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Abstract
Data envelopment analysis (DEA) is a popular non-parametric approach to exam-
ine performance and productivity of airlines; however, it could not provide statisti-
cal information such as confidence intervals on the estimated efficiency scores. We 
combined stochastic frontier analysis and DEA into a single framework to disentan-
gle noise and ‘pure’ inefficiency from the DEA inefficiency scores and accordingly 
provide confidence intervals for the estimated efficiency scores. Monte-Carlo simu-
lation verified that our novel model is a good alternative for the conventional DEA 
as well as the bootstrap DEA. Empirical application using Asia-Pacific airlines’ data 
(2008‒2015) shows that after accounting for the ‘pure’ random errors, the sampled 
Asia-Pacific airlines performed well during the study period but their ‘pure’ effi-
ciency was declining, hence, there is still room for improvement.

Keywords Data envelopment analysis and stochastic · Confidence intervals · Monte 
Carlo simulation · Bootstrap DEA · Asia-Pacific airlines · Efficiency levels

1 Introduction

Prior to the Covid-19 pandemic, the global economy was significantly boosted up by 
the aviation sector, with 87.7 million jobs supported and US$3.5 trillion generated 
(corresponding to 4.1% of the global gross domestic product in 2018) (Air Trans-
port Action Group 2019). The direct and indirect impacts of the aviation industry 
have been recognised in business and trade development, infrastructure develop-
ment and tourism, among others (Acar and Karabulak 2015). These developments, 
in turn, fuel the demand for air transportation, especially in the Asia-Pacific region 
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(Heshmati and Kim 2016). A recent report from the IATA forecast revealed that the 
net profits of the Asia-Pacific’s aviation industry reached US$6.3 billion in 2016, 
second to North America. However, the report pointed out that airlines operating in 
the Asia-Pacific region performed differently, and thus an examination of the effi-
ciency and performance of Asia-Pacific’s airlines is justified (IATA 2016).

Researchers in the transportation field have witnessed the rise of the frontier anal-
ysis approach in evaluating the performance and efficiency of homogeneous deci-
sion-making units (DMUs) such as airports (Assaf et al. 2014; Ngo and Tsui 2020), 
airlines (Adler et al. 2013; Heshmati and Kim 2016), ports (Tovar and Wall 2017), 
railways (Lan and Lin 2005; Azadeh et al. 2018) and buses (Viton 1997; Kang et al. 
2019). The idea of frontier analysis can be traced back to the possible production 
frontier, in which DMUs are compared with a benchmark (i.e. the best practice fron-
tier): a DMU is efficient if it operates on the frontier and inefficient otherwise. To 
estimate the best practice frontier, one can use a parametric approach [e.g. stochastic 
frontier analysis (SFA]) or a non-parametric approach [e.g. data envelopment analy-
sis (DEA)]. These approaches have their own pros and cons (see, for example, Coelli 
et al. 2005); for example, DEA is often used in cases of small samples, whereas SFA 
often requires larger samples.

An important difference between these two approaches is that in the non-para-
metric model, if a DMU is away from the best practice frontier, the deviation is 
treated as inefficiency; in the parametric approach, the deviation or the error is bro-
ken down into inefficiency and pure error (e.g. measurement errors or luck). The 
argument for DEA is that if a DMU deviates from the frontier, for whatever rea-
son, it is inefficient. However, statisticians (of SFA) tend to argue that if the reason 
is exogenous, such as a flood in agriculture, it should be distinguished from inef-
ficiency. Specifically, in SFA, the frontier is first estimated via the ordinary least 
squares (OLS) model, and the residuals between the observed and estimated data are 
decomposed via the maximum likelihood estimation (MLE) approach (Aigner et al. 
1977; Meeusen and van den Broeck 1977; Bogetoft and Otto 2011; Ngo et al. 2019). 
These econometric techniques allow one to make statistical inferences about SFA 
efficiency estimates, such as the confidence intervals. In contrast, the non-parametric 
approach has been characterised as deterministic (as opposed to the econometric 
approach) and thus it is deemed to be a non-statistical approach (Gong and Sickles 
1992; Banker 1996).

To remedy the non-statistical deficiency of the non-parametric approach of 
performance analysis, several approaches have been introduced (see, for exam-
ple, Grosskopf 1996; Olesen and Petersen 2016). The recent review of Olesen and 
Petersen (2016) summarised these approaches as three directions. The first direction 
is to extend DEA to be able to handle the estimated deviations as random deviations 
(Banker 1988,1996; Banker et al. 2015). The second direction is to extend DEA to 
be able to handle random errors in data based on the bootstrap technique (Simar and 
Wilson 1998; Lothgren and Tambour 1999). The last direction is to extend DEA to 
regard the estimated frontier as a random or stochastic frontier, also based on ran-
dom variation in the data (Huang and Li 2001; Ruggiero 2004; Kao and Liu 2009; 
Azadeh et al. 2017). These three directions have their own limitations. The first does 
not include any estimation of the sampling distributions of the estimated efficiency 
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scores, implying that no information can be extracted on the confidence intervals 
for each of the estimated DEA efficiency scores. The second contributes to the issue 
by resampling the data to get an approximation of these unknown sampling distri-
butions and extract confidence intervals for the estimated DEA efficiency scores 
(Olesen and Petersen 2016); however, these pseudo-bootstrapped data and efficiency 
scores provide limited implications for managers to improve the performance of the 
DMUs being studied. The last one departs from the deterministic frontier basis of 
DEA; from the managerial perspective, it is also not very convincing to argue that 
the observed inputs and outputs data of the involved DMUs are not ‘real’ but ran-
dom or stochastic (Olesen and Petersen 2016).

In this paper, we extend the first direction of random deviations introduced by 
Banker (1988, 1996) and Banker et  al. (2015) to provide confidence intervals for 
DEA efficiency scores. Specifically, in contrast with the second and third direc-
tions above, we argue that the observed data is unique, so does the efficient frontier 
enveloped from those data. However, estimation errors can happen in DEA, like in 
any regression/estimation model, resulting in randomness in the DEA inefficiency 
scores. To simply put, DEA inefficiency measurement is affected at some extent by 
errors and noise, and thus we need to disentangle them from the ‘pure’ inefficiency 
component. This is similar to the situation of SFA, as discussed above, so one can 
use the MLE approach to solve this problem and also extract important information 
on the ‘pure’ inefficiency scores, the ‘pure’ efficiency scores and their confidence 
intervals. This information is useful for managerial implications and our approach 
therefore overcomes the limitation of the first direction pointed out by Olesen and 
Petersen (2016) as discussed above.

Empirically, this study employed a two-stage DEA model where the frontier as 
well as the DEA inefficiency (or deviations) were estimated during the first-stage 
estimation via the conventional DEA model. These inefficiencies were then decom-
posed into ‘pure’ inefficiency and noise via the MLE approach. In this sense, our 
approach is a combination of DEA and SFA and therefore is named as the data 
envelopment analysis and stochastic (DEAS) model. This novel DEAS approach 
is similar to traditional SFA, except the DEAS deviations are computed between 
the observed data points and the (piece-wise) DEA frontier instead of the estimated 
OLS frontier, as in SFA. The validity and robustness of the proposed DEAS model 
in this study is further verified by a Monte Carlo simulation, in which the results 
show that the ‘pure’ inefficiency component of the novel DEAS model has similar 
characteristics to those of the DEA model, and the ‘pure’ random errors component 
of DEAS follows a normal distribution. Therefore, this novel DEAS approach is a 
good alternative to conventional DEA and bootstrap DEA for measuring the perfor-
mance and efficiency of DMUs. In our view, it can be a compliment or robustness-
checking tool for bootstrap DEA.

For an empirical application, this study applied the DEAS model to examine 
the operational and financial efficiency levels of 14 major Asia-Pacific airlines. 
The International Air Transport Association (IATA) has acknowledged that the 
Asia-Pacific aviation market in 2016 was the second largest aviation industry in 
the world, with a net profit of US$6.3 billion, second only to North America’s. 
IATA (2016) also pointed out that Asia-Pacific airlines performed differently, and 
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thus a thorough examination of the efficiency and performance of Asia-Pacific 
airlines via this novel DEAS model is justified.

The rest of the paper is constructed as follows. Section 2 reviews the method-
ologies of SFA and bootstrap DEA, and explains the proposed DEAS model. A 
Monte Carlo simulation for illustrative purposes is presented in Sect. 3. Section 4 
applies the DEAS model to measure the operational performance of the sampled 
Asia-Pacific airlines and discusses the findings. Section 5 concludes the key find-
ings and indicates directions for future research.

2  Confidence interval estimation in frontier analysis

As discussed previously, this section provides some information on SFA as well 
as bootstrap DEA, the most popular approach dealing with confidence interval 
estimation in DEA. We then discuss some limitations of bootstrap DEA in com-
parison to SFA and then introduce our DEAS model—note that relevant discus-
sions on the so-called stochastic DEA (the first direction mentioned in Olesen and 
Petersen 2016) are also presented in this sub-section.

2.1  Using SFA to estimate the confidence intervals of efficiency scores

SFA was simultaneously introduced by Aigner et al. (1977) and Meeusen and van 
den Broeck (1977). The basic idea of SFA is that in the residuals �i between the 
observed and OLS-estimated data, one can distinguish the inefficiency ui from the 
stochastic error vi so that:

where y represents the output, x represents the set of inputs used to produce output 
y , � is a vector of coefficients to be estimated by using OLS, i denotes the observa-
tion or DMU, v is the ‘pure’ random error and u gets a negative sign, since it repre-
sents inefficiency. Note that in Eq. (1), the SFA frontier and the ‘pure’ inefficiency 
component u are still deterministic; only the error component v is stochastic.

One basic assumption for the two components ui and vi is that they are inde-
pendent and identically distributed across observations [although there is an argu-
ment that ui should not be identical (Olesen and Petersen 2016)], and thus ui has 
a constant mean of �u and a variance of �2

u
 , whereas vi has a constant mean of 0 

and a variance of �2
v
 . The optimal values of the parameters � , � , �u and �v (and 

any other parameters) that can maximise the log-likelihood function in Eq.  (2) 
also specify the SFA frontier, allowing us to estimate the efficiency and related 
confidence intervals. Note that it is under the assumption that ui follows a half-
normal distribution, whereas yi follows a normal distribution (for other assump-
tions, please see Kumbhakar et al. (2015), among others).

(1)yi = � + βxi + �i = � + βxi + vi − ui,
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where:

Accordingly, the SFA efficiency scores can be estimated as in Eq.  (5), following 
Jondrow et al. (1982):

The confidence intervals of the efficiency scores in Eq. (5) are further estimated fol-
lowing Horrace and Schmidt (1996) and Hjalmarsson et al. (1996), as in Eq. (6):

2.2  Using bootstrap DEA to estimate the confidence intervals of efficiency scores

The bootstrap method is an intensive resampling method that can approximate the sam-
pling distribution of the estimator and thus provides inferences in complex problems 
(Efron and Tibshirani 1994). Following this approach, Simar and Wilson (1998) and 
Lothgren and Tambour (1999) argued that by using bootstrap, one can resample the 
observed sample to be an approximation of the population. Simply put, the efficiency 
scores observed from DEA are only a sample of the population (of the efficiency 
scores) and therefore bootstrap DEA can provide better estimators of the efficiency 
scores as well as permitting valid inferences.

Conventional DEA examines a set of n firms (or DMUs), each using m inputs xk 
( k = 1,… ,m ) to produce s outputs yr ( r = 1,… , s ). In this sense, the efficiency score 
of DMUj can be estimated as:
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where u and v are the two sets of multipliers or weights to be estimated for the out-
puts y and the inputs x of DMUj , respectively.

Equation  (7) seeks for an optimal weights u and v so that DEAj is maximised. 
Note that the first constraint of Eq.  (7) requires those weights to be applicable to 
all DMUs in the sample so that the efficiency scores of all DMUs cannot exceed 
unity. In bootstrap DEA, Simar and Wilson (1998) proposed that both DEAj and 
the first constraint can be computed by using pseudo- (or resampling) data. In con-
trast, Lothgren and Tambour (1999) argued that although the calculation of DEAj 
can use pseudo-data, the first constraint should use the original data instead. Simar 
and Wilson (2000) have criticized that Lothgren and Tambour (1999)’s approach 
is incorrect; however, there are evidence that the latter one still has some empiri-
cal values (e.g. Tziogkidis 2012). Nevertheless, it is obvious that bootstrap DEA 
can estimate the confidence intervals for the DEA efficiency scores by using data 
resampling; however, the trade-off is that the bootstrapped DEA scores and their 
confidence intervals are estimated from the pseudo-efficiency scores (derived from 
pseudo-data) but not the original ones, and thus there is limited implications for 
managers to improve the performance of the firms involved (Olesen and Petersen 
2016). It is therefore necessary to construct the confidence intervals based on the 
observed efficiency scores of the sampled DMUs so that after the ‘pure’ efficiency 
scores are estimated, the results can be used by managers.

2.3  Using DEAS to estimate the confidence intervals of efficiency scores

Following Banker (1988, 1996) and Banker et al. (2015), the proposed DEAS model 
in this study differs from other DEA extensions in that the frontier is not based on 
the assumption of random data so that our estimated ‘pure’ efficiency scores are 
linked to the observed data. As discussed earlier, it is not very convincing to argue 
that the observed data for a DMU are not the ‘true’ data, or that the frontier con-
structed from the observed data is not the ‘true’ frontier, and there are many sto-
chastic data and frontiers lying around that can affect the ‘true’ efficiency scores. 
Therefore, we base our study on the unique DEA frontier enveloped from the unique 
dataset of the observed DMUs. This is indeed consistent with SFA, where the data, 
frontier and inefficiency are unique or deterministic, and only the noise is stochastic.

The stochastic DEA introduced by Banker (1988, 1996) and Banker et  al. 
(2015) attempted to test for the sensitivity of DEA measurements under different 
settings, arguing that the deviation between a certain DMU and the frontier is a 
combination of the DEA inefficiency and a symmetric random error. In this sense, 
by introducing (and adjusting) the weight of the inefficiency component, one can 

(7)
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estimate different efficiency scores for that DMU—this helps explain the sensitiv-
ity and stability of stochastic DEA. However, since stochastic DEA focuses more 
on the inefficiency term and its weight, no confidence intervals for the efficiency 
scores can be estimated. We therefore extend this direction to be able to provide 
the confidence intervals for DEA efficiency scores by exploring the statistics of 
both the inefficiency and the random errors, similar to the SFA approach.

In DEAS, we first estimate a unique DEA linear frontier by following the basic 
Charnes et al. (1978) or the Charnes–Cooper–Rhodes (CCR) DEA model using 
Eq.  (7) under the assumption of constant returns to scale. Nguyen et  al. (2018) 
have showed that the frontiers of CCR-DEA and OLS SFA are very similar whilst 
the difference between variable returns to scale DEA and OLS SFA is only a 
practical issue. What we argue next is that even though the frontier is unique as 
well as the deviations (i.e. the DEA inefficiency scores), those deviations could 
still be impacted by statistical noise or random errors—the same argument has 
been applied in SFA. In other words, if a DMU deviates from the frontier, it may 
not all be attributed to inefficiency, but deviations could also be caused by ran-
dom errors, such as luck or bad weather. Following the SFA approach, we decom-
pose those deviations into two components, the ‘pure’ inefficiency (which can be 
later transformed into ‘pure’ efficiency) and the ‘pure’ errors. It is therefore more 
convincing to understand the difference between DEA inefficiency and ‘pure’ 
inefficiency from a managerial perspective, since there is no stochastic data or 
frontier involved.

Following Stevenson (1980), Banker (1988), and Banker and Maindiratta (1992), 
it is convenient and common to assume that the ‘pure’ errors follow a normal dis-
tribution whereas the inefficiency scores follow a non-zero mean truncated-normal 
distribution. Since the efficiency scores are bounded by [0, 1], one can even imply 
a half-normal distribution for these efficiency scores. However, we choose the trun-
cated-normal distribution because it is more general (Kumbhakar et  al. 2015)—it 
is only a technical matter to extend our model to other distribution assumptions. It 
is also well known that the deviations themselves also follow a normal distribution 
because they are consistent with the residuals estimated from regression (Banker, 
1988). Therefore, our aim is to estimate the two components of the DEA inefficiency 
scores so that these conditions are satisfied. The DEAS model can be formalized as 
follows.

Step 1 Compute the DEA efficiency scores ( DEA ) by using the CCR DEA model 
as in Eq.  (7) above. The inefficiency scores ( IEF ) can be consequently computed 
as follows—the construction of efficiency scores in DEA differs from that of SFA 
explaining why Eqs. (8) and (16) are also different:

Step 2 Use MLE to estimate the ‘pure’ inefficiency ( pIEF ) component and the 
‘pure’ error ( pER ) component from the observed IEF by maximising the log-like-
lihood function in Eq. (9) below, given the conditions in Eqs. (10)–(14). Note that 
steps 2, 3 and 4 exactly follow the SFA process given in Eqs. (1)–(6) above.

(8)IEFj = 1 − DEAj, j = 1, .., n
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where:

Step 3 The approach of Jondrow et al. (1982) can be used to derive the predictor of 
pIEF as in Eq. (15). The values of the ‘pure’ efficiency scores ( DEASj ) can then be 
obtained via Eq. (16):

Step 4 We can further construct the confidence intervals for DEASj at an (1 − �)100 % 
level of significance, following Horrace and Schmidt (1996) and Hjalmarsson et al. 
(1996):
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3  Monte Carlo simulation

3.1  Data generation process

To illustrate the functions of the proposed approach, we used a simple Monte Carlo 
experiment, following Giraleas et  al. (2012). In particular, we examine a set of 
DMUs, which can be in any industry or sector, operating under the same constant 
return to scale Cobb–Douglas production function:

where Yi is the output of DMU i , Ki is the capital input of DMU i , Li is the labour 
input of DMU i and �i is the random deviation following a normal distribution asso-
ciated with DMU i . Note that �i will be treated as inefficiency by DEA but is further 
decomposed by SFA and DEAS. It is also important to note that all DEA and SFA 
simulations apply similar models to Eq. (20), in which inefficiency is defined as �i . 
In this sense, SFA and DEAS identify and estimate ‘pure’ inefficiency (and thus its 
counterpart ‘pure’ efficiency) based on �i . In contrast, bootstrap DEA estimates the 
bias-corrected efficiency based on the original DEA efficiency scores DEAi and thus 
has a weak relationship with �i . Consequently, bootstrap DEA will be less accurate 
than SFA and DEAS, as shown in Table 1.

The data for K and L are randomly generated following a uniform distribution 
of U[0, 1] , whereas �i is randomly generated following an uniform distribution of 
U(0, 0.1) . The data of Yi are then computed via Eq. (20) above, in which no DMU is 
fully (i.e. 100%) technically efficient because of the inclusion of �i . Since most DEA 
studies have a limited number of DMUs, we focused more on the simulated data of 
100 DMUs; however, another simulation dataset of 200 DMUs was also generated 
for testing the robustness of our DEAS model.

As discussed previously, one basic characteristic that distinguishes SFA from 
DEA is how they treat �i . Since in DEAS, we are trying to do the same as in SFA, 
in contrast to DEA, we are also interested in how the pure inefficiency component 

(20)Yi = K0.5
i
L0.5
i
exp

(
�i
)
,

Table 1  Accuracy results of 
different efficiency measures

Simulated Size Measure MAD MSE AC

100 DMUs SFAi 0.0529 0.0051 1.0236
DEAi 0.0458 0.0030 0.9987
SW98i 0.0503 0.0034 1.0261
LT99i 0.0799 0.0087 1.0598
DEASi 0.0441 0.0027 0.9984

200 DMUs SFAi 0.0535 0.0050 1.0222
DEAi 0.0380 0.0021 0.9899
SW98i 0.0352 0.0018 0.9964
LT99i 0.0567 0.0040 1.0645
DEASi 0.0341 0.0017 0.9893
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( DEAS ) behaves compared with that of SFA. Therefore, we compare and contrasted 
the deviations from the frontiers by the simulated DMUs, which are �i (for the true 
frontier), vi (for the SFA frontier), IEFi (for the DEA frontier) and pERi (for the 
DEAS frontier). In particular, by looking at the distributions of those components 
(i.e. the probability density function (PDF) and the cumulative distribution function 
(CDF)), we can check if they are normally distributed with a zero mean, a basic 
characteristic of the residuals.

Several indicators are also calculated from these simulated datasets, including the 
true efficiency scores EFi = exp

(
−�i

)
 , the SFA efficiency scores SFAi (Eq. 5), the 

DEA efficiency scores DEAi (Eq. 7) and the DEAS efficiency scores DEASi (Eq. 16), 
for each of the simulated DMUs. To compare and contrast with bootstrap DEA, two 
indicators using Simar and Wilson (1998) approach ( SW98i ) and Lothgren and 
Tambour (1999) approach ( LT99i ) are also estimated. The results from SFA, DEA, 
bootstrap DEA and DEAS will be compared with those of the true frontier [as in 
Eq. (20)] to gain a better insight into the accuracy of each method. In particular, we 
used the following accuracy indicators:

where EFi is the ‘true’ efficiency scores; sEFi are SFAi , DEAi , SW98i , LT99i and 
DEASi , respectively; MAD measures the mean absolute deviation of each indicator 
sEFi from EFi ; MSE measures the mean square error of each indicator sEFi from 
EFi ; AC measures the accuracy level of each indicator sEFi compared with EFi and 
n is the number of DMUs. According to Eqs.  (21, 23), the indicator sEFi will be 
more accurate and will more closely estimate the ‘true’ EFi when MAD and MSE 
are small and when AC is closer to unity. MAD and MSE were used by Giraleas 
et al. (2012) and AC was used by Cross and Färe (2015), among others.

3.2  Results

In general, the analysis found that DEAS outperforms SFA in terms of deviation 
decomposition. In particular, DEAS provides less skewed efficiency scores and 
more normally distributed random errors.

In Fig. 1, we first illustrated the PDF and CDF of the simulated deviations from 
the estimated frontiers of SFA, DEA and DEAS, represented by vi , IEFi and pERi , 
respectively. The ‘true’ frontier is defined in Eq. (20) and thus the ‘true’ deviations 
are given as �i . Although the distributions of IEFi and pERi are very similar to those 

(21)MAD =
1

n

n∑
i=1

||EFi − sEFi
||;

(22)MSE =
1

n

n∑
i=1

(
EFi − sEFi

)2
;

(23)AC =
1

n

n∑
i=1

EFi

sEFi
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of �i (Panels A, C and D in Fig. 1), one can see that vi (Panel B in Fig. 1) is an excep-
tion: it is left-skewed with a significantly lower variance (and thus a shorter tail). 
One may argue that since our data generation process only created positive devia-
tions 𝜀i ⊂ U(0, 0.1) , whereas SFA will estimate vi ⊂ N

(
0, 𝜎2

v

)
 , some skewness in vi 

is acceptable. We are not neglecting this issue; however, even if we account for the 
normal distribution of the random errors, DEAS still can be considered to be better 
than SFA, as pERi follows N

(
0, �2

v

)
 more closely than vi (see Panel D in Fig. 1). We 

therefore concluded that the ‘pure’ random error component pERi estimated from 
DEAS is well-behaved and satisfies the requirements for decomposition.

Regarding the confidence intervals of the stochastic efficiency scores, we com-
pared results from SFA, bootstrap DEA (SW98 and LT99) and DEAS for the 95% 
level of confidence. Since those estimated efficiency scores are different, espe-
cially for bootstrap DEA due to the characteristic of randomness in resampling, we 
expected to see some differences in their lower bounds and upper bounds as well. As 
discussed by many studies, SFAi and its confidence intervals are higher than those 
based on DEA (Hjalmarsson et al. 1996; Bauer et al. 1998) and thus it is not a sur-
prise to see that those measures are closer to unity (Panel A in Fig. 2). Panels B, C 
and D in Fig. 2 visually show that the three DEA-based measures (namely SW98i , 
LT99i and DEASi ) have a similar pattern, suggesting that DEAS can be seen as an 
alternative to bootstrap DEA, which is more computation intensive, bringing DEA 
closer to SFA in terms of statistical characteristics.

Figure 2 also shows that SFA sometimes estimates a proportion of DMUs to 
be located far from their ‘true’ efficiency (i.e. large differences between EFi and 
SFAi ), and that estimates from DEA and DEAS are located closer together (i.e. 
smaller differences between EFi and both DEAi and DEASi ). We then used mean 
absolute deviation (MAD) , mean square error ( MSE) and accuracy level ( AC) 
to further test for the accuracy of different efficiency measures. The simulation 

Fig. 1  Distribution functions of the random errors from examined methods. CDF: cumulative distribu-
tion function, PDF: probability density function, represents the (simulated) deviations from the ‘true’ 
frontier, indicates the deviations estimated by SFA, IEFi indicates the deviations estimated by DEA and 
indicates the deviations estimated by DEAS
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sample was increased to 200 DMUs to test for the robustness of DEAS – most 
DEA applications used DEA because of the small sample size issue and ended up 
with less than 200 DMUs. Table 1 presents the simulation results, where DEASi 
has the lowest MAD and MSE throughout all simulations. In addition, we also 
observed that SFA tends to underestimate the efficiency (AC > 1), whereas DEA 
and its derrivatives (i.e. SW98i , LT99i and DEASi ) tend to overestimate the ‘true’ 
efficiency score (AC < 1), which is caused by the characteristics of DEA and SFA, 
as discussed in Smith (1997) and Bauer et al. (1998). Table 1 also suggests that 
increasing the simulated sample size from 100 to 200 DMUs helps to improve the 
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Fig. 2.  95% confidence intervals for the efficiency scores of the examined methods. Values on the verti-
cal axis represent the efficiency scores; the horizontal axis represents the DMUs from 1 to 100. SW98 
indicates efficiency scores estimated via Simar and Wilson (1998). LT99 indicates efficiency scores esti-
mated via Lothgren and Tambour (1999). LB, lower bound; UB, upper bound
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accuracy of all DEA-based models, though it is not significant for SFA (e.g. MAD 
increases, but MSE and AC decrease).

4  Measuring the operational performance of Asia‑Pacific airlines 
via the DEAS model

The previous section suggested that the proposed DEAS approach is a good alterna-
tive efficiency measure that combines the strengths and addresses the weaknesses of 
the SFA and DEA models. This section applies the new DEAS approach to examine 
the operational and financial efficiency of 14 Asia-Pacific airlines.

4.1  Data and model specification

The global economy is significantly boosted up by the aviation sector, with 62.7 mil-
lion jobs created and US$2.7 trillion generated [corresponding to 3.5% of the global 
gross domestic product (GDP)] in 2016 (Air Transport Action Group 2016). The 
direct and indirect impacts of the aviation industry have been recognised in business 
and trade development, infrastructure development and tourism, among others (Acar 
and Karabulak 2015). These developments, in turn, fuel the demand for air trans-
portation, especially in the Asia-Pacific region (Heshmati and Kim 2016). A recent 
report from the IATA forecast revealed that the net profits of the Asia-Pacific’s avia-
tion industry reached US$6.3 billion in 2016, second to North America. However, 
the report pointed out that airlines operating in the Asia-Pacific region performed 
differently, and thus an examination of the efficiency and performance of Asia-Pacif-
ic’s airlines is justified (IATA 2016).

In our DEAS model, three key airline indicators (available seat-kilometres 
( ASK ), available tonne-kilometres ( ATK ) and operating expenses ( EXPENSES )) are 
used as inputs; another three key indicators (revenue passenger-kilometres ( RPK ), 
revenue tonne-kilometres ( RTK ) and operating revenues ( REVENUES )) are used as 
outputs. These variables are commonly used in prior DEA studies in air transporta-
tion (Barbot et al. 2008; Lee and Worthington 2014; Min and Joo 2016) which allow 
us to analyse the overall performance of the sampled Asia-Pacific airlines in both 
operational and financial aspects. Note that operational performance and financial 
performance are equally important to airlines in seeking for profit maximization.

We further extended the DEAS model by using a two-stage approach: after the 
‘pure’ efficiency scores ( DEASi ) were estimated as the true efficiency scores of the 
sampled airlines (excluding errors and biases) during the first-stage efficiency analy-
sis, they were then regressed on the identified explanatory variables to see whether 
the air transport-related external factors affected the efficiency of the sampled Asia-
Pacific airlines during the study period. Equation (24) presents the model specifica-
tion of the second-stage regression analysis with the explanatory variables selected 
following prior air transportation studies (e.g. Heshmati and Kim (2016) and are 
discussed below.



3424 T. Ngo, K. W. H. Tsui 

1 3

where:

• FLAG_CARRIERi is a dummy variable that equals 1 if airline i is a national flag 
carrier and 0 otherwise. This variable was previously used in Fethi et al. (2002), 
Barros and Peypoch (2009) and Chen et al. (2017), among others;

• ALLIANCEit is a dummy variable that equals 1 if airline i belongs to an airline 
alliance (Oneworld, SkyTeam or Star Alliance) at year t and 0 otherwise (Park 
and Cho 1997; Kleymann and Seristö, 2001; Min and Joo 2016);

• LISTEDit is a dummy variable that equals 1 if airline i was listed in the stock 
market at year t and 0 otherwise (Mar and Young 2001; Lu et al. 2012);

• lnASSETSit is the logarithmic value of the total assets of airline i in year t. This 
variable is used to capture the size of an airline (Feng and Wang 2000; Backx 
et al. 2002);

• GFCt is a dummy variable that equals 1 for the year 2008 and 0 otherwise. This 
variable is used to capture the impact of the Global Financial Crisis (GFC) of 
2008 on airline operations (Merkert and Morrell 2012; Tsui 2017);

• MH_ACCIDENTSt is a dummy variable that equals 1 for the period of 2014–
2015, 0 otherwise. This variable is used to capture the impact of the two Malay-
sia Airlines flight accidents (MH370 and MH17) in 2014 on international air 
transportation demand (Hunter and Lambert 2016; Yang et al. 2018);

• lnGDPpercapitait is the logarithmic value of the GDP per capita at year t of the 
country where airline i is based. This variable is used to capture the size of an 
economy as well as its air transportation demand (Khadaroo and Seetanah 2008; 
Gaggero and Bartolini 2012);

• lnTOURIST_ARRIVALSit is the logarithmic value of the number of international 
tourist arrivals at year t to the country where airline i is based on. This variable 
is used to capture tourist arrivals using air transport (Bieger and Wittmer 2006; 
Khadaroo and Seetanah 2008; Rehman Khan et al. 2017);

• lnTRADE_VOLUMESit is the logarithmic value of the total trade volumes 
(exports + imports) at year t of the country where airline i is based. This variable 
is used to capture the air cargo demand of the country (Yamaguchi 2008; Tsui 
and Fung 2016);

• lnFUEL_PRICESt is the logarithmic value of fuel prices at year t (Assaf 2011; 
Lim and Hong 2014);

(24)

DEASit = �0 + �1FLAG_CARRIERi

+ �2ALLIANCEit

+ �3LISTEDit

+ �4lnASSETSit

+ �5GFCt + �6MH_ACCIDENTSt

+ �7lnGDP per capitait

+ �8lnTOURIST_ARRIVALSit

+ �9lnTRADE_VOLMESt

+ �10lnFUEL_PRICESit + �it
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• �it is random errors.

This study examines 14 major airlines operating in the Asia-Pacific region dur-
ing the period of 2008–2015 (see Table 2). Data were collected from the statisti-
cal reports of the Association of Asia Pacific Airlines (AAPA 2016). Because of 
data limitations, and for the panel data regression in the second stage of analysis, 
we devised a multi-period sample covering the years 2008, 2010, 2012, 2014, 
and 2015. Table  2 presents the variables of interest used for the DEAS model 
in the first-stage efficiency analysis and the second-stage regression analysis 
in this study. The values of all variables are in million US dollars, except for 
TOURIST_ARRIVALS , which is in persons; FUEL_PRICES , which is in US dol-
lars; and dummy variables, which are binary. The variation in the variables of 
interest across the sampled airlines suggests that independent results from sin-
gle-dimensional analysis such as EXPENSES or REVENUES may contradict each 
other and therefore a multi-dimensional efficiency analysis of the Asia-Pacific 
airlines with different indicators is needed.

Table 2  Descriptive statistics and data source

AAPA denotes Association of Asia Pacific Airlines, EIA denotes U.S. Energy Information Administration

Variables Obs Mean Std. dev Min Max Data source

First-stage airline inputs and outputs variables for the DEAS model
ASK 70 59,629,141 32,676,174 5,054,942 122,543,607 AAPA
ATK 70 9,808,676 5,535,441 752,407 20,036,772 AAPA
EXPENSES 70 6,175,911 4,562,154 285,837 17,237,370 AAPA
RPK 70 44,565,384 24,487,433 3,619,115 94,267,400 AAPA
RTK 70 6,723,464 3,887,410 446,241 15,116,355 AAPA
REVENUES 70 6,377,378 4,746,190 228,547 16,612,764 AAPA
Second-stage variables for regression analysis
FLAG_CARRIERj 70 0.786 0.413 0 1 Authors’ own calcu-

lation
ALLIANCEjt 70 0.857 0.352 0 1 Authors’ own calcu-

lation
LISTEDjt 70 0.843 0.367 0 1 Authors’ own calcu-

lation
lnASSETSjt 70 15.562 0.998 13.171 17.024 AAPA
GFCt 70 0.800 0.403 0 1 World Bank
MH_ACCIENTSt 70 0.400 0.493 0 1 Authors’ own calcu-

lation
lnGDP per capitajt 70 9.601 1.181 7.102 10.914 World Bank
lnTOURIT_ARRIV-

ALSjt

70 15.785 1.112 12.211 17.214 World Bank

lnTRADE_VOL-
UMESjt

70 26.871 1.200 23.177 28.288 World Bank

lnFUEL_PRICESt 70 0.876 0.261 0.420 1.117 EIA
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4.2  Efficiency of Asia‑Pacific airlines

4.2.1  First‑stage efficiency analysis (DEAS model)

In this stage, the DEAS model is independently applied to yearly data (e.g. 2008 or 
2010) to obtain the ‘pure’ efficiency scores, DEASi . In general, the sampled Asia-
Pacific airlines performed relatively well during the period of 2008–2015, with high 
DEASi values between 0.943 and 0.997 (see Table 3).

Table 3 also indicates a decreasing trend in the average efficiency of the sampled 
airlines, where the average DEASi dropped from the level of 0.994 in 2008 to 0.973 
in 2015. This finding is in line with Li et al. (2016), who found that the efficiency 
of the major Asian carriers (e.g. Air China, Korean Air, Singapore Airlines, Asiana 
and Malaysia Airlines) declined during the period of 2008–2012. The results in the 
last two columns of Table 3 further confirm the impact of the GFC of 2008 and the 
two Malaysia Airlines flight accidents in 2014, as presented later in this section.

However, a further examination of the airline efficiency levels in Fig. 3 provides 
a different perspective of Asia-Pacific airlines’ performance over the study period. 
At first, if one looks at the results from the DEA model (i.e. the dotted line for DEAi 
in Fig. 3), it shows that the sampled Asia-Pacific airlines performed differently from 
each other: the high-performing group with the highest possible efficiency score of 
1.000 or 100% efficiency includes EVA Air, Qantas and Vietnam Airline; the low-
performance group includes Garuda Indonesia, Royal Brunei, All Nippon Airways 
and Thai Airways. If we look at the ‘pure’ efficiency derived from the DEAS model 
(i.e. the solid line for DEASi in Fig. 3), however, we still see that airlines performed 

Table 3  Pure efficiency scores of Asia-Pacific airlines estimated via DEAS

∆GFC measures the differences between DEAS
i
 for 2015 and 2008, ∆MH measures the differences 

between DEAS
i
 for 2014 and 2012

Airlines 2008 2010 2012 2014 2015 ∆GFC ∆MH

Royal Brunei (BI) 0.997 0.976 0.991 0.973 0.943 − 0.054 − 0.018
EVA Air (BR) 0.993 0.983 0.991 0.973 0.980 − 0.014 − 0.018
China Airlines (CI) 0.993 0.983 0.992 0.973 0.980 − 0.014 − 0.019
Garuda Indonesia (GA) 0.993 0.975 0.991 0.974 0.969 − 0.024 − 0.017
Japan Airlines (JL) 0.997 0.983 0.991 0.973 0.980 − 0.017 − 0.018
Korean Air (KE) 0.993 0.985 0.992 0.973 0.980 − 0.014 − 0.019
Malaysia Airlines (MH) 0.993 0.983 0.991 0.973 0.980 − 0.014 − 0.018
All Nippon Airways (NH) 0.993 0.985 0.983 0.979 0.970 − 0.023 − 0.004
Asiana Airlines (OZ) 0.993 0.983 0.991 0.977 0.975 − 0.019 − 0.014
Philippine Airlines (PR) 0.993 0.983 0.992 0.973 0.955 − 0.038 − 0.019
Qantas (QF) 0.993 0.983 0.991 0.973 0.980 − 0.014 − 0.018
Singapore Airlines (SQ) 0.993 0.983 0.991 0.973 0.980 − 0.014 − 0.018
Thai Airways (TG) 0.997 0.985 0.991 0.977 0.975 − 0.022 − 0.014
Vietnam Airlines (VN) 0.993 0.983 0.991 0.973 0.980 − 0.014 − 0.018
Average 0.994 0.982 0.991 0.974 0.973 − 0.021 − 0.017
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differently but were less volatile (the average DEASi efficiency scores are between 
0.976 and 0.985). Differences between the means of DEAi and DEASi are statisti-
cally significant at 1% (t-test); however, the two approaches ranked the examined 
airlines similarly (Mann–Whitney test). As shown in this study, DEAS has less dis-
criminatory power than DEA. It is not surprising, however, since DEAS is in the 
same line with SFA, and SFA is well known to have higher efficiency scores and 
lower standard deviation compared to DEA (Hjalmarsson et al. 1996; Bauer et al. 
1998; Michaelides et al. 2009; Roberts 2014).

In particular, the findings of the DEASi scores of the efficient airlines (e.g. Sin-
gapore Airlines, China Airlines, Korean Air or Japan Airlines) are consistent with 
those in previous studies (Arjomandi and Seufert 2014; Chang et al. 2014), which 
suggests that these airlines are top performers in the Asia-Pacific region as well as 
globally (notice that the dEFi scores rank them as second-tier performers, behind 
EVA Air, MH, Qantas and Vietnam Airline). In addition, Thai Airways is now con-
sidered as a good performer in the group, which is more reasonable and in line with 
the argument that Thai Airways should perform well thanks to its high managerial 
efficiency (Lee and Worthington 2014; Min and Joo 2016). The relatively low-per-
forming group according to their DEASi scores still consists of Garuda Indonesia 
and Royal Brunei but also Philippine Airlines. It is noted that DEA also provides 
information on peer DMUs (i.e. efficient DMUs that can be the role models for inef-
ficient ones) while SFA does not. Since DEAS stands between DEA and SFA, for 
the managerial implications and decision-making, airline managers still can utilise 
the peers’ information from the first stage DEA [i.e. Equation (7)] to compare their 
performance against other sampled airlines, although this is not reported here due to 
the scope of our research.

In terms of the confidence intervals for the DEASi scores, at the 95% level of 
significance, we can confidently argue that it was possible that some of the sampled 
Asia-Pacific airlines in this study did not perform well and were less efficient than 
other airlines in the group during the analysis period. For example, the efficiency of 
Royal Brunei went down to 0.810 in 2015 and the efficiency of Garuda Indonesia in 
2014 also dropped to 0.752 (see Fig. 4). By comparing the ‘pure’ efficiency scores 
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of Royal Brunei and Garuda Indonesia to those of other sampled airlines in the same 
year, we can see that if we exclude the random errors and statistical noise from the 
DEA efficiency scores, other factors potentially had significant impact on the sam-
pled Asia-Pacific airlines’ operations and hindered their performance. Therefore, a 
second-step regression analysis is performed for examining the significant determi-
nants of the efficiency and performance of the sampled Asia-Pacific airlines.

4.2.2  Second‑stage of regression analysis

The second-stage Tobit regression analysis was estimated following Eq.  (24) in 
Sect. 4.1. The coefficients of the explanatory variables are shown in Table 4, where 
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results from DEAS and bootstrap DEA are generally consistent but DEAS provides 
more insights (i.e. more significant variables). Those results therefore strengthen the 
value of DEAS in comparison to bootstrap DEA.

With regard to DEASi , the significant variables affecting the sampled Asia-Pacific 
airlines’ performance during the study periods are the three macroeconomic vari-
ables (i.e. GFC , MH_ACCIDENTS and lnFUEL_PRICES ). The remaining vari-
ables are statistically insignificant although the directions of the relationships (i.e. 
the signs of the coefficients) between the predictors and the pure efficiency scores 
are consistent with those in the literature ( lnGDPpercapita , lnTRADE_VOLUMESS 
and lnTOURIST_ARRIVALS are positively associated with DEASi ). Note that Tobit 
regression using DEAi as a dependent variable resulted in no significant predictor—
this result was not reported here but is available upon request.

Regarding the significant explanatory factors that influenced the performance of 
the sampled Asia-Pacific airlines during the period of 2008–2015, both the GFC of 
2008/09 and the two Malaysia Airlines flight accidents in 2014 had statistically sig-
nificant and negative impacts on the airlines’ pure efficiency: these empirical find-
ings confirm our expectation of the expected negative impacts of exogenous shocks, 
as shown in the last two columns of Table 3. These empirical results are also con-
sistent with the findings of Heshmati and Kim (2016), who found that the Asian 
financial crisis of 1997/98, the 9/11 terrorist attacks, and the GFC 2008 had negative 
shocks to (cost) efficiency of 39 airlines in 33 different countries during the period 
of 1998–2012. For the managers, it indicates that Asia-Pacific airlines need to take 
steps to improve their efficiency by overcoming and mitigating the hindrances of any 
exogenous shocks, and by leveraging other inputs (such as careful strategic planning 
in airline connectivity and routes).

Interestingly, fuel prices were reported to have a significant and positive impact 
on airlines’ efficiency. This empirical finding is mainly because fuel prices dropped 

Table 4  Results of the second-stage Tobit regression of airlines’ ‘pure’ efficiency

***, **Significant at 1% and 5% levels, respectively

Variables DEAS Bootstrap DEA

Coefficient Std. error Coefficient Std. error

Intercept 0.9681*** 0.0301 0.8734*** 0.2197
FLAG_CARRIERi 0.0020 0.0019 0.0097 0.0142
ALLIANCEit 0.0043 0.0036 0.0090 0.0262
LISTEDit 0.0039 0.0031 0.0071 0.0229
lnASSETSit − 0.0016 0.0015 0.0063 0.0110
GFCt − 0.0064*** 0.0017 − 0.0381** 0.0146
MH_ACCIDENTSt − 0.0114*** 0.0015 − 0.0043 0.0110
lnGDPpercapitait 0.0004 0.0009 − 0.0021 0.0063
lnTOURIST_ARRIVALSit 0.0008 0.0017 − 0.0018 0.0124
lnTRADE_VOLMES

t
0.0005 0.0017 0.0019 0.0127

lnFUEL_VOLMES
t 0.0081*** 0.0028 0.0293 0.0199
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continuously during the study period (i.e. from US$2.964 per gallon in 2008 to a 
sharp decrease in 2010 and continued to US$1.522 per gallon in 2015). One might 
argue that lower fuel prices allowed the sampled Asia-Pacific airlines to save more 
on operating costs, as fuel prices are the largest operating cost for airlines (Ryerson 
et  al. 2014; Zou et  al. 2014) and thus they improved their financial performance. 
However, the revenues of the sampled airlines also decreased, cancelling out the 
effect of lower fuel prices. Specifically, as shown in Fig. 5, lnFUEL_PRICES and 
lnEXPENSES for the sampled Asia-Pacific airlines were moving together with a 
similar pattern, and although the two variables decreased continuously during the 
2012‒2015 period, lnREVENUES of the sampled Asia-Pacific airlines also faced a 
sharp decline during the same period. Consequently, it is reasonable that the drop in 
fuel prices did not contribute much to the revenue as well as the financial and overall 
performance of the sampled Asia-Pacific airlines.

5  Conclusions

This study has proposed a novel DEAS approach to decompose the deviations of 
DMUs from the frontier derived via DEA with a SFA-like method. The key contri-
bution of the novel DEAS approach in this study is its ability to estimate the con-
fidence intervals for the calculated efficiency scores of DMUs. In addition, Monte 
Carlo simulations showed that the ‘pure’ efficiency scores ( DEASi ) decomposed 
from DEA (in)efficiency are accurate measures of the ‘true’ efficiency scores ( EFi ), 
and thus the DEAS approach is believed to be a good alternative or compliment for 
conventional DEA and bootstrap DEA for analysing the efficiency levels of DMUs.

For the empirical application, this study applied the proposed model to measure 
the performance of key Asia-Pacific airlines during the period of 2008‒2015. We 
found that after accounting for the ‘pure’ random errors, the sampled Asia-Pacific 
airlines performed well during the study period but their ‘pure’ efficiency was 
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declining. Although the key reasons for efficiency deterioration were mainly attrib-
uted to uncontrollable factors (i.e. the GFC 2008/09 and the two Malaysia Airlines 
flight accidents in 2014), there is still room for improvement.

Although the novel DEAS model used in this study is shown to be a robust and 
fruitful approach to measuring the performance and efficiency of DMUs (e.g. Asia-
Pacific airlines) in the Monte Carlo simulation, this study examines neither the 
likely impacts of airline-related characteristics (e.g. national flag carrier status or 
alliance membership) nor the macroeconomic environment (e.g. GDP per capita or 
number of international tourist arrivals) on their performance and efficiency because 
of data limitations. For future research, it would be meaningful to extend the dataset 
to include more airlines (legacy and low-cost carriers) and longer (continuous) time 
periods to explore their likely impact on airline efficiency and performance. Further-
more, this novel DEAS model can be further extended; for example, for consider-
ing the variable return to scale assumption (Banker et al. 1984) or incorporating the 
explanatory variables directly into the DEAS model (Battese and Coelli 1995; Simar 
and Wilson 2007) for performance and efficiency measurement.
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