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Abstract
In this paper, we study a model of a market with asymmetric information and sticky 
prices—the dynamic Stackelberg model with a myopic follower and infinite time 
horizon of Fujiwara ("Economics Bulletin" 12(12), 1–9 (2006)). We perform a com-
prehensive analysis of the equilibria instead of concentrating on the steady state 
only. We study both the equilibria for open loop and feedback information structure, 
which turn out to coincide, and we compare the results with the results for Cournot-
Nash equilibria.

Keywords  Differential games · Dynamic market model · Myopic-follower 
Stackelberg equilibrium · Cournot-Nash equilibrium · Sticky prices

Mathematics Subject Classification  91B54 · 91B24 · 91A23 · 91A10 · 90C39 · 
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1  Introduction

Price stickiness is a way to model non-instantaneous price adjustment. This market 
imperfection is an important topic in macroeconomics, with many papers proving it 
from various types of data (e.g. Anderson et al. 2015; Lünnemann and Wintr 2011; 
Gorodnichenko and Weber 2016), but it is also worth considering in microeconomic 

The research was financed by grant 2016/21/B/HS4/00695 of National Science Centre, Poland. All 
data generated or analysed during this study are included in this published article.

 *	 Agnieszka Wiszniewska‑Matyszkiel 
	 A.Wiszniewska@mimuw.edu.pl

	 Katarzyna Kańska 
	 katarzyna.m.kanska@gmail.com

1	 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
2	 Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland

http://orcid.org/0000-0001-5561-2715
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-021-00665-y&domain=pdf


4222	 K. Kańska, A. Wiszniewska‑Matyszkiel 

1 3

problems like the market equilibrium in an oligopoly. Such a market can be mod-
elled as a dynamic game—a differential game. The first such formulation of a model 
with sticky prices has been introduced by Simaan and Takayama (1978). The the-
oretical model has been further exploited e.g. by Fershtman and Kamien (1987, 
1990), Tsutsui and Mino (1990), Piga (2000), Dockner and Gaunersdorfer (2001), 
Cellini and Lambertini (2004, 2007), Benchekroun et  al. (2006), Colombo and 
Labrecciosa (2021), Hoof (2021), Wiszniewska-Matyszkiel et al. (2015), Wang and 
Huang (2015, 2018, 2019), Valentini and Vitale (2021) and Liu et al. (2017). There 
are also extensions of such models, considering additionally also advertising (e.g. 
Lu et al. 2018; Raoufinia et al. 2019) or applications of such a model adjusted to suit 
refineries Tominac and Mahalec (2018). For more exhaustive reviews of the subject 
see e.g. Dockner (2000) and Colombo and Labrecciosa (2017).

However, all of the models mentioned above focus on the market structure of 
Cournot oligopoly, in which firms produce a homogeneous product and they have 
entirely symmetric information. Analogous model with information asymmetry in 
which one of the firms (the leader) takes into account how the other firm (the fol-
lower) reacts to its strategy is called the Stackelberg model.

In static games, both the idea and solution of the Stackelberg problem are rela-
tively simple and the informational advantage can be easily interpreted as a general-
ized first mover advantage: the sequence of moves with the leader as the first mover, 
or binding declaration of the leader about his choice of strategy before the choice 
of the follower (then the actual sequence of moves does not matter). Moreover, as a 
sequential optimization, the problem has a solution under only upper semicontinuity 
and compactness assumptions, unlike the Nash equilibrium problem requiring also 
the existence of a fixed point. In differential games, and, more generally, dynamic 
games, this generalized first mover advantage may be either required at each stage 
of the game, but it may also concern declaration of the leader’s strategy in the entire 
game before the first move and, depending on the information structure of the game, 
additional assumptions may be required. The situation is simple for the open loop 
information structure, when the strategies of the players are functions of time only, 
because then the standard definition applies. Conversely, a problem appears for the 
feedback information structure, with strategies (called feedback or Markov perfect) 
dependent on the current state. In the latter case, there are two extensions of the 
Stackelberg equilibrium. One of those concepts corresponds to the leader being 
the first mover at each stage. The other one, called global Stackelberg equilibrium, 
describes the situation in which the leader declares his feedback strategy before the 
game and the follower best responds to it. This approach is either equivalent to using 
threat strategies in order to enforce the global maximum of the leader’s payoff, or 
it requires imposing additional assumptions on the leader’s strategy. The reason is 
that calculating the best response of the follower to every possible leader’s strategy 
and then optimizing leader’s payoff with the resulting follower’s best response is ill-
posed, since the best response to discontinuous strategies ceases to exist even in nice 
problems. Therefore, there are some a priori constraints of the class of the leader’s 
strategies: it is usually assumed that the leader’s strategy is linear. Nevertheless, it 
is enough to consider a class of functions defined by several real parameters. The 
resulting problem of the leader, however, is not a standard optimal control any more, 
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but it becomes usual finite-dimensional optimization and the resulting strategy may 
be suboptimal if the leader’s optimal control after declaration does not belong to the 
assumed class of functions, so the solution may be not time-consistent. For deeper 
insight, see e.g. Başar and Olsder (1998) or Haurie et al. (2012) for general theory, 
while Martín-Herrán and Rubio (2021) for rare cases of coincidence of those two 
classes of Stackelberg equilibria with state-dependent information structure.

Similarly, the open loop Stackelberg equilibria, which are simpler to derive, are 
usually not subgame-perfect and it often turns out that the leader has incentives to 
change the declared strategy after the follower chooses his strategy being the best 
response to it.

Generally, solving the feedback Stackelberg problem is analytically very compli-
cated and restriction to time-consistent, subgame-perfect solution makes it substan-
tially more complicated, especially if the strategy sets are constrained, which even in 
linear quadratic problems with linear constraints leads to only piecewise-linear solu-
tions. It can be expected that the best response of the follower to the leader’s strategy 
that is piecewise-linear with k pieces may result in the best response of the follower 
being piecewise linear with more than k pieces. This makes the leader’s optimiza-
tion problem piecewise-linear-quadratic with more than k pieces.

The class of linear quadratic problems with linear constraints has been exten-
sively studied for resource extraction problems for common or interrelated renew-
able resources sold at a common market, known also as productive asset oligopo-
lies. Inherent constraints, like nonnegativity of the state variable and control or the 
constraint by admissibility of resource, in linear quadratic problems, may lead to 
numerous problems for Nash equilibria. Examples of such problems are as follows: 
the value function is piecewise quadratic with infinitely pieces for some param-
eters (Singh and Wiszniewska-Matyszkiel 2018), the problem is intractable in the 
standard way and the solution not even piecewise-linear (Singh et al. 2020), all the 
symmetric Nash equilibria are discontinuous (Singh and Wiszniewska-Matyszkiel 
2019). Some difficulties may appear even in such optimal control problems, like 
e.g., in Singh and Wiszniewska-Matyszkiel (2020), where the solution is piecewise-
linear with infinitely many pieces and the standard undetermined coefficient method 
returns a control far from the unique optimum. Nevertheless, such complications 
does not have to happen always in this kind of problems: there is a sequence of 
works, with piecewise linear dynamics in which this problem does not appear at a 
Nash equilibrium: Benchekroun (2008), Benchekroun et al. (2020), Vardar and Zac-
cour (2020), or at a Stackelberg equilibrium: Colombo and Labrecciosa (2019).

It is worth emphasizing that, as it has been proven in Wiszniewska-Matyszkiel 
et al. (2015), in the Cournot oligopoly with sticky prices, the strategies of the play-
ers in a feedback equilibrium are only piecewise linear with two pieces and the same 
applies to best responses to linear feedback strategies. So, what can be expected, a 
typical way of defining the global feedback Stackelberg equilibrium, in which calcu-
lating the best response of the follower is restricted to linear strategies of the leader 
only and the leader’s equilibrium strategy is indeed linear, cannot lead to a time-
consistent global feedback Stackelberg equilibrium. Moreover, assuming a two-
piece linear strategies of the leader results in only piecewise linear dynamics in the 
follower’s problem. Thus, a three-pieces linear best response can be expected, and 
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it cannot be a priori excluded that the best response of the leader has more than two 
pieces. So, the global Stackelberg problem becomes extremely complicated.

Therefore, various simplifications of the dynamic Stackelberg equilibrium are 
considered. One of them is a model in which the leader’s informational advantage is 
increased by the fact that the less informed follower is also myopic.

Various models with myopia of at least one of two players, usually Stackelberg 
follower, are examined in marketing channels models, e.g. Taboubi and Zaccour 
(2002), Benchekroun et al. (2009), Liu et al. (2016), Martín-Herrán et al. (2012) and 
Wang et al. (2019), and in environmental problems, e.g. Hämäläinen et al. (1986) or 
Crabbé and Van Long (1993).

The first work with an attempt to capture the sticky price dynamics in a market 
with asymmetric information of this type is Fujiwara (2006), proposing a Stackel-
berg duopoly model with a myopic follower who expects immediate price adjust-
ment. To the best of our knowledge, the subject has not been continued in the pub-
lished literature. In Fujiwara (2006), the calculations are restricted only to finding 
the steady state of the open loop equilibrium (i.e. the information structure in which 
the strategies are functions of time only, not price) and the results are not fully 
proven. So, a natural step is to complete that analysis.

In this paper, we perform a complete analysis of both open loop and feedback 
form of the leader’s strategies in the model proposed by Fujiwara and we obtain 
interesting phenomena.

We compare our results with those for analogous market with Cournot duopoly 
structure derived in Wiszniewska-Matyszkiel et al. (2015).

2 � Formulation of the model

We consider a differential game with 2 players, producers of the same good. Prod-
ucts of both producers are perceived by consumers as identical. Each of the firms 
has the same quadratic cost functions

where c is some positive constant and qi ≥ 0 denotes the production of i-th player.
The market is described by the inverse demand function

However, the price does not adjust immediately, but its behaviour is defined by a dif-
ferential equation

where s > 0 measures the speed of adjustment and A is some positive constant sub-
stantially greater that c , which can be interpreted as the market capacity.

(1)C(qi) = cqi +
1

2
q2
i

for i = 1, 2,

pE = A − (q1 + q2).

(2)ṗ(t) =
dp

dt
= s(pE(t) − p(t)) = s(A − (q1(t) + q2(t)) − p(t)) , p(0) = p0,
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So, it is natural to consider the resulting problem as a differential game with play-
ers maximizing �i(q1, q2) = ∫ ∞

0
e −rt

(
p(t)qi(t) − C(qi(t))

)
dt , where qi(t) is the deci-

sion at time t . The above problem has been extensively studied in the literature (see 
the introduction). In this paper, we want to consider a serious asymmetry between the 
players. Firstly, only the leader (player 1) is far-sighted, he knows the dynamics of price 
and his aim is to maximize

where r > 0 is a discount factor, while p is defined by (2).
The follower (player 2) is assumed to be myopic and at each time instant he behaves 

like in the static Stackelberg duopoly. Hence, given a decision of the leader q1(t) , he 
chooses q2(t) maximizing

as in Fujiwara (2006).
There may be several reasons of myopia of the less sophisticated player. Two most 

obvious ones are related to stronger position of the leader. The first one is when the 
leader is an established firm at the market and there are unrelated follower entrants 
at separate time instants, each of the entrants existing for one time instant. The same 
applies if there is only one firm but not sure whether it is going to exist in the future. 
This encompasses, among many other cases, the asymmetry between a fashion firm 
and a counterfeiter or, in a slightly different approach, a company with fishing rights 
and a poacher. The other obvious explanation assumes that the leader is the one who 
dictates prices and the follower just does not know the pricing rules of the leader—
so there is partly a problem with distorted information as in Wiszniewska-Matyszkiel 
(2016) and Wiszniewska-Matyszkiel (2017).

We return to those interpretations in Sect. 5 after stating the results.
There is also one more explanation, already examined in the literature: being myopic 

may be a behavioural choice as in e.g. Benchekroun et al. (2009), which has already 
been studied in papers on sticky prices Liu et al. (2016) and Liu et al. (2017).

We end the formulation of the problem by recalling that the leader knows the way 
the follower behaves.

We would like to mention that although we write q1(t) and q2(t) while defining 
�1 and �2 , we just do it in order to have a concise notation at this stage, while in the 
sequel, we consider not only open loop strategies of the leader, but also feedback 
strategies (dependent on current price only) and strategies of the follower at each 
stage being a function of the current decision of the leader.

2.1 � The behaviour of the follower, the implications for the leader and the static 
model

Let us consider a time instant t . If we solve the optimization problem of the follower 
given the decision of the leader q1(t) , we get the best response of the follower

(3)�1(q1, q2) = ∫
∞

0

e −rt
(
p(t)q1(t) − C(q1(t))

)
dt,

(4)�2(q1(t), q2(t)) = (pE(q1(t), q2(t)) − c)q2(t) −
1

2
q2
2
(t),
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whenever it is positive, which, as we shall see, holds for all reasonable levels of the 
leader’s production.

This best response is knowns to the leader and therefore, taken as an input into 
his optimization problem. So, the optimization problem of the leader reduces to the 
maximization of

given by (3) with p is defined by

We also need the static Stackelberg model with immediate adjustment of prices for 
comparison to the results of our dynamic game. In the static Stackelberg model, 
the leader also maximizes �1 defined analogously to Eq. (4), and the only differ-
ence is in information – the leader knows that the strategy of the follower is the best 
response to q1 , given by (5). So, the leader’s optimization problem is to maximize 
�1(q1, q2(q1)) ∶= (A − q1 − q2(q1))q1 − C(q1) , where q2(q1) is the best response of 
the follower. This results in static Stackelberg equilibrium

For comparison, the results for static Cournot-Nash equilibrium are

3 � The myopic‑follower Stackelberg equilibrium for open loop 
strategies of the leader

We start the analysis from the open loop strategies of the leader, i.e., the strategies 
of the leader being measurable functions q1 ∶ ℝ+ → ℝ+ , directly dependent on time, 
without any dependence on price. The set of such strategies is denoted by ℚOL . In 
the case when discontinuity appears, the price adjustment Eq. (7) is required to hold 
almost everywhere. The reaction of the follower is given by Eq. (5).

We apply the necessary conditions given by Theorem 11.

Lemma 1  For the current value Hamiltonian

the following properties hold.

(5)q2(q1(t)) =
A − c − q1(t)

3

(6)J(q1) ∶= �1(q1, q2(q1))

(7)ṗ(t) =
s(2A + c − 3p(t) − 2q1(t))

3
, p(0) = p0.

(8)pSB =
10A + 11c

21
, qSB

1
=

2(A − c)

7
, qSB

2
=

5(A − c)

21
.

(9)pCN =
A + c

2
, qCN

i
=

A − c

4
for i = 1, 2.

HCV (p, q1, �) = pq1 − cq1 −
1

2
q2
1
+ �

s(2A + c − 3p − 2q1)

3
,
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If 
q∗
1
∈ Argmaxq1∈ℚOL

J(q1)
 and p is the corresponding trajectory of price, then 

there exists an absolutely continuous costate trajectory � ∶ ℝ+ → ℝ such that for 
a.e. t

and

With the derived transversality condition (12), the costate trajectory is calcu-
lated backwards, as usually in the reasoning based on the Pontryagin maximum 
principle. In the sequel, in Theorem 4, we transform the conditions (12) and (13) 
to an initial condition, which is unique given p0 , analogously to the technique of 
proof used in Wiszniewska-Matyszkiel et al. (2015).

Proof  The assumptions of Theorem 11 are fulfilled (see appendix A.3). Applying 
relations of Theorem 11 yields formulae (10) and (11). By the terminal condition 
given in Theorem 11, I(t) = ∫ ∞

t
e −rw e −swq∗

1
(w)dw converges absolutely and that � 

fulfils

As proven in Appendix A.3, the set of control parameters that can appear in the opti-
mal control is bounded, so

and

Thus, �(t) e −rt
→ 0 as t → ∞ and it is nonnegative.

Suppose that 𝜆(t̂) = 0 for some t̂ > 0 . Since the integral of a nonnegative function 
can be zero only if the function is 0 almost everywhere, without loss of generality, 
the optimal control fulfils q1(w) = 0 for all w ≥ t̂.

First, we check the case when p(w) > c for some w ≥ t̂ . Then, by continu-
ity of trajectories, there exist 𝜖, 𝛿 > 0 such that increasing q1 to � on some small 

(10)𝜆̇(t) = 𝜆r −
𝜕HCV(p(t), q1(t), 𝜆(t))

𝜕p
,

(11)q1(t) ∈ Argmax
q1∈ℝ+

HCV(p(t), q1(t), �(t)),

(12)lim
t→∞

�(t) e −rt = 0

(13)for every t ≥ 0, 𝜆(t) > 0.

(14)�(t) e −rt = e st ∫
∞

t

e −(r+s)wq1(w)dw.

�(t) e −rt ≤ e st �
∞

t

e −(r+s)wqmaxdw,

�(t) e −rt = e st �
∞

t

e −(r+s)wq1(w)dw ≥ 0.



4228	 K. Kańska, A. Wiszniewska‑Matyszkiel 

1 3

interval [w,w + �] (on which the corresponding strategy, p�,� fulfils p𝜖,𝛿(t) > c ) 
would increase payoff. Indeed,

This leads to a contradiction with optimality of the leader’s strategy.
Next, we assume that p(w) > c does not hold for any w ≥ t̂ . So, p(w) ≤ c for all 

w ≥ t̂.
We recall that the optimal control fulfils qi(w) = 0 for all w ≥ t̂ and note that, by 

the fact that A > c , Eq. (7) with q1(w) = 0 for w ≥ t̂ implies ṗ(w) > 0 and the unique 
steady state of Eq. (7) for such q1 is greater than c . So, the the price corresponding to 
such a q1 grows to this steady state and the trajectory exceeds c at some finite time, 
which leads to a contradiction.

Therefore 𝜆(t) > 0 for all t . 	�  ◻

To maximize the present value Hamiltonian with respect to q1 , we calculate its zero 
derivative point and we obtain q1(t) = p(t) − c −

2

3
s�(t). Taking into account the non-

negativity constraints, this implies

where

and

Applying Lemma 1 to our problem yields

Substituting the follower’s best response (5) yields

𝛱1(q1, q2(q1)) =

w

∫
0

e −rt(p(t)q1(t) − C(q1(t)))dt +

∞

∫
w

e −rt(p(t)q1(t) − C(q1(t)))dt

=

w

∫
0

e −rt(p(t)q1(t) − C(q1(t)))dt + 0

<

w

∫
0

e −rt(p(t)q1(t) − C(q1(t)))dt +

w+𝛿

∫
w

e −rt(p𝜖,𝛿(t)𝜖 − C(𝜖))dt.

(15)q1(t) =

{
p(t) − c −

2

3
s�(t) if (�(t), p(t)) ∈ �2,

0 if (�(t), p(t)) ∈ �1,

(16)𝛺1 =

{
(𝜆, p) ∶ 𝜆 > 0, p > 0, p ≤ 2s

3
𝜆 + c

}

(17)𝛺2 =

{
(𝜆, p) ∶ 𝜆 > 0, p > 0, p >

2s

3
𝜆 + c

}
.

(18)𝜆̇(t) = (s + r)𝜆(t) − q1(t).

(19)ṗ =
s(2A + c − 3p − 2q1)

3
.
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Therefore, the optimality of the leader’s strategy implies that the state and the cos-
tate variables must fulfil the following system of ODEs.

Again, � has the terminal condition given by Eq. (12), while p the initial condition 
given as in Eq. (7). So, we have a backward-forward ODE with a mixed terminal-
initial condition, which we are going to transform to a joint initial condition. As the 
first step to do this, we formulate the following Theorem (Fig. 1).

Theorem  2  Let (�(t), p(t)) be a  solution to Eq.  (20) with an initial value (�0, p0) . 
Then 𝜆(t) e −rt > 0 and it converges to 0 as t → ∞ if and only if (�0, p0) ∈ Γ , where 
Γ is the stable manifold of the steady state (�∗,�∗

OL
) of Eq. (20).

The point (�∗,�∗
OL
) ∈ �2 (for �1,�2 defined in (16) and (17)) and

The corresponding steady state production of the leader is

(20)

𝜆̇ =

{(
5

3
s + r

)
𝜆 − p + c for (𝜆, p) ∈ 𝛺2,

(s + r)𝜆 for (𝜆, p) ∈ 𝛺1,

ṗ =

{
4

9
s2𝜆 −

5

3
sp + s

2A+3c

3
for (𝜆, p) ∈ 𝛺2,

−sp + s
2A+c

3
for (𝜆, p) ∈ 𝛺1.

(21)�∗ =
2(A − c)

5r + 7s
, �

∗
OL

=
3r(2A + 3c) + s(10A + 11c)

3(5r + 7s)
.

(22)�
∗
1,OL

=
2(r + s)(A − c)

5r + 7s
.

Fig. 1   The phase diagram of Eq. (20). The green line with horizontal bars denotes the p-null-cline, the 
red line with vertical bars denotes the �-null-cline. The blue dashed line splits the costate-state space into 
the sets �

1
 and �

2
 . The black solid line represents the stable manifold of the steady state, while the light 

brown line the unstable manifold
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Moreover, the curve Γ intersects with the line p =

(
2

3
s + r

)
� + c at the point (𝜆̄, p̄) 

with

The stable manifold Γ consists of the steady state {(�∗,�∗
OL
)} and

Proof  First, we analyse the phase portrait, presented in Fig. 1, to determine the exist-
ence of solutions. We can see that for each variable the null-clines are as follows:

As the p-null-cline has the slope smaller than the line dividing the (p, �) space into 
�1 and �2 , there exists exactly one solution in the positive quadrant and it corre-
sponds to positive leader’s production. It is easy to calculate (21) and then (22) by 
substituting to (15).

In �1 , the solution of (20) has the form

In �1 , to the right from the stable manifold, for t → ∞ , �(t) asymptotically behaves 
as c2 e (r+s)t and p(t) as c1 e −st . Therefore, limt→∞ e −rt�(t) ≠ 0.

We can see from the phase diagram that each solution with the initial condition 
right to the stable manifold eventually enters �1 , so the above reasoning applies also 
to other trajectories right to the stable manifold.

We can also see that for every trajectory with the initial condition left to the sta-
ble manifold, �(t) ≤ 0 from some time instant on.

(23)
p̄ =

(3r(2A + 3c) + s(10A + 11c))
√
3
√
3r2 + 20rs + 28s2 − p̄1

3[(5r + 7s)
√
3
√
3r2 + 20rs + 28s2 − 3(14s2 + 17sr + 5r2)]

,

p̄1 =42(2A + c)s2 + 9(10A + 7c)sr + 9(2A + 3c)r2,

(24)𝜆̄ =
(A − c)[(5s + 3r)

√
3
√
3r2 + 20rs + 28s2 − 3(14s2 + 15sr + 3r2)

s[(5r + 7s)
√
3
√
3r2 + 20rs + 28s2 − 3(14s2 + 17sr + 5r2)]

.

Γ1 =

�
(𝜆, p) =

�
𝜆̄ e (r+s)𝜁 ,

2A + c

3
+ (p̄ −

2A + c

3
) e −s𝜁

�
: 𝜁 ∈

�
1

s
ln

�
1 −

3p̄

2A + c

�
, 0

��
⊂ 𝛺1,

Γ2 =

�
(𝜆, p) =

�
𝜆∗ − 3𝜁

�
3r + 10s −

√
3
√
3r2 + 20rs + 28s2

�
, �∗

OL
− 8𝜁s2

�
: 𝜁 > 0

�
∩𝛺2,

Γ3 =

�
(𝜆, p) =

�
𝜆∗ − 3𝜁

�
3r + 10s −

√
3
√
3r2 + 20rs + 28s2

�
, �∗

OL
− 8𝜁s2

�
: 𝜁 < 0

�
⊂ 𝛺2.

ṗ =0 ⟺

�
p =

4

15
s𝜆 +

2A+3c

5
for 𝜆 <

A−c

s
,

p =
2A+c

3
for 𝜆 ≥ A−c

s
,

𝜆̇ =0 ⟺

⎧
⎪⎨⎪⎩

p =

�
5

3
s + r

�
𝜆 + c for p > c,

𝜆 = 0 for p ≤ c.

�(t) = �0 e
(r+s)t , p(t) =

2A + c

3
+

(
p0 −

2A + c

3

)
e −st.
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In �2 , Eq. (20) reduces to:

where

The determinant detB = −s
(
5r+7s

3

)
< 0 , which confirms that the steady state is 

a saddle point. The eigenvalues of B are

while the corresponding eigenvectors are

This implies the equation describing the part of Γ in �2 is Γ2 and Γ3.
Analogously, to get Γ1 , we solve Eq. (20) for (�, p) in �1 with the condition that 

for some t , ( 𝜆(t), p(t)) = (𝜆̄, p̄) . 	�  ◻

Lemma 3  The leader’s optimal strategy in the open loop form �1,OL fulfils for a.e. t

where p̄ is given by (23).

Proof  Immediate by Lemma 1 and Theorem  2. 	�  ◻

Theorem 4  There is a unique leader’s optimal strategy in the open loop form.

The equilibrium production is given by

(25)
[
𝜆̇

ṗ

]
= B

[
𝜆

p

]
+ C,

B =

[
r +

5

3
s − 1

4

9
s2 −

5

3
s

]
and C =

[
c

s(2A+3c)

3

]
.

(26)
�1 =

1

6
(3r +

√
3
√
3r2 + 20rs + 28s2),

�2 =
1

6
(3r −

√
3
√
3r2 + 20rs + 28s2),

v1 =

�
3(3r + 10s +

√
3
√
3r2 + 20rs + 28s2)

8s2

�
,

v2 =

�
3(3r + 10s −

√
3
√
3r2 + 20rs + 28s2)

8s2

�
.

(27)�1,OL(t) =

{
0 p(t) ≤ p̄

p(t) − c −
2

3
s𝜆(t) otherwise,
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where

�2 is given by (26), p̄ and 𝜆̄ are given by (23) and (24) and �∗ , �∗
OL

 and �∗
1,OL

 by (21) 
and (22).

The equilibrium price level is given by

The steady state (�∗
OL
,�∗

1,OL
) is stable with respect to changes of p0.

Proof  We use Theorem 2 and Lemma 3 and solve the set of equations (20) along the 
stable manifold of the steady state Γ.

�0 corresponding to p0 is uniquely defined by the terminal condition and the 
condition 𝜆(t) > 0 , and it is such that (�0, p0) belongs to the stable manifold of the 
steady state. 	�  ◻

We would like to emphasize that, although the steady state (�∗,�∗
OL
) is a saddle 

point, �∗
OL

 and �∗
1,OL

 are stable with respect to changes of the initial condition p0 . 
This holds because the terminal condition for � at infinity together with the posi-
tivity condition imply unique initial condition �0 corresponding to p0 such that the 
trajectory is in the stable manifold of the steady state. Besides, the costate variable � 
is only an auxiliary variable that has to exist and it shouldn’t be treated in the same 
way as the actual state variable p.

4 � Feedback strategies

The next problem we want to solve is the optimization of the leader for the feed-
back information structure, i.e. the problem in which the set of controls of the leader 
is the set of functions q1 ∶ ℝ → ℝ+ , with price as the argument, such that Eq. (7) 
with q1(t) replaced by q1(p(t)) has a unique absolutely continuous solution. In the 

(28)

�1,OL(t) =

⎧
⎪⎨⎪⎩

0 for 0 ≤ t < t̄ and p0 < p̄,

�
∗
1,OL

+

�
p̄ − c −

2

3
s𝜆̄ − �

∗
1,OL

�
⋅ e 𝜇2(t−t̄) for t ≥ t̄ and p0 < p̄,

�
∗
1,OL

+

�
p0 − c −

2

3
s𝜆0 − �

∗
1,OL

�
⋅ e 𝜇2t for p0 ≥ p̄,

(29)

𝜆0 = 𝜆∗ −
3

8s2
(�∗ − p0)(3r + 10s −

√
3
√
3r2 + 20rs + 28s2), t̄ =

1

s
ln

�
3p0 − (2A + c)

3p̄ − (2A + c)

�
,

(30)�OL(t) =

⎧
⎪⎪⎨⎪⎪⎩

2A+c

3
+

�
p0 −

2A+c

3

�
⋅ e −st for 0 ≤ t < t̄ and p0 < p̄,

�
∗
OL

+

�
p̄ − �

∗
OL

�
⋅ e 𝜇2(t−t̄) for t ≥ t̄ and p0 < p̄,

�
∗
OL

+

�
p0 − �

∗
OL

�
⋅ e 𝜇2t for p0 ≥ p̄.
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feedback approach, the problem is solved more generally for arbitrary values of the 
initial condition.

We recall that for the Cournot duopoly considering the feedback information 
structure leads to results which are not equivalent to results of considering the open 
loop information structure and even the steady states are not equivalent (see Cellini 
and Lambertini 2004; Fershtman and Kamien 1987; Wiszniewska-Matyszkiel et al. 
2015).

To calculate the myopic-follower Stackelberg equilibrium assuming the feedback 
form of leader’s strategies, we use the standard sufficient condition using Bellman 
or Hamilton-Jacobi-Bellman (HJB) equation (see e.g. Dockner 2000; Fleming and 
Soner 2006; Zabczyk 2009) which returns the auxiliary value function, i.e., a func-
tion W ∶ ℝ+ → ℝ such that for every p , W(p) is the optimal payoff of the leader if 
the initial price is p.

In our case, the sufficient condition for a continuously differentiable function W 
to be the value function is the Bellman equation for every price p ∈ ℝ+

with the terminal condition lim sup
t→∞

e −rtW(p(t)) = 0 for every admissible price tra-

jectory p.
If W is the value function, then every �1,F that maximizes the rhs. of the Bellman 

equation, i.e., that for every price p ∈ ℝ+ , fulfils

is an optimal control.

Theorem 5  The value function of this optimization problem is defined by

where

(31)rW(p) = sup
q1≥0

{
pq1 − cq1 −

1

2
q2
1
+

�W(p)

�p

s(2A + c − 3p − 2q1)

3

}

(32)�1,F(p) ∈ Argmax
q1≥0

{
pq1 − cq1 −

1

2
q2
1
+

�W(p)

�p

s(2A + c − 3p − 2q1)

3

}
,

(33)W(p) =

⎧⎪⎨⎪⎩

𝛼

2
p2 + 𝛽p + 𝛾 for p ≥ p̃,�
2A+c

3
− p

�−
r

s
�

2A+c

3
− p̃

� r

s
�

𝛼

2
p̃2 + 𝛽p̃ + 𝛾

�
for p < p̃,

(34)

𝛼 =
3(3r + 10s −

√
3
√
3r2 + 20rs + 28s2)

8s2
> 0,

𝛽 =
3(s(2A + 3c)𝛼 − 3c)

9r + s(15 − 4s𝛼)
,

𝛾 =
9c2 + 2s𝛽(3(2A + 3c) + 2s𝛽)

18r
,

p̃ =
3c + 2s𝛽

3 − 2s𝛼
> c,
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and it is nonnegative, increasing, continuous and continuously differentiable.

The feedback optimal solution is defined by

strictly increasing whenever positive. The corresponding price trajectory is defined 
by

where

The price p̃ is the price at which the leader starts production, while the time 
instant t̃ is the time instant at which the optimal price trajectory originating from 
p0 attains the level p̃.

Proof  The methodology of finding the value function is analogous to Wiszniewska-
Matyszkiel et al. (2015). First, we solve the analogous dynamic optimization with-
out constraint on q1 . We assume that

for some � , � , � . We substitute the leader’s production maximizing the right hand 
size of (31)

and we obtain

This leads to solving the following equation

(35)�1,F(p) =

{(
1 −

2

3
s𝛼
)
p − c −

2

3
s𝛽 for p > p̃,

0 for p ≤ p̃,

(36)

�F(t) =

⎧
⎪⎪⎨⎪⎪⎩

2A+c

3
+

�
p0 −

2A+c

3

�
⋅ e −st for 0 ≤ t < t̃ and p0 < p̃,

3(2A+3c)+4s𝛽

15−4s𝛼
+

�
p̃ −

3(2A+3c)+4s𝛽

15−4s𝛼

�
⋅ e

s

9
(4s𝛼−15)(t−t̃)

for t ≥ t̃ and p0 < p̃,

3(2A+3c)+4s𝛽

15−4s𝛼
+

�
p0 −

3(2A+3c)+4s𝛽

15−4s𝛼

�
⋅ e

s

9
(4s𝛼−15)t

for p0 ≥ p̃,

(37)t̃ =
1

s
ln

(
3p0 − (2A + c)

3p̃ − (2A + c)

)
.

(38)W(p) = W+(p) ∶=
�

2
p2 + �p + � .

(39)q1 = p − c −
2s

3

�W

�p

(40)rW =
1

2
(p − c)2 +

s

3
(2A + 3c − 5p)

�W

�p
+

2s2

9

(
�W

�p

)2

.
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Simple calculations yield (34) and another solution differing by plus sign before the 
square root in � . We choose � with minus sign, because the other solution results in 
q1 decreasing in price and negative above p̃ , so we cannot treat it as a good candi-
date for the optimal strategy.

Next, we return to the initial problem. By that moment, we haven’t considered the 
constraint q1 ≥ 0 . We calculate the price p̃ at which q1 given by (39) is equal to zero.

We replace q1(p) by 0 for p ≤ p̃ and we proceed to prove that the modified strat-
egy is optimal.

The resulting trajectory of price for p0 < p̃ as long as p stays in this set, is as 
follows.

Let t̃ be the time needed for the price described by equation (42) to reach the level p̃ . 
Such t̃ exists, because for p < p̃ , the price is increasing, since ṗ(t) > 0 and immedi-
ate transformation of (42) proves that it is as in (37).

If the modified q1 given by (35) is the optimal control and the value function is as 
in (38) for p ≥ p̃ , then the value function for p < p̃ is W(p̃) discounted from the time 
instant t̃ to time instant 0.

Substitution of t̃ yields W−(p) =
(

2A+c

3
− p

)−
r

s
(

2A+c

3
− p̃

) r

s
(

𝛼

2
p̃2 + 𝛽p̃ + 𝛾

)
.

(41)

[
−

1

2
+

3r + 10s

6
� −

2s2

9
�2

]
⋅ p2

+

[
c −

s

3
(2A + 3c)� +

(
r +

5s

3
−

4s2

9
�

)
�

]
⋅ p

+ r� −
1

2
c2 −

s

3
(2A + 3c)� −

2s2

9
�2 = 0.

(42)p(t) =
2A + c

3
+

(
p0 −

2A + c

3

)
e −st for t such that p(t) ≤ p̃.

W(p) = W−(p) ∶=

∞

∫
0

e −rt
[
(p(t) − c)q1(p(t)) −

1

2
q2
1
(p(t))

]
dt

=

t̃

∫
0

e −rt
[
(p(t) − c)q1(p(t)) −

1

2
q2
1
(p(t))

]
dt

+

∞

∫̃
t

e −rt
[
(p(t) − c)q1(p(t)) −

1

2
q2
1
(p(t))

]
dt

=

t̃

∫
0

0dt +

∞

∫̃
t

e −rt
[
(p(t) − c)q1(p(t)) −

1

2
q2
1
(p(t))

]
dt

= e −rt̃W+(p̃).



4236	 K. Kańska, A. Wiszniewska‑Matyszkiel 

1 3

In order to check sufficiency, besides checking the Bellman equation and the ter-

minal condition, we have to prove that W(p) =

{
W+(p) for p ≥ p̃,

W−(p) otherwise,
 is continuously 

differentiable.
Continuity of W is straightforward as W+(p̃) = W−(p̃) . We focus on proving the 

continuity of the derivative, which is not obvious at p̃.
Since the Bellman equation is fulfilled for p̃ and W is continuous, we have

To prove monotonicity and nonnegativity, we first prove that (W+)� is positive for 
p ≥ p̃ . Since 𝛼 > 0 , (W+)� is strictly increasing, so, it is enough to check it at p̃ . W− 
is positive since it is a discounted value of W+(p̃) , which is positive, since it is equal 
to its derivative at this point multiplied by a positive constant r

s
⋅

3

2A+c−3p̃
 . Analo-

gously, (W−)(p̃)� is positive, since it is equal to W−(p̃) multiplied by a positive con-
stant s

r
⋅

2A+c−3p̃

3
.

Consider an arbitrary control q1 and the corresponding trajectory p . Nonnegativ-
ity of W implies that lim sup

t→∞

W(p(t)) e −rt ≥ 0 . Noting that if p(t) > A , then p�(t) < 0 

until p(t) = A implies that lim sup
t→∞

W(p(t)) e −rt ≤ 0 , which completes the proof that 

W is the value function.
Since �1,F is defined as the zero-derivative point of the maximized function in 

the rhs. of the Bellman equation whenever it is nonnegative, zero otherwise, and the 
maximized function is strictly concave in q1 , it is the optimal control.

Next, we calculate the trajectory corresponding to the optimal control.
The equation defining it whenever p(t) ≥ p̃ is

So, if p0 > p̃ , then the whole trajectory is given by

while if we consider a trajectory with p0 < p̃ which reaches p̃ at time t̃ , then for t ≥ t̃

For p0 ≤ p̃ and t < t̃

which implies

(W+)�(p̃) =
r

s
⋅

3

2A + c − 3p
W+(p̃) =

r

s
⋅

3

2A + c − 3p
W−(p̃) = (W−)�(p̃).

ṗ(t) =
s(2A + c − 3p(t) − 2�1,F(p(t)))

3
=

s

3

(
4

3
s𝛼 − 5

)
p(t) +

s

3

(
2A + 3c +

4

3
s𝛽
)
.

(43)p(t) =
3(2A + 3c) + 4s�

15 − 4s�
+

(
p0 −

3(2A + 3c) + 4s�

15 − 4s�

)
e

s

9
(4s�−15)t

,

(44)p(t) =
3(2A + 3c) + 4s𝛽

15 − 4s𝛼
+

(
p̃ −

3(2A + 3c) + 4s𝛽

15 − 4s𝛼

)
e

s

9
(4s𝛼−15)(t−t̃)

.

ṗ(t) = −sp(t) +
s

3

(
2A + c

)
,
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	�  ◻

5 � Open loop and feedback myopic‑follower equilibria, limitations 
of the model and self‑verification of the follower’s false beliefs 
in the game

After solving both problems, we present the solutions graphically.
In Fig. 2, we present productions of both firms, compared to their static Stack-

elberg equilibrium strategies and the static Cournot-Nash equilibrium production 
level, while in Fig.  3, the equilibrium price compared to static Stackelberg and 
Cournot-Nash price.

As we can see, the open loop and feedback solutions coincide. It is not only a 
property for a specific set of data, but a general principle. This is different from 
the situation observed for the analogous dynamic Cournot-Nash equilibrium, in 
which feedback strategies at the corresponding trajectory are larger than the open 
loop strategies, with the opposite inequality for prices, as it has been proven in 
Wiszniewska-Matyszkiel et al. (2015). This coincidence in our model is a result of 
myopia of the follower. We can formally write the following theorem.

Theorem  6  The open loop and feedback myopic-follower Stackelberg equilibrium 
trajectories coincide, and the open loop optimal strategy of the leader coincides 
with his optimal feedback strategy along this trajectory, and the same applies to the 
follower’s best response and

Proof  By substitution of the constants from Eqs (34) and (37) to �F from Eq. (36) 
and meticulous simplifying and then by substitution of those constants and �F to �1,F 
and simplifying.

The last inequality in (46) simplifies to A > c , the first one has already been 
proven in Theorem 2. 	�  ◻

As we can see from Fig. 2, for small prices, until t̄ , the leader does not produce, 
waiting for the price to grow. At the same time interval, the follower has maximal 
production. Afterwards, the leader’s production continuously increases, while the 
follower’s production decreases. They intersect and they converge to their steady 
states, with the steady state of the leader above his static Stackelberg equilibrium 
level, and the steady state of the follower below his static Stackelberg equilibrium 
level. When prices are considered, the steady state of the dynamic equilibrium price 
is below the static Stackelberg equilibrium price, which can be also confirmed by 
analytic calculations.

(45)p(t) =
2A + c

3
+

(
p0 −

2A + c

3

)
⋅ e −st.

(46)p̃ = p̄ < �
∗
F
= �

∗
OL

< pSB.
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Another interesting thing that can be seen from Fig. 2 is that the model does not 
behave as everybody can expect for p close to and below c (to make it visible, we 
started from p0 close to the minimal marginal cost c ). While the leader does not 
produce, the follower observing the leader’s production, has a large constant level of 
production.

Fig. 2   Production trajectory for the model parameters A = 10 , c = 1 , r = 0.15 , s = 0.5 and p
0
= 1.1 . The 

red solid line corresponds to the leader, while the blue dashed line to the follower. The dashed hori-
zontal lines correspond to static equilibria productions—from the bottom: the Stackelberg follower, a 
Cournot competitor, the Stackelberg leader. The dashed vertical line corresponds to the moment at which 
the leader starts production, t̄ = t̃

Fig. 3   Price trajectory for the model parameters A = 10 , c = 1 , r = 0.15 , s = 0.5 and p
0
= 1.1—the solid 

line. The horizontal lines correspond to the following levels of price, from the bottom: p̄ = p̃ , static 
Stackelberg equilibrium, static Cournot equilibrium. The dashed vertical line corresponds to the moment 
at which the leader starts production, t̄ = t̃
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This leads us to the concept of self-verification. The fact that instead of the 
total payoff in the dynamic game, the follower maximizes only expected current 
payoff, may be caused by two different reasons. 

1.	 The less realistic explanation is that the leader has already been at the market, 
while there are multiple unrelated follower firms—entrants—who do not know 
the leader’s pricing strategy, i.e., sticky prices with speed of price adjustment s . 
Each of those follower firms exists only one time instant, at most one at each time 
instant. After obtaining the profit lower then expected, each follower firm resigns. 
And the profit is lower then expected, because if the leader offers a lower price, 
then the entrant has to decrease his price, too.

2.	 The follower is not conscious that his current choice influences future price. In 
this case, we have a game with distorted information, in which players have some 
beliefs on how their current decision influences future aggregates and values of 
the state variable, non-necessarily consistent with reality. Depending whether the 
beliefs are deterministic (realizations regarded as possible versus those impos-
sible) or stochastic (a probability distribution on future realizations), there are 
two corresponding concepts of belief distorted Nash equilibrium, introduced in 
Wiszniewska-Matyszkiel (2016) and Wiszniewska-Matyszkiel (2017), respec-
tively. A part of those concepts is self-verification of the equilibrium profiles 
which, briefly speaking, means that the beliefs influence the behaviour of the 
players such that the beliefs cannot be falsified by subsequent play. Moreover, 
the correct current value of the state variable and opponent’s behaviour is a part 
of both equilibrium concepts.

For steady-state initial prices, the follower’s belief of no influence on future 
prices is self-verifying and the current leader’s behaviour and price is guessed 
correctly. For lower prices, they do not have this property, which is especially 
visible for initial prices close to c . This suggests that the analysis of a dynamic 
optimization model with sticky prices cannot be restricted to the steady-state only 
and it suggests that further studies are required to derive a model that behaves as 
expected also for small values of the initial price.

Moreover, we would like to emphasize some limitation of the sticky price 
models usually not emphasized and therefore, not perceived, since the focus is 
usually on their nice mathematical behaviour. The economic justification of intro-
ducing first sticky prices models was by the fact that prices below the static equi-
librium level are often observed at real world markets and it is obtained by grad-
ual increase of prices. Such a situation in a model can happen only if the initial 
market price does not exceed the steady state price (which in our case is slightly 
below the static Stackelberg equilibrium).

This assumption is not needed in any of the mathematical results and their 
proofs, which hold for arbitrary positive initial price.

Nevertheless, in economics, the reverse situation is unrealistic. As we can 
see from the dynamics of price for the equilibrium strategies in various sticky 
prices models, above the steady state price, there is a permanent excess supply. 
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Sticky prices approach is related to behaviour of producer facing excess demand 
but constrained by e.g. menu costs. In reality, permanent excess supply and the 
resulting need to dispose the excess amount of product would cause qualitative 
change of behaviour of the producers, e.g. immediate reduction of price in order 
to sell the excess product.

So, if the initial price is above the steady state, which can happen if e.g. an entrant 
suddenly appears at a previously monopolistic market, an immediate reduction of price 
by the ex-monopolist can be expected. So, after the reduction, there will be no excess 
supply and the new initial price to the sticky prices dynamics will not exceed the steady 
state price.

6 � Dependence on the speed of price adjustment

An interesting question is how the equilibria depend on the speed of price adjustment s . 
In Fig. 4, we compare production levels for two different s . We can see that increasing s 
results in faster switching on production of the leader, and faster growth of production 
at the beginning, but later convergence to a lower steady state. The opposite inequalities 
apply to the production of the follower. Analogous comparison of the price for various 
s in Fig. 5 reveals that this anomaly of production trajectories is not strong enough to 
affect anomalies in prices—the price at each time instant is a strictly increasing func-
tion of s.

7 � The asymptotic values of the equilibria

In many previous works, e.g. Fershtman and Kamien (1987), Cellini and Lambertini 
(2004) and Wiszniewska-Matyszkiel et al. (2015), it has been proven that the feedback 
Cournot-Nash equilibrium does not converge to the static Cournot-Nash equilibrium 
when s → ∞ , which corresponds to immediate price adjustment. So, an interesting 
question is what happens in our model as s tends to its limits, especially when s → ∞.

First, we recall the form of the steady states for the feedback equilibrium.

Next, their limits as s → 0

�
∗
F
=
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3r(2A + 3c) + s(10a + 11c)
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= �

∗
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,

�
∗
1,F
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(
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2

3
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2(r + s)(A − c)

5r + 7s
= �

∗
1,OL

,

�
∗
2,F

=
(A − c)

3
−

1

3
�
∗
1,F

=
(3r + 5s)(A − c)

3(5r + 7s)
= �

∗
2,OL
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Finally, their limits as s → ∞.

lim
s→0

�
∗
F
= lim

s→0
�
∗
OL

= lim
s→0

3r(2A + 3c) + s(10a + 11c)

3(5r + 7s)
=

2A + 3c

5
,

lim
s→0

�
∗
1,F

= lim
s→0

�
∗
1,OL

= lim
s→0

2(r + s)(A − c)

5r + 7s
=

2(A − c)

5
,

lim
s→0

�
∗
2,F

= lim
s→0

�
∗
2,OL

= lim
s→0

(3r + 5s)(A − c)

3(5r + 7s)
=

A − c

5
.

Fig. 4   Dependence of productions on s for the model parameters A = 10 , c = 1 , r = 0.15 and p
0
= 1.1 . 

From left: s = 0.25 , s = 1 . The red solid line corresponds to the leader, while the blue dashed line to the 
follower. The dashed horizontal lines correspond to static Stackelberg equilibrium productions—from the 
bottom: the follower, the leader

Fig. 5   Price trajectory for model parameters A = 10 , c = 1 , r = 0.15 and different values of s . From the 
bottom s = 0.25 , s = 0.5 , s = 1
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For s < ∞ �∗
OL

= �
∗
F
< pSB , �∗

1,OL
= �

∗
1,F

> qSB
1

 and �∗
2,OL

= �
∗
2,F

< qSB
2

.
As we can see, all the values converge to their static Stackelberg analogues as the 

speed of adjustment tends to infinity, i.e. the immediate adjustment.
In Fig. 6, we present the steady state of productions of both firms, while in Fig. 7, 

the steady state of price. As we can see, the steady state production of the leader 
is decreasing in s and it converges to the static Stackelberg leader production from 
above, with the opposite inequalities for the follower, and the steady state price is 
increasing in s and it converges to the static Stackelberg price from below.

8 � Comparison to the Cournot model

Last, but not least, we want to compare our results with the results of the Cournot 
oligopoly case. The complete results for the Cournot model with sticky prices has 
been derived in Wiszniewska-Matyszkiel et al. (2015). We do not cite the exact val-
ues of constants, we only present the comparison graphically in Figs. 8 and 9, with a 
zoomed view of an initial time interval for better readability.

As we can see, at the myopic-follower Stackelberg equilibrium, the leader starts 
the production later than the Cournot competitors in the feedback case and slightly 
before the Cournot competitors in the open loop case. Afterwards, his production 

lim
s→∞

�
∗
F
= lim

s→∞
�
∗
OL

= lim
s→0

3r(2A + 3c) + s(10a + 11c)

3(5r + 7s)
=

10A + 11c

21
= pSB,

lim
s→∞

�
∗
1,F

= lim
s→∞

�
∗
1,OL

= lim
s→0

2(r + s)(A − c)

5r + 7s
=

2(A − c)

7
= qSB

1
,

lim
s→∞

�
∗
2,F

= lim
s→∞

�
∗
2,OL

= lim
s→0

(3r + 5s)(A − c)

3(5r + 7s)
=

5(A − c)

21
= qSB

2
.

Fig. 6   Asymptotic production levels as a function of the speed of price adjustment s → ∞ for the model 
parameters A = 10 , c = 1 , and r = 0.15 . The red solid line corresponds to the leader, while the blue 
dashed line to the follower. The dashed horizontal lines correspond to static equilibria productions—
from the bottom: the follower, a Cournot competitor, the leader
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first grows slower than that in both Cournot cases, then faster and, after intersecting 
the open loop equilibrium strategy twice and feedback equilibrium strategy once, it 
converges to a larger steady state. The myopic-follower Stackelberg price first grows 
slower, but afterwards it intersects the feedback Cournot price trajectory and con-
verges to a steady state between the steady states of the feedback and open loop 
Cournot equilibrium price.

9 � Conclusions

In this paper, we have extensively studied the model of a dynamic Stackelberg type 
duopoly at a market with price stickiness in which the follower is myopic, first pro-
posed and partially studied by Fujiwara (2006), called myopic-follower Stackelberg 

Fig. 7   Asymptotic price level as a function of the speed of price adjustment s → ∞ for the model param-
eters A = 10 , c = 1 and r = 0.15 . The dashed horizontal lines correspond to static equilibria produc-
tions—from the bottom: Stackelberg, Cournot

Fig. 8   The myopic-follower Stackelberg leader optimal production compared to open loop and feed-
back equilibrium production of each player in the Cournot doupoly with the parameters A = 10 , c = 1 , 
r = 0.15 , s = 0.5 and p

0
= 1.01 . The red solid line corresponds to the leader, the blue dashed line to the 

open loop Cournot case, the blue dotted line to the feedback Cournot case. A zoomed view at the right
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model. We have analysed it both with open loop and feedback information structure 
of the leader. In this model, we have obtained convergence to a stable steady state 
with the price and follower’s production below while the leader’s production above 
their static Stackelberg levels. However, an interesting result can be observed for 
low initial prices, when the leader’s production is below the myopic follower’s pro-
duction, and, if the initial price is low enough, the leader initially waits in order to 
increase it, while the follower produces maximally. This waiting time is for a longer 
time interval than for the feedback Cournot equilibrium. Interesting anomalies can 
be observed as the speed of adjustment changes, but the limits as it converges to 
infinity are equal to their static Stackelberg counterparts. Besides, unlike in the 
Cournot model, open loop and feedback solutions coincide.

The results of this paper concerning the behaviour of the follower for small 
prices show that the analysis of a dynamic game model with sticky prices cannot be 
restricted to the steady state only and it suggests that further studies are required to 
derive a model that behaves as expected also for small values of the initial price.

Therefore, an analogous analysis with a different model of the follower’s behav-
iour, observing rather the price than the leader’s behaviour is an obvious future con-
tinuation of this paper. In such a case, we can introduce more myopic followers, 
being price takers, which results in ”a cartel and a fringe” models (see e.g. Groot 
et al. 2003 or Benchekroun and Withagen 2012 for applications of such differential 
game models).

Fig. 9   The myopic-follower Stackelberg equilibrium price compared to the open loop and feedback equi-
librium Cournot doupoly price with the parameters A = 10 , c = 1 , r = 0.15 , s = 0.5 and p

0
= 1.01 . The 

red solid line corresponds to the myopic-follower Stackelberg case, the blue dashed line to the open loop 
Cournot case, the blue dotted line to the feedback Cournot case. A zoomed view at the right
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Appendix A: Open loop – existence of optimal solution 
and appropriate necessary conditions for infinite horizon optimal 
control problem

In this section, we formulate the necessary condition, analogous to the core relations 
of the Pontryagin maximum principle for finite time horizon, in the case of the infi-
nite time horizon.

We consider an optimal control problem with the state space being an open 
convex set 𝕏 ⊆ ℝn , the set of control parameters 𝕌 ⊆ ℝm and the open loop 
information structure, so, consequently, the set of open loop control functions 
U

OL
= {u ∶ ℝ+ → 𝕌 measurable} . As the objective we consider maximisation of

where the trajectory x is the trajectory corresponding to u and it is defined by

the discount rate is r > 0 , and the integration denotes integration with respect to the 
Lebesgue measure.

Obviously, the set � is assumed to be invariant set of equation (48) for every con-
trol function u.

We assume a priori that the functions g and f  are such that the objective function 
is finite for every u ∈ U

OL and the corresponding trajectory x.
An absolutely continuous function x ∶ ℝ+ → 𝕏 being a  solution to the system 

(48) with u ∈ U
OL is called the (admissible) trajectory corresponding to u.

We denote this dynamic optimization problem by (P).
In all further results we assume that both sets � and � are nonempty, � is com-

pact, and the functions f ∶ ℝ+ ×𝕏 × 𝕌 → ℝn , and g ∶ ℝ+ ×𝕏 × 𝕌 → ℝ are 
measurable.

Any pair (u, x) , where u is a control and x is an admissible trajectory correspond-
ing to it, is called an admissible solution.

A pair (u∗, x∗) is called an optimal solution of the problem (P) if it is an admis-
sible solution, and the value of J0,x0 (u

∗) is maximal, that is J0,x0 (u) ≤ J0,x0 (u
∗) for 

every admissible solution (u, x).

A.1 Aseev and Veliov extension of the Pontryagin maximum principle

Here we cite the maximum Pontryagin principle for the problem (P), which is infi-
nite horizon, non-autonomous, discounted dynamic optimization problem. As it has 
been mentioned before (see Section 3), the maximum principle, especially the termi-
nal condition limt→∞ �(t) e −rt = 0 , is not necessary in such a problem.

(47)J0,x0 (u) = ∫
∞

t=0

e −rtg(t, x(t), u(t))dt,

(48)
{

ẋ(t) = f (t, x(t), u(t)) for t > 0,

x(0) = x0,



4246	 K. Kańska, A. Wiszniewska‑Matyszkiel 

1 3

Results that can be applicable in this paper has been proved by Aseev and Veliov 
(2012). First, we formulate three suitable assumptions. Consider the dynamic opti-
mization problem (P) and let (u∗, x∗) be an optimal solution to it. 

	(A1)	 For almost all t ≥ 0 and every (x, u) ∈ � × � , partial derivatives fx(t, x, u) and 
gx(t, x, u) exist. The functions f  and g and their partial derivatives with respect 
to x are Lebesgue-Borel measurable in (t, u) for every x , continuous in x for 
almost every t ≥ 0 and every fixed u ∈ � , uniformly bounded as functions of t 
over every bounded set of (x, u).

	(A2)	 There exist a continuous function � ∶ [0,∞) → [0,∞) and a locally integrable 
function � ∶ [0,∞) → ℝ such that {x ∶ ‖x − x∗(t)‖ ≤ 𝛾(t)} ⊆ � for all t ≥ 0 , 
and for almost all t ≥ 0 we have 

	(A3)	 There exist a number 𝛽 > 0 and a nonnegative integrable function 
� ∶ [0,∞) → ℝ such that for every � ∈ � with ‖𝜁 − x0‖ < 𝛽 , Eq. (48) with 
u = u∗ and the initial condition replaced by x(0) = � , has a solution on [0,∞) , 
denoted by x� , and it fulfils for a.e. t , 

The formulation of necessary conditions uses a  Hamiltonian function H and an 
adjoint variable �.

Definition 7  The Hamiltonian is a function H ∶ ℝ+ ×𝕏 × 𝕌 ×ℝn
→ ℝ such that

where ⟨⋅, ⋅⟩ denotes the inner product in ℝn.

Definition 8  For an admissible solution (u∗, x∗) an absolutely continuous function 
� ∶ ℝ+ → ℝn is called an adjoint (or costate) variable corresponding to (x∗, u∗) , if it 
is a solution to the following system

Definition 9  We say that an admissible pair (x∗, u∗) together with an adjoint variable 
�∗ corresponding to (x∗, u∗) , satisfies the core relations of the normal-form Pontry-
agin maximum principle for the problem (P), if the following maximum condition 
holds on [0,∞)

max
x∶‖x−x∗(t)‖≤�(t)

�‖fx(t, x, u∗(t))‖ + ‖gx(t, x, u∗(t))‖ e −rt
� ≤ �(t).

max
x∈Conv (x� (t),x∗(t))

��� e
−rt

�
gx(t, x, u), x

� (t) − x∗(t)
���� ≤ ‖� − x0‖�(t).

H(t, x, u,�) = ⟨f (x, u),�⟩ + e −rtg(x, u),

(49)

𝜓̇(t) = −

[
𝜕f (t, x∗(t), u∗(t))

𝜕x

]∗
𝜓(t) − e −rt 𝜕g(t, x

∗(t), u∗(t))

𝜕x
, for a.e. t ≥ 0.

(50)u∗(t) ∈ Argmax
u∈�

H(t, x∗(t), u,�(t)) for a.e. t.
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Let’s turn to the main part of this section – the definition of the Pontryagin maxi-
mum principle for the infinite time horizon:

Theorem 10  (Aseev-Veliov maximum principle) Suppose that the conditions (A1)–
(A3) are satisfied and (x∗, u∗) is an optimal solution1 for problem (P). Then there 
exists an adjoint variable �∗ corresponding to (x∗, u∗) such that

	 (i)	 (x∗, u∗) , together with �∗ satisfy the core relations of the normal-form Pon-
tryagin maximum principle,

	 (ii)	 for every t ≥ 0 the integral

where Z(x∗,u∗)(t) is the normalised fundamental matrix of the following linear 
system

converges absolutely and the ”transversality condition” is
	 (iii)	 �∗(t) = Z(x∗,u∗)(t)I

∗(t).

For problems with discounting considering the formulation as in Theorem  10 
may result in non-autonomous problems to solve, even if the functions f  and g are 
independent of time. We can avoid this problem and simplify calculations by con-
sidering current value Hamiltonian and a rescaled costate variable. Consider

for �∗(t) = e rt�∗(t).

Theorem 11  Suppose that the conditions (A1)–(A3) are satisfied and (x∗, u∗) is an 
optimal solution. The two core-relation equations in the new notation reduce to 

u∗(t) ∈ Argmax
u∈�

HCV(t, x∗(t), u, �∗(t)) for a.e. t and 𝜆̇∗(t) = r𝜆∗(t) −

[
𝜕f (t,x∗(t),u∗(t))

𝜕x

]T
𝜆∗(t)

− e −rt �g(t,x
∗(t),u∗(t))

�x
, for a.e. t ≥ 0, while the ”transversality condition” to 

�∗(t) = e rtZ(x∗,u∗)(t)I
∗(t).

I∗(t) =

∞

∫
t

e −rw
[
Z(x∗,u∗)(w)

]−1 �g(w, x∗(w), u∗(w))
�x

dw,

ż(t) = −

[
𝜕f (t, x∗(t), u∗(t))

𝜕x

]T
z(t),

(51)HCV(t, x∗(t), u, �∗(t)) = ⟨f (x, u), �∗⟩ + g(x, u)

1  In fact, Aseev and Veliov in Aseev and Veliov (2012, 2014, 2015) used the concept of locally weakly 
overtaking optimal solution, which is one of possible extensions of the concept of optimality when infi-
nite payoffs are not excluded. In the problem of our paper, it is equivalent to local optimality.
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A.2 Existence of the optimal solution

We use the existence theorem of Balder (1983,  Theorem  3.6), which we cite in 
a simplified form, previously used in Wiszniewska-Matyszkiel et al. (2015). 

	(B1)	 For all t ≥ 0 , f (t, ⋅, ⋅) is continuous, g(t, ⋅, ⋅) is upper semicontinuous with 
respect to (x, u) , and the sets � and � are closed.

	(B2)	 For all x ∈ � , and t ∈ ℝ+ , the set 

(a)	 is convex, and

(b)	 Q(t, x) =
⋂
𝛿>0

cl

( ⋃
|x−y|≤𝛿

Q(t, y)

)
 , where cl(Q) is a closure of the set Q.

	(B3)	 There exists a constant � ∈ ℝ such that the set of admissible pairs 

 is nonempty, {f (⋅, x(⋅)), u(⋅)|[0,T] ∶ (x, u) ∈ ��} is uniformly integrable for 
each T ≥ 0 , and 

 (where g+ denotes max{0, g} ), is strongly uniformly integrable, that is for 
every 𝜖 > 0 there exists h ∈ L+

1
(ℝ+) such that 

Theorem 12  (Balder) If conditions (B1)–(B3) are fulfilled, then there exists an opti-
mal pair (x∗, u∗) for the problem (P).

A.3 Checking the assumptions of Theorem 10

First, we are going to restrict the state and control sets in a way that does not change 
the optimal control for realistic initial conditions. If the initial price p0 is greater 
than 2A+c

3
 , then every admissible trajectory is contained in (−∞, p0] . Note that when-

ever the initial price p0 < A , what we assume in our paper, then we can restrict the 
set of state variables (prices) to (−∞,A] . Next, suppose that at some time t the price 
is below c . Denote by t̂ the time instant when the price reaches c and consider the 
time interval [t̂, t] such that the price does not exceed c . Consequently, the leader’s 
instantaneous payoff is nonpositive. Thus, his optimal strategy is q1 = 0 a.e. on [t̂, t] . 
It follows that ṗ(t) > 0 on the considered time interval and so values below c cannot 

Q(t, x) = {(z0, z) ∈ ℝ
n+1 ∶ z0 ≤ g(t, x, u) e −rt, z = f (t, x, u), u ∈ 𝕌}

�� =
{
(x, u) admissible pairs ∶ J0,x0 (u) ≥ �

}

G = {g+(⋅, x(⋅), u(⋅)) e −r⋅ ∶ (x, u) ∈ ��}

sup
�∈G �{t∶|�(t)|≥h}

|�(t)|dt ≤ �.
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be reached if the initial price is at least c . This implies that if the initial price is in 
[c,A] , then the whole optimal trajectory of price remains in [c,A] . So, adding the 
constraint p ∈ [c,A] on possible prices does not change the optimal control if the 
initial price is in this interval.

Next, let us note that the set of control variables can also be constrained. Consid-
ering the leader’s instantaneous payoff �1 = (p − c)q1 −

1

2
q2
1
 , with p ∈ [c,A] , we can 

see that if the leader’s production exceeds some sufficiently large qmax , then his cur-
rent payoff becomes negative. Therefore, the optimal control of our problem is equal 
to the optimal control for the problem with an additional constraint q1 ∈ [0, qmax].

Suppose that (p∗, q∗
1
) is an optimal solution to the dynamic optimization problem 

(P) with g(t, p, q1) = (p − c)q1 −
1

2
q2
1
 and f (t, p, q1) =

1

3
s(2A + c − 3p − 2q1) . 

	(A1)	 The functions f  , g and their partial derivatives fp , gp are Lebesgue-Borel meas-
urable in (t, p, q1) for every p , continuous in p and uniformly bounded as func-
tions of t hence they are independent of t.

	(A2)	 For �(t) = min{q∗(t) − c, A − q∗(t)} , {p ∶ ‖p − p∗(t)‖ ≤ 𝛾(t)} ⊆ � for all t ≥ 0 
and we have 

	(A3)	 There exist a number 𝛽 > 0 and a nonnegative integrable function 
� ∶ [0,∞) → ℝ such that for every � ∈ � with ‖𝜁 − x0‖ < 𝛽 , Eq. (48) with 
u = u∗ and initial condition replaced by x(0) = � , has a solution on [0,∞) , 
denoted by x� , and for a.e. t , We have 

 Thus, it is sufficient to take �(t) = qmax e
−(r+s)t and 𝛽 > 0 arbitrary.

A.4 Checking the assumptions of Theorem 12

	(B1)	 For all t ≥ 0 , the functions f (t, ⋅, ⋅) and g(t, ⋅, ⋅) are continuous in (p, q1) and sets 
� = [c,A] and � = [0, qmax] are closed.

	(B2)	 The set 

(a)	 is convex,

(b)	 Q(t, p) =
⋂
𝛿>0

cl

� ⋃
�p−y�≤0

Q(t, y)

�
.

max
p∶‖p−p∗(t)‖≤�(t)

�
s + q∗

1
(t) e −rt

�
= s + q∗

1
(t) e −rt ≤ s + qmax e

−rt.

max
p∈Conv (p� (t),p∗(t))

��� e
−rtq1(p

� (t) − p∗(t))
���

= e −rtq1
���p

� (t) − p∗(t)
���

= e −rtq1

�����
� e −st + e −st �

t

0

e swq∗
1
(w)dw −

�
p0 e

−st + e −st �
t

0

e swq∗
1
(w)dw

������
≤ ‖� − x0‖qmax e

−(r+s)t.

Q(t, p) =

{
(z0, z) ∈ ℝ

2 ∶ z0 ≤ q1

(
p − c −

1

2
q1

)
e −rt , z =

1

3
s(2A + c − 3p − 2q1)

)
, q1 ∈ [0, qmax]

}
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	(B3)	 For � = 0 , the set �0 = {(p, q1) corresponding to J0,p0 (q1) ≥ 0} is non-
empty as it contains q1 ≡ 0 . Since for every admissible trajectory 
ṗ(t) ∈

[
1

3
s(2A + c − 3p − 2qmax),

1

3
s(2A + c − 3p)

]
 ,  t he re  ex i s t  some 

constants d1 , d2 for which p(t) ∈
[
p0 + d1 e

−st, p0 + d2 e
−st

]
 . Hence, 

q1 ∈ [0, qmax] and both p and q1 are measurable, it follows that f (⋅, p(⋅), q1(⋅)) 
for all (p, q1) are uniformly integrable on every finite interval. The con-
straint  g+(t, p(t), q1(t)) e

−rt ∈ [0, pqmax e
−rt] together  with measur-

ability of the functions p , q1 and e −rt yield strong uniform integrability of 
G = {g+(⋅, p(⋅), q1(⋅)) e

−r⋅ ∶ (p, q1) ∈ �0}.
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