-up and delivery, heterogeneous vehicle fleet, 
several types of cargo, and hard time windows. Moreover, the first improvement and 
best improvement search mechanisms were developed. Experiments were conducted 
to analyze factors such as depot capacity and cost, crowding distance, and traveling 
speed and their effects on the solution quality. The authors concluded that MOEAs 
using the first improvement performed better than the best improvement. A strategy 
that mixes original and refrigerated cargo outperformed the strategy in which cargos 
must be delivered separately.

Wang et al. (2020) developed a bi-objective mathematical model for cold chain 
logistics distribution optimizing total cost, including time window penalty cost 
and distribution time. A hyper-heuristic (HH) optimization framework is proposed, 
which can be described as a heuristic used to choose a suitable solution heuristic. 
Four different selection strategies and acceptance criteria were used for this purpose. 
Comparison to NSGA-II validated the efficiency of the hyper-heuristic and solving 
cold chain instances validated the practicality of the algorithm.

Leng et al. (2020c) presented a model very similar to that of Leng et al. (2020a) 
in which they considered hard time windows, simultaneous pick-up and delivery, 
and a mixed delivery strategy to satisfy customer demand in general, as well as 
refrigerated and frozen products. The model aims to minimize total cost and the total 
quality decay of the perishable food. Considering decomposition, the authors pro-
pose a MOHH framework to solve the model. Extensive experiments were carried 
out to test the effect of parameters and different features. Comparative results were 
also performed in which the MOHH was compared to NSGA-II, SPEA2, GrEA, and 
IBEA. The authors concluded that the proposed algorithm was efficient and that it 
provided sufficiently good Pareto fronts.

Qiu et al. (2020) proposed a multi-objective MIP model to minimize total cost, 
greenhouse gas emission, waiting time, and quality degradation for a cold supply 
chain considering mixed cargos, heterogeneous vehicle fleet, time-windows, and 
simultaneous pick-up and deliveries. They presented a framework that combines 
the evolutionary algorithms NSGA-II, SPEA2, and IBEA. Furthermore, they devel-
oped a large composite neighborhood formed by 16 operators and grouped them into 
three modules. Extensive tests were performed, and the authors discussed the impli-
cations of the results related to delivery strategies, depots cost, time windows, and 
fleet composition.

Another side of perishable supply chains is related to health care services such 
as blood collection and pharmaceutical distribution. Not many papers have been 
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published on this particular subject which also fall within the scope of the review. 
However, the remaining papers presented in this section considered distribution 
of pharmaceutical products. Nasrollahi et  al. (2018) studied a two-echelon phar-
maceutical distribution network and provided a computational method to measure 
transport-related carbon emissions. The aim was to minimize the total costs and 
fuel consumption of a heterogeneous fleet of vehicles. The demand for each product 
was assumed to be a trapezoidal fuzzy number. Multi-objective NRGA was used to 
solve the MIP model, while PROMETHEE-II determined the best solution on the 
Pareto front. M-NRGA was compared to both NSGA-II and MOPSO based on test 
instances, and the authors concluded that the proposed approach performed better 
than NSGA-II and MOPSO even if the NSGA-II needed lesser time.

Zandkarimkhani et  al. (2020a) presented a bi-objective MIP model, which in 
addition to location-routing, also considersed inventory decisions, soft- and hard 
time windows, and stochastic demand. The objectives were to minimize total cost 
and lost demand in a two-echelon supply chain. A novel chance-constrained fuzzy 
goal programming approach was developed to solve the problem with probabilistic 
constraints. This allows for the decision-makers to incorporate their preferences in 
the model. Data from an MS disease drug distribution network in Tehran was used 
to validate the model. A significant contribution of the study was the realization of 
a humanitarian supply chain, where the lost demand is zero, can be designed even if 
this is more costly. The proposed model does also calculates that extra cost. There-
fore, decision makers can estimate the required budget for designing a humanitarian 
supply chain.

Lastly, Ahlaqqach et  al. (2020) presented a MIP model for a closed-loop sup-
ply chain network for supply and recovery of end-of-life pharmaceutical products. 
The authors considered time windows and inventory decisions in the multi-product, 
multi-echelon, and multi-period supply chain. The aim was to maximize profits, 
i.e., sales minus total costs, maximize job creation while minimizing the risk along 
the routes. A real-world case was presented and solved optimally for small-sized 
instances as three separate single-objective problems. The authors conclude that 
the experimentation with small instances gave a good result in a reasonable time. 
Table 8 presents the classified papers for perishable supply chains.

4.4  Inventory

This section discusses contributions that focus on location considering inventory 
and routing decisions. Although applications of this type have gained increased 
attention by the research community in recent years the number of publications still 
remains low. In the papers reviewed, in addition to cost, objectives modelled include 
coverage, risks, and environmental impact. Most of these works are concerned with 
stochastic and dynamic versions of the problem.

Tang et  al. (2016) introduced the concept of consumer environmental behav-
iors (CEBs) in sustainable supply chain and location-routing inventory decisions. 
The assumption was that consumers are willing to pay a premium for low carbon 
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emission products. A MIP model minimizing total cost and co2 was presented and 
solved using a MOPSO algorithm for real-world data. The same technique was used 
to derive revenue curves from different carbon emissions. In analyzing the sensi-
tivity of the case study, the author could conclude that more positive CEBs result 
in higher demand and revenue. In addition, the pricing of low carbon operations is 
critical, and companies, therefore, should make marketing efforts to strengthen con-
sumers’ environmental preferences.

Lerhlaly et al. (2016) do also minimize total cost and co2 emissions and consider 
a heterogeneous fleet of vehicles and multi-period decisions for an location routing 
inventory model for Hazmat. An LP model is presented and solved using the lexico-
graphic weighting method with predefined priority orders, in which four weights are 
compared to determine the best co2 emissions objective.

Fallah-Tafti and Vahdatzad (2018) studied the "cash in transit" sector in Iran, 
more specifically, cash delivered from the central bank to ATMs routed through 
logistics centers. They presented a bi-objective MIP model minimizing total cost 
and transportation risk considering multiple time periods and time windows. The 
model is solved using the AUGMECON2 method and validated with real-world 
data. A similar problem was studied by Fallah-tafti et  al. (2019) who proposed a 
crisp bi-objective MIP, minimizing risk and total cost, for refilling ATMs in ”cash 
in transit” sector. Several real-life assumptions were considered, such as multiple 
periods, capacitated facilities and vehicles, time windows, and uncertain demand. 
The model was validated in a real-world case utilizing the AUGMECON2 method.

For a closed-loop supply chain, Govindan et  al. (2020) presented a two-stage 
model, whereas, in the first stage, suppliers are evaluated using a decision support 
system based on fuzzy analysis network process and fuzzy decision making trial and 
evaluation laboratory. In the second stage, a fuzzy bi-objective MIP model was pre-
sented for a closed five-level supply chain where routing was performed between 
distribution centers and customers. The model minimized the system’s total costs, 
including greenhouse gas emissions and inventory shortage. The fuzzy approach 
proposed by Zimmermann (1978) and Lin (2012) was used to solve the model by 
GAMS/CPLEX, and the solution obtained for a real-world case was within a relative 
optimality gap of less than 5 percent. Similar work is also presented by Gholipour 
et al. (2020), in which total cost, including fuel costs, and shortages were minimized 
by utilizing the fuzzy membership function of Govindan et  al. (2020) in order to 
deal with demand uncertainty. GAMS/CPLEX was used to validate the model, and 
sensitivity analysis was performed with respect to demand reduction and demand 
increase.

Papers presented so far in this group all focus on minimizing an undesirability 
objective and costs related to environmental or social factors, either explicitly or 
implicitly, as a part of the cost function. The rest of the papers are concerned with 
inventory decisions with focus on the time dimensions in addition to cost.

Momenikiyai et al. (2018) proposed a bi-objective MIP model considering het-
erogeneous vehicle fleet, soft time windows, and risk pooling, i.e., inventory aggre-
gation to deal with demand uncertainty. The model aims to minimize total cost and 
the earliness and lateness of vehicles. 30 random test instances were generated and 
the metaheuristic algorithms NSGA-II, MOPSO, and PESA-II were proposed. The 
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Taguchi method was used, and the evaluation of the different algorithms was based 
on QM, SM, DM, and MID. Obtained results showed that the NSGA-II algorithm 
outperformed the other heuristics. Compared to the optimal solution of a small 
instance with two vehicles and distribution centers and six customers, the solution 
by the NSGA-II had a 6 percent optimality gap only for one objective.

Forouzanfar et al. (2018) presented a bi-objective, non-linear, multi-period inte-
ger program to minimize the system costs and the sum of maximum difference 
in arrival and departure time between plants and DCs. The �-constraint method, 
NSGA-II, and MOPSO were all proposed to solve the problem. Solutions of the �
-constraint method were used to validate the results of NSGA-II and MOPSO for 
small instances, while for medium- and large-sized problems, the NSGA-II and 
MOPSO were compared with respect to NPS, MID, SM, and QM. Furthermore, 
to increase the efficiency of the algorithms, the Taguchi method was utilized to set 
some of the input parameters. Results on 27 randomly generated test instances dem-
onstrated that MOPSO was superior with respect NPS and QM while NSGA-II out-
performed MOPSO with respect to MID and SM.

Nekooghadirli et al. (2014) considered a multi-period and multi-product supply 
chain with stochastic demand and presented a bi-objective MIP model. In addi-
tion, probabilistic traveling times between customers were considered. The uncer-
tain demand of the customers followed a normal distribution, and each distribution 
center held a particular safety stock. Total cost and the maximum delivery time were 
optimized, and MOICA was proposed to solve the problem. In order to validate the 
proposed algorithm, it was compared to NSGA-II, PAES, and MOPSA based on 
QM, SM, DM, and MID. The authors concluded that the proposed MOICA outper-
formed the other three algorithms. An overview of the surveyed inventory papers is 
presented in Table 9.

4.5  Other applications

This section reviews and discusses papers that did not fit exactly into one of the dis-
cussed application areas or that the sample was deemed too small to be reviewed of 
their own. In addition to ordinary product distribution, this section includes applica-
tions related to soft drink distribution, reverse logistics, postal services, and patrol 
coverage.

A bi-objective MIP model is proposed by Ghezavati and Beigi (2016) for a three 
echelon reverse supply chain minimizing total cost and total time. Furthermore, 
capacitated and heterogeneous vehicle fleets and soft time windows with associated 
penalty costs were considered. On several random test instances, the �-constraint 
method is proposed for small and medium-sized problems. In contrast, the NSGA-II 
is proposed for larger problem instances to find the Pareto front.

To optimize an inter-province postal delivery system, Karimi and Setak (2018) 
introduced a bi-objective flow shipment scheduling hub LRP. The network is not 
fully interconnected, and the objectives were to minimize total cost, incorporate 
fixed establishing and variable routing costs, and maximize the delivery flow by the 
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latest arrival time. Integer programming models are presented in which time is first 
assumed to be uncertain and modeled by the chance constraint method, and the flow 
is then considered uncertain. A number of valid inequalities and preprocessing were 
used together with both the �-constraint and normalized weighted sum method to 
solve the problem. The authors state that using all preprocessing and valid inequali-
ties, the computation time could be reduced to 89.34 percent compared to the base 
model.

Mamaghani and Davari (2020) considered a set of homogeneous vehicles for 
an LRP with simultaneous pick-up and delivery and time windows. A bi-objective 
MIP model was presented to minimize the total cost and time-windows violations. 
NSGA-II and NRGA were proposed to solve the problem, while the Taguchi method 
was applied for parameter tuning. Based on 45 benchmark instances, the algorithms 
were compared base on SM, DM, NPS, CPU-time, and MID. The result showed that 
while the NRGA outperformed NSGA-II based on DM, the NSGA-II was superior 
based on SM and CPU-time. However, the results were inconclusive and not statisti-
cally significant regarding NPS and MID.

A many-to-many hub LRP with hard time windows and simultaneous pick-up and 
delivery was studied by Basirati et al. (2020). A bi-objective MIP model was pro-
posed to minimize the total costs of the system and the difference between the mini-
mum and the maximum costs of vehicles allocated to each route, i.e., minimizing 
the imbalance in the distance traveled. The model was validated by solving small-
sized instances based on data of road freight transport in Iran using the AUGME-
CON2 method and comparing those to a proposed MOICA algorithm. The results 
showed that the MOCIA performed satisfiably. Furthermore, the MOICA algorithm 
was compared to an NSGA-II algorithm for large instances based on QM, SM, DM, 
and MID metrics. The results showed that the MOICA performance was superior in 
finding high quality solutions in an acceptable computational time.

Leng et  al. (2019a) studied the regional low-carbon LRP (RLCLRP) and 
accounted for simultaneous pick-ups and deliveries, hard time windows, and a het-
erogeneous vehicle fleet. In the RLCLRP, goods are to be picked up and delivered 
to customers from depots in a city located in nested zones with their speed lim-
its. A bi-objective MIP model was presented to minimize the costs of the system, 
including depot and vehicle costs and travel costs which have been defined as fuel 
consumption and carbon emissions. The second objective was to minimize the vehi-
cle waiting time. A HH is presented to solve the model, which utilizes a quantum-
based approach for selecting the high-level strategy. Leng et al. (2019b) study the 
same problem but with the objectives to minimize the service duration time, client 
waiting time, and the total costs, including fuel consumption and carbon emissions. 
A MOHH was proposed to solve the problem with four selection strategies for the 
higher-level heuristics, three acceptance criteria, and three MOEAs as the pool for 
the lower-level heuristics. The results showed that the proposed algorithm could 
produce high-quality solutions for most instances.

Emphasizing distance minimization, Golmohammadi et  al. (2016) utilized a 
MOICA to optimize storage location and vehicle routing, with the objectives to 
minimize total cost and the imbalanced distance traveled. For small, medium-sized, 
and large test instances, the MOICA was compared to NSGA-II and PAES based 
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on a QM and SM. The authors state that MOICA outperformed the other two algo-
rithms in both matrices. Hadian et  al. (2019) did also compare the MOICA algo-
rithm to NSGA-II but in terms of QM and MID for a two-stage supply chain with 
a capacitated and homogeneous vehicle fleet. A bi-objective MIP model aims to 
minimize the system’s total costs, and the difference in vehicle traveling distance 
was presented. In addition, several crossover and mutation strategies were adjusted 
using the response surface methodology. Based on 56 generated instances of small, 
medium, and large scales, the superiority of the MOICA algorithm over the NSGA-
II, especially for large-sized instances, was demonstrated.

In recent years environmental objectives have gained increased attention from 
scholars. Even if not always explicitly, such objectives have been implicitly included 
in the cost functions, as, for instance by Leng et  al. (2019a, 2019b) who have 
included fuel consumption and carbon emissions in their total cost function. Papers 
on multi-objective location-routing problems focusing explicitly on the environmen-
tal factors could be divided in two groups: minimizing fuel consumption and mini-
mizing greenhouse gas emissions respectively. In most cases, however, these groups 
overlap.

Toro et al. (2017b) considered the green capacitated LRP with operational costs 
and total emissions, explicitly minimizing fuel consumption in the proposed bi-
objective MIP. Furthermore, they presented a new set of constraints that maintain 
the connectivity requirements of the problem. Their work is extended by Toro et al. 
(2017a) which presents a Green Open tour LRP optimizing the same objectives as 
Toro et al. (2017b) and utilizing an emission factor model to calculate the fuel con-
sumption assuming constant speed. Test instances adapted from Prins et al. (2007) 
were used in both studies to validate the models using the �-constraint method. An 
interesting conclusion from both studies was that better fuel economy in the long 
term, and thus less emissions, can be achieved by using more vehicles. More vehi-
cles that carry lesser loads and prioritize customers with higher demand first can 
perform shorter routes and are thus preferable from an environmental point of view 
in the long run.

Tajabadi and Kazemi (2016) presented a NL-IP model with three objectives; 
minimizing the total cost, maximizing demand served, and minimizing the pollution 
rate caused by transportation for a two-echelon supply chain. Two meta-heuristic 
algorithms, NSGA-II and NRGA, are developed to solve the problem, and the Tagu-
chi method is used to set the values of the parameters. For six randomly generated 
test instances, the two algorithms are compared based on SM, DM, NPS, and CPU-
time. The result showed that the NSGA-II outperformed the NRGA in DM and NPS, 
while NRGA was superior in CPU-time. However, no superiority between the algo-
rithms could be established based on SM.

Rabbani et  al. (2018c) compared the NSGA-II and MOPSO algorithms based 
on NPS, SM, DM, and CPU-time for the transportation LRP (TLRP), which could 
be described as an extension of a two-echelon location routing problem. For a set 
of homogeneous vehicles and soft time windows, the presented MIP model aims 
to minimize total costs, fuel consumption, and co2 emissions, as well as the work-
load balance of the drivers. Based on randomly generated test instances, the result 
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showed that the MOPSO algorithm was outperformed by the NSGA-II in all metrics 
but CPU time.

NSGA-II was compared to an NSGA-II algorithm combining tabu search 
based on MID and DM in Chen et al. (2018). The authors presented a bi-objec-
tive MIP model that minimizes the total costs and the co2 emissions caused. Full 
truckloads and split deliveries were allowed as well as that a truck can visit the 
same supplier logistic centers and plants multiple times. 36 randomly generated 
instances were used in the comparison. The result showed that the NSGA-II-TS 
was superior in both evaluation metrics on 34 out of 36 test instances and got a 
better value in at least one metric of the remaining two instances.

Tricoire and Parragh (2017) and Faraji and Afshar-Nadjafi (2018) both consid-
ered multi-period models. Tricoire and Parragh (2017) introduced the green city 
hub location routing problem (GCHLRP) in which, in addition to facility loca-
tion decisions, fleet size and mixture were considered. The model aims to inves-
tigate the trade-off strategic cost and future operational emissions, and therefore 
the objectives of the bi-objective model were to minimize cost and co2 emissions. 
However, the cost does not include operational routing costs but only strategic 
costs incurred when establishing the infrastructure. A MIP model was presented, 
and a decomposition method was developed in which routes were first generated 
and then aggregated using a set covering model. Based on small instances, the 
approach was almost always able to find the Pareto-front, and in cases when it 
was not, the solutions were very close to the Pareto set.

Faraji and Afshar-Nadjafi (2018) proposed a bi-objective model minimizing 
total cost and greenhouse gas emissions. In addition to multiple time periods, the 
authors considered multiple depots, products, constraints of hard and soft time 
windows, and a heterogeneous set of vehicles. In addition, the fuzzy approach 
by Lei (2008) was applied to the model. A hybrid genetic algorithm integrating 
simulated annealing was proposed to solve the problem. The results on randomly 
generated small and medium-sized problems were compared to the optimal solu-
tions obtained by GAMS with respect to computational time and quality. For 
small-sized problems, the solutions by the H-GA-SA algorithm had an optimality 
gap of 2 pecent. The algorithm was able to find four of eight optimal solutions, 
with a runtime within 32 percent of that needed by the GAMS software. For 
medium-sized problems, the algorithm achieved an optimality gap of 8 percent 
within 23 percent of the GAMS runtime.

It can be argued that being eco-friendly in today’s society is a necessity for organ-
izations rather than a competitive advantage (Govindan et al. 2020). As the aware-
ness of sustainable development increases, some scholars focus on other aspects of 
the triple bottom line, such as social factors. For instance, Zandkarimkhani et  al. 
(2020b) proposed a two-phase approach that utilizes FAHP and FTOPSIS in the first 
phase to order location of facilities after social factors. The second phase consists 
of a bi-objective MIP model that considers heterogeneous and capacitated vehicles, 
split-delivery in a multi-echelon and multi-period supply chain. The aim was to min-
imize the total costs while maximizing social effects, and the model was validated 
through a case of a producer in the PET industry using CPLEX.
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The total cost and workload balance of the routes was considered by Martinez-
Salazar et  al. (2014). They proposed a representation of the TLRP based on pri-
orities, making it suitable for local search procedures and evolutionary algorithms 
and reducing the computational effort. Two solution approaches are developed based 
on local search, SSPMO and an evolutionary NSGA-II. Based on computational 
evaluations and by comparing to exact methods, the authors conclude that SSPMO 
achieved high-quality solutions while reducing CPU-time and by outperforming 
the NSGA-II on small instances. However, as the sizes of the instances increased, 
NSGA-II achieved better estimations of the Pareto front.

Similar work has been performed by Amini et  al. (2020) who study the trans-
portation location arc routing problem (TLARP) and presented a bi-objective MIP 
model which sought to minimize the total costs and the makespan. To solve the 
problem, the AUGMECON2 method was used. However, due to the problem’s NP-
hardness, NSGA-II in combination with multi-objective late acceptance hill-climb-
ing algorithm (MOLAHC) and a local search procedure was also used, resulting in 
four meta-heuristics; NSGA-II, NSGA-II-LS, hybrid, and hybrid-LS. A response 
surface methodology was used to find suitable parameters for the metaheuristics. 
Based on 40 randomly generated test instances, it could be shown that the NSGA-II-
LS performed better than the others while the hybrid-LS was the second-best. How-
ever, the hybrid-LS required significantly less computational time.

A large part of the papers addressing MO-LRP focus on minimizing undesira-
ble objectives that can be conceived as interrelated, such are, for instance, cost and 
distance or cost and fuel consumption. However, some works focus on maximiz-
ing desirable objectives in which case the conflict of the objectives is intuitively 
more clear, for instance, cost and demand served or, in more general terms, cost 
and customer satisfaction. In such a work, Liu and Kachitvichyanukul (2015) pre-
sented a bi-objective MIP problem minimizing total cost and maximizing demand 
served. To solve the problem, an MOPSO was utilized on data sets from Prodhon 
(2010), modified to include capacity and number of vehicles. Furthermore, the 
authors proposed and utilized two different decoding methods of which the first 
one starts by first selecting the depot location and then the customer assignment 
and the route construction, while the second one first clusters the customers around 
one depot and subsequently performs the assignment. The authors conclude that the 
MOPSO framework could produce high-quality Pareto fronts for most instances, 
independently of decoding method, although the quality may differ between the two 
methods.

Li and Keskin (2014b) aimed towards an effective coverage of highway patrol and 
dynamic patrol routing. They proposed a multi-period dynamic LRP, and assumed 
that troopers start their routes at temporary stations, patrol specific locations with pre-
vious high crash frequencies, and return to the same or another temporary station; it 
is a open tour routing in that sense. A MIP model was presented, which determines 
the number of troopers, routes, location of stations, and where to start and end the 
routes. The objectives were to minimize total cost while maximizing the coverage. In 
order to solve the problem, the �-constraint method was used in addition to a custom-
built heuristic algorithm that utilizes the hierarchical structure of the problem based on 
neighborhood searches embedded within simulated annealing. The authors concluded 
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that by allowing routes to start from multiple locations, the coverage was improved up 
to 12 percent compared to the single depot coverage model.

Wang et al. (2018a) presented a bi-objective LRP model with simultaneous pick-
up and delivery as well as fuzzy time windows for an urban distribution network. 
In addition, two delivery modes were considered as home delivery and customer 
pick-up. They proposed an MIP minimizing total cost and maximizing customer sat-
isfaction by a trapezoidal fuzzy membership function for customers served within 
a specific time. A tabu search heuristic of three phases, initialization, location, 
and routing, was used to solve the presented problem and compared to a simulated 
annealing algorithm based on a set of 15 generated test instances. By evaluating the 
service mode and the effects of time windows, the authors concluded that the tabu 
search heuristic showed significant improvement for most test instances compared to 
the simulated annealing algorithm with better non-dominated solutions.

Wang et al. (2018b) considered hard time windows, and presented a bi-objective 
MIP model to minimize total cost and maximize customer satisfaction measured as 
vehicle punctuality. The authors use data mining to group customers in similar clus-
ters and utilize the K-mean clustering algorithm to provide initial populations. These 
populations are used in a modified NSGA-II algorithm that includes scanning the 
nodes’ position in the initial population generation and a partially mapped crossover 
operator. The model and solution approach was validated by comparison to MOGA 
and MOPSO on a real-world instance of a beverage distribution network in Chong-
qing, China.

Lastly, Shahsavari-Pour et al. (2020) proposed a fuzzy bi-objective MIP minimiz-
ing the total cost and maximizing reliability, whereas the reliability was considered 
as the probability of failure in either depot, vehicles, or routes. The second objec-
tive is thus, expressed as the minimization of such probability. Small instances are 
solved using the �-constraint method. In contrast, larger instances were solved utiliz-
ing the NSGA-II and a developed firefly meta heuristic with non dominated sorting 
method in combination with a new method for calculating distances between fire-
flies (NSDFA). The authors concluded that the NSDFA performed better than the 
NSGA-II in small to medium-sized instances, while the NSGA-II is better suited for 
larger instances. Table 10 presents an overview of the papers discussed above.

5  Conclusions

In this paper, an extensive overview is provided of the field of bi- and multi-objec-
tive location routing problems. The paper reviews 80 journal articles published 
between 2014 and 2020. Included papers are classified based on several different 
factors covering model assumptions and characteristics, objectives, and solution 
approaches and a literature review is provided based on the contributions various 
application areas.

Although the present survey considers only multi-objective problems some of the 
research suggestions proposed by previous surveys on LRPs do apply. Referring in 
particular to the suggestions proposed by Nagy and Salhi (2007) and subsequent 
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discussions on these by Drexl and Schneider (2015) and Prodhon and Prins (2014) 
we can conclude that some progress has been made with regard to several aspects:

• Dynamic and stochastic problems have previously been scarce among the contri-
butions to the field. However, although the majority of the works are still deter-
ministic and static, such problems are gaining increased attention.

• Integrated problems in logistics where other aspects of logistics are considered 
in combination with location-routing have also been suggested as an interesting 
research avenue. Drexl and Schneider (2015) concluded that integrated problems 
did attract more attention however, that the topic still required further research. 
In the case of multi-objective LRPs we can conclude thath this topic has received 
considerable attention since and applications such as disaster relief, waste man-
agement, or perishable supply chains compose a sizable part of the contributions 
of this survey.

However, there are research topics suggested in previous reviews that attracted less 
attention. The design of exact methods which exploit the problem structure, and the 
development of unified heuristics to avoid the proliferation of very similar variants 
are two suggestions by Prodhon and Prins (2014) which are still very much valid.

With regard to the present survey several conclusions can be drawn. The fact that 
many of the included papers are case studies, using real-world data to validate the 
model, demonstrate the practical importance of the problem. Yet, the field is some-
what unexplored and most papers deal with basic variants of the problem. Although, 
some real-life aspects such as time windows and capacitated facilities are considered 
in many contributions, there are only few papers which present innovative modeling 
approaches. Furthermore, in case of multiple echelons, routing is mostely conducted 
only in the last stage. A possible direction for future research is therefore on multi-
level LRPs.

A large number of the papers have been focused on the application of nature-
inspired algorithmic approaches where the NSGA-II is the most popular followed by 
PSO. The focus of algorithmic development and the limited scope of exact solution 
methods used in cited papers underline the complexity of the presented problems. 
Thus, the development of exact methods and the unification of heuristics, as previ-
ously indicated, still constitutes an interesting area for future research.

Furthermore, as there is a lack of generally available benchmark instances it is 
hard to draw any comparative and general conclusions regarding different solution 
approaches. Instead, instances used are usually randomly generated to fit the specific 
problem discussed. This means that various solution methods are hard to compare 
and evaluate. Thus, deriving such a benchmark library of instances is sought.

Regarding the objectives used, almost all cited papers consider some type of cost 
and very few did not include a cost. The most used combination of objectives were 
cost and coverage. These can be considered as traditional objectives from a business 
perspective. Even if objectives regarding environmental factors has attracted some 
attention lately it is reasonable to assume that decision makers have to consider 
such factors to a larger extent in the future due to increased customer awareness 
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and imposed regulations. Thus, incorporating environmental factors in the modeling 
process should be considered as a research opportunity.
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