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Abstract
Motivated by the fault tolerance for manufacturing, we investigate a renewal input 
bulk arrival queue with a fault-tolerant server, in which the server can keep work-
ing with a low service rate even if the partial failure occurs. Only when there are no 
customers in the system, the partial failure can be removed. To explore the perfor-
mance measures of the queue, a more generic and simpler algorithm based on the 
right shift operator method for solving difference equations is employed to obtain 
the queue-length distributions at different time epochs. The significant feature of this 
algorithm lies in that it does not require the derivation of the transition probability 
matrix for the corresponding embedded Markov chain. Furthermore, we can resort 
to the queue-length distribution at the pre-arrival epoch to quickly get the expected 
sojourn time for an arbitrary customer. Finally, with the help of Padé approximation, 
several representative numerical examples are illustrated in tables and graphs, under 
which we show how to verify the correctness of our theoretical results through Lit-
tle’s law.
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1 Introduction

A large number of papers in the field of queueing theory have appeared to analyze 
the waiting line system with an unreliable server. Among some earlier works in 
this area, Gaver (1962) studied the waiting line with interrupted service, includ-
ing priorities. Avi-ltzhak and Naor (1963) and Thiruvengadam (1963) investi-
gated some fundamental queueing problems with service facilities subject to 
breakdowns. Mitrany and Avi-Itzhak (1968) extended the analysis to the multi-
server queue with service interruptions. Later, this model was revisited by Neuts 
and Lucantoni (1979) under the assumption that failed servers are repaired by one 
of the c repairmen. Over the past thirty years, authors like Sengupta (1990), Tak-
ine and Sengupta (1997), Tang (1997), Li et al. (1997), Madan (2003), Ke (2003, 
2006), Wang (2004), Gray et al. (2004), Wang et al. (2010), Choudhury and Deka 
(2012), Jain et al. (2013), Kumar et al. (2020), Gorbunova and Lebedev (2020), 
and Kumar et al. (2021) have studied some single arrival queueing systems with 
an unreliable server. A common assumption in the above literature is that as soon 
as the server fails, it instantaneously undergoes repairs. However, in real-life situ-
ations, due to some unavoidable reasons, the repair of the failed server may be 
delayed. This phenomenon stimulates Choudhury and Tadj (2009), Choudhury 
and Kalita (2018) investigated the steady-state behavior of the unreliable M/G/1 
queue with delay repair. On the other hand, from the mathematical and practical 
points of view, the case of batch arrival is more general, and also more chal-
lenging to handle. Many authors have contributed to the theory of batch arrival 
queues subject to unpredictable server breakdowns. Some notable works in this 
direction can be found in Ke and Lin (2006), Ke and Huang (2010, 2012), Choud-
hury and Tadj (2011), Singh et al. (2018), Choudhury and Deka (2018), Saggou 
et al. (2019), Jain and Kaur (2020). To get a more comprehensive summary of the 
recent research work on the topic of the unreliable queue, interested readers may 
refer to the review paper done by Jain et al. (2019a, 2019b).

It is worth noting that in the queueing systems mentioned above, the status 
of a server is usually modeled with two extreme states, working and failed. A 
working server is capable of serving customers at any instant of time. On the 
contrary, when the server fails, it is totally incapable of servicing and requires 
renewal or repair. However, such an assumption is not always true in reality. For 
example, a service facility or a manufacturing system built with fault tolerance 
capabilities will manage to keep operating (perhaps at a degraded level) in the 
presence of partial failure. Here, fault tolerance refers to the ability of a system 
to continue working without interruption when a partial failure occurs, wherein 
partial failures are often caused by the wear and tear of equipment components or 
the wrong action by an operator. The objective of creating a fault-tolerant system 
is to prevent disruptions arising in the service or manufacturing process, ensuring 
the high availability and business continuity of a stochastic service system. To 
theoretically analyze such phenomenon, Kalidass and Kasturi (2012) developed a 
new concept of working breakdowns in queueing theory. In a working breakdown 
queue, the server works at a lower service rate rather than completely stopping 
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service during the breakdown period. Many researchers motivated by their work 
have extended this type of queue in different frameworks. Kim and Lee (2014) 
further studied an M/G/1 queue with disasters and working breakdowns, in which 
the system is equipped with a substitute server for providing the working break-
down services to arriving customers. Liu and Song (2014) extended the idea in 
Kalidass and Kasturi (2012) to the Markovian batch arrival queue. Applying the 
matrix-geometric method (Neuts 1981), Liou (2015) also investigated M/M/1 
unreliable queue subject to working breakdowns and impatient customers. Other 
recent works on queues with working breakdowns can be found in Li et al. (2013), 
Yen et  al. (2016), Chen (2018), Ye and Liu (2018), Jain et  al. (2019a, 2019b), 
Jiang and Xin (2019), and Gao et  al. (2019). It is, however, slightly regrettable 
that very few authors have studied the working breakdown queue under general 
renewal arrivals. To date, only a small amount of literature has covered this topic. 
Using the embedded Markov chain and matrix analytic approach, Jiang and Liu 
(2017) considered the GI/M/1 queue with disasters and working breakdowns in a 
multi-phase service environment. Utilizing the supplementary variable technique 
(Cox 1955), Yang and Cho (2019) presented a recursive algorithm for computing 
the stationary queue-length distribution in N-policy GI/M/1/K queue with modi-
fied working breakdowns. Here, Yang and Cho did not assume that service and 
maintenance can be performed simultaneously. In their model assumptions, the 
repairman repairs the partially failed service facility when there are no customers 
queueing up for service. We think this assumption may be valid in some cases. 
For example, as the COVID-19 pandemic has spread across the globe, the severe 
shortage of medical masks caused by the health crisis quickly becomes a sig-
nificant issue of the pandemic. To address the growing demand for masks dur-
ing the outbreak of coronavirus disease, Honeywell, a leading manufacturer of 
personal protective equipment, quickly ramps up production by reducing regular 
equipment maintenance frequency. Such maintenance schedule adjustment can be 
regarded as a fault-tolerance mechanism in the production process that simultane-
ously provides a timely response to customer needs. This example also gives us a 
realistic background to study the queueing system with fault-tolerant operations.

It is an indisputable fact that queueing models with customers arriving in batches 
rather than singly have many applications in practice, for example, in flexible manu-
facturing systems. However, based on the above literature review, we may see that 
current research has not paid much attention to the renewal batch arrival queue 
with working breakdowns or with fault tolerance characteristics. Such a situation 
prompted us to study a bulk queue with renewal input and fault-tolerant operating 
modes. Also, to simplify the analytical study of the model, an alternative yet simple 
method with resorting to the supplementary variable technique and the shift opera-
tor technique in solving difference equations is employed to analyze our model. We 
note that in the past one year, Barbhuiya and Gupta (2019a, 2019b, 2020) used this 
unique method to reconsider the algorithm for computing the queue-length distri-
butions in some renewal input bulk arrival queues. From their pioneering work, it 
was revealed that the algorithm based on the combination of these two techniques 
is easy to understand, and can be conveniently implemented by applying a suitable 
software package such as Maple, Mathematica or Matlab. More importantly, this 
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method requires neither derivation of the transition probability matrix of the Markov 
chain embedded at arrival instants nor the inversion of any probability generating 
function. We quickly realized that a more generic version of this method could be 
developed and applied to analyze our queueing model presented in this work.

The remaining part of our paper is organized as follows. We first describe the sys-
tem and provide basic assumptions in Sect. 2. The differential-difference equations 
governing the queueing model are framed by the supplementary variable technique 
in Sect.  3. In Sect.  4, with the help of the theory of difference equation, we pro-
vide the procedure to analyze the steady-state queue-length distributions at different 
epochs of our model. Moreover, using the queue-length distribution at the pre-arrival 
epoch, we also evaluate the sojourn time of an arbitrary customer in Sect. 5. To vali-
date the correctness of our theoretical results, we present some numerical examples 
in Sect. 6. Section 7 concludes the paper and directs possible further studies.

2  Model formulation and preliminaries

The mathematical model for this work describes as follows:

• Consider GIX/M/1 queue with a fault-tolerant server wherein batches of custom-
ers arrive at epochs 0 = �0 , �1 , �2 , … , �n , … . The number of arrivals at each epoch 
is given by a random variable X having general distribution gi = Pr {X = i} , 
i = 1, 2,… , and probability generating function (p.g.f.) G(z) =

∑∞

i=1
giz

i , |z| ≤ 1 . 
In most real-life situations, batch sizes are not infinite but finite. Thus, from a 
realistic and computational point of view, we suppose that the maximum batch 
size is b throughout this paper. As a result of this assumption, the p.g.f. and 
mean of the random variable X are given by G(z) =

∑b

i=1
giz

i and ḡ =
∑b

i=1
igi , 

respectively.
• The inter-arrival times 𝜏n+1 − 𝜏n > 0 , n = 0, 1, 2,… , are independent and identi-

cally distributed (i.i.d.) random variables with common distribution function A(t) 
and probability density function (p.d.f.) a(t). Let the Laplace-Stieltjes transform 
of this distribution be denoted by a∗(s) = ∫ ∞

0
e−stdA(t) and let the mean inter-

arrival time be denoted by 1∕� , where 0 < 1∕𝜆 = −
d

ds
a∗(s)

|||s=0 < ∞.
• The customers are served individually by a single server on a first-come, first-

served basis. If Sn is the service time of the nth customer to be served in normal 
state, then it is assumed that 

{
Sn, n = 1, 2, 3,…

}
 is a sequence of positive i.i.d. 

random variables with the common exponential p.d.f. �0e
−�0t , t > 0.

• A partial failure of the server could occur during the normal busy period, and the 
time until the random partial breakdown of the server, denoted by L, is assumed 
to be exponentially distributed with rate �.

• When a partial failure occurs, the server continues working in degraded mode 
at a reduced service rate rather than entirely halting service. Let S̃n represent 
the service time of the nth customer to be served in defective state, and we also 
assume that the sequence 

{
S̃n, n = 1, 2, 3,…

}
 are i.i.d. positive random variables 

following exponential distribution with parameter �1 (𝜇1 < 𝜇0).



2835

1 3

Analysis of a renewal batch arrival queue with a fault‑tolerant…

• Given customers’ sensitivity and emotional reaction to delay, and also to ensure 
continuity and efficient service process, the defective server is repaired after the 
system becomes empty. In other words, when there are customers present in the 
queue, the server cannot be repaired, even if the server is undergoing repairs. The 
repair time of the defective server is exponentially distributed with a mean rate �.

• It is further supposed that various stochastic processes involved in the queueing sys-
tem are mutually independent. Additionally, for the stationary analysis of the model, 
we demands that 𝜌 = ḡ𝜆∕𝜇1 < 1 (see the proof of Theorems 1 and 2).

3  Governing equations of the system

Let N(t) and �(t) indicate the number of customers in the system (including the one 
being served) and the state of the server at time t, respectively. Here, �(t) is a binary 
random variable. �(t) = 0 represents that the server is in a normal state, while �(t) = 1 
represents that the server is defective. Moreover, the supplementary variable R(t) 
corresponding to the remaining inter-batch arrival time at time t is used, which pro-
vides Chapman–Kolmogorov equations governing our current model. Thus, the 
state of the system at time t could be described by a multivariate stochastic process 
Θ(t) = {N(t), �(t),R(t), t ≥ 0} . In this process, the non-Markovian queueing process 
becomes Markovian by having the necessary information so that the future of the pro-
cess depends only on its current state. To ease us into the analysis of such a queue, we 
define the joint probabilities as follows

In steady-state, let us further define

To obtain the steady-state probabilities of the queue size Qn,0 and Qn,1 , we first con-
struct the differential-difference equations for describing the evolution of the model 
by observing the state of the queue at two consecutive time epochs t and t + Δt . 
Using the probabilistic argument, we can derive the following set of equations:

𝜋n,m(x, t)dx = Pr {N(t) = n, 𝜉(t) = m, x < R(t) ≤ x + dx},

x ≥ 0, n = 0, 1, 2,… , m = 0, 1.

Qn,m(x) = lim
t→∞

�n,m(x, t), n = 0, 1, 2,… , m = 0, 1;

Qn,m = ∫
∞

0

Qn,m(x)dx, n = 0, 1, 2,… , m = 0, 1.

(1)−
d

dx
Q0,0(x) = �0Q1,0(x) + �Q0,1(x),

(2)

−
d

dx
Qn,0(x) = −

(
�0 + �

)
Qn,0(x) + �0Qn+1,0(x)

+ a(x)

n∑
i=1

giQn−i,0(0), 1 ≤ n ≤ b − 1,
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Since the Laplace transform are extremely useful in the solution of complicated dif-
ferential-difference equations presented above, we define the Laplace transform of 
Qn,m(x) as

Meanwhile, we also notice that Q∗
n,m

(0) = Qn,m . Then, taking the 
Laplace transform on both sides of Eqs.  (1)–(6) and using the relation 
− ∫ ∞

0
e−sx

d

dx
Qn,m(x)dx = Qn,m(0) − sQ∗

n,m
(s) , we thus obtain the transformed equa-

tions as below

(3)

−
d

dx
Qn,0(x) = −

(
�0 + �

)
Qn,0(x) + �0Qn+1,0(x)

+ a(x)

b∑
i=1

giQn−i,0(0), n ≥ b,

(4)−
d

dx
Q0,1(x) = −�Q0,1(x) + �1Q1,1(x),

(5)

−
d

dx
Qn,1(x) = −�1Qn,1(x) + �1Qn+1,1(x) + �Qn,0(x)

+ a(x)

n∑
i=1

giQn−i,1(0), 1 ≤ n ≤ b − 1,

(6)

−
d

dx
Qn,1(x) = −�1Qn,1(x) + �1Qn+1,1(x) + �Qn,0(x)

+ a(x)

b∑
i=1

giQn−i,1(0), n ≥ b.

Q∗
n,m

(s) = ∫
∞

0

e−sxQn,m(x)dx, n = 0, 1, 2,… , m = 0, 1.

(7)−sQ∗
0,0
(s) = −Q0,0(0) + �0Q

∗
1,0
(s) + �Q∗

0,1
(s),

(8)

(
�0 + � − s

)
Q∗

n,0
(s) = −Qn,0(0) + �0Q

∗
n+1,0

(s)

+ a∗(s)

n∑
i=1

giQn−i,0(0), 1 ≤ n ≤ b − 1,

(9)

(
�0 + � − s

)
Q∗

n,0
(s) = −Qn,0(0) + �0Q

∗
n+1,0

(s)

+ a∗(s)

b∑
i=1

giQn−i,0(0), n ≥ b,
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Adding Eqs. (7)–(12), it yields

Taking the limit as s → 0 , and using L’Hôspital’s rule one time in the above Eq. (13), 
we have

Here, the normalization condition implies that

Substituting Eq. (15) into Eq. (14), we get

Employing Eq.  (16), we may show that if Q−
n,m

 represents the steady-state proba-
bility of having n (n ≥ 0) customers in the system and the server being in state m 
(m = 0, 1) immediately before batch arrival, then Q−

n,m
=

1

�
Qn,m(0) . To show this, it 

should be noted that Q−
n,m

 is proportional to Qn,m(0) and 
∑∞

n=0
Qn,0(0) +

∑∞

n=0
Qn,1(0) , 

which gives

Now, we have already seen that once Qn,m(0) and Q∗
n,m

(s) are obtained, we can fur-
ther use them to get the queue-length distributions at the instant of a batch arrival 

(10)(� − s)Q∗
0,1
(s) = −Q0,1(0) + �1Q

∗
1,1
(s),

(11)

(
�1 − s

)
Q∗

n,1
(s) = −Qn,1(0) + �1Q

∗
n+1,1

(s) + �Q∗
n,0
(s)

+ a∗(s)

n∑
i=1

giQn−i,1(0), 1 ≤ n ≤ b − 1,

(12)

(
�1 − s

)
Q∗

n,1
(s) = −Qn,1(0) + �1Q

∗
n+1,1

(s) + �Q∗
n,0
(s)

+ a∗(s)

b∑
i=1

giQn−i,1(0), n ≥ b.

(13)
∞∑
n=0

Q∗
n,0
(s) +

∞∑
n=0

Q∗
n,1
(s) =

1 − a∗(s)

s

(
∞∑
n=0

Qn,0(0) +

∞∑
n=0

Qn,1(0)

)
.

(14)
∞∑
n=0

Q∗
n,0
(0) +

∞∑
n=0

Q∗
n,1
(0) =

1

�

(
∞∑
n=0

Qn,0(0) +

∞∑
n=0

Qn,1(0)

)
.

(15)
∞∑
n=0

Q∗
n,0
(0) +

∞∑
n=0

Q∗
n,1
(0) = 1.

(16)
∞∑
n=0

Qn,0(0) +

∞∑
n=0

Qn,1(0) = �.

(17)
Q−

n,m
=

Qn,m(0)

∞∑
n=0

Qn,0(0) +
∞∑
n=0

Qn,1(0)

=
1

�
Qn,m(0).
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( Q−
n,m

 ) and arbitrary epoch ( Qn,m ). We will address how to deal with this problem in 
the next section.

4  Queue‑length distributions at pre‑arrival and arbitrary epochs

For analysis purposes, the discrete variable n will be considered to be the independ-
ent variable, while the function values Qn,m(0) and Q∗

n,m
(s) (m = 0, 1) will be the 

dependent variables. For the sequences 
{
Qn,m(0), n ≥ 0

}
 and 

{
Q∗

n,m
(s), n ≥ 0

}
 , we 

define a right shift operator �  on the above two sequences and set 
�
jQn,m(0) = Qn+j,m(0) and � jQ∗

n,m
(s) = Q∗

n+j,m
(s) , j ≥ 1 . Thus, Eq.  (9) can now be 

written in terms of operator �  as follows

By setting n ≥ 0 instead of n ≥ b and substituting s = � + �0 − �0�  , Eq.  (18) 
reduces to the below homogeneous difference equation with constant coefficients

According to the fundamental theory of difference equation, the corresponding aux-
iliary equation

is said to be the characteristic equation of Eq.  (19). Next, we will apply Rouché ’s 
theorem to find the number of roots of Eq. (20).

Theorem 1 When ḡ𝜆
𝜇0

< 1 , the characteristic equation zb − a∗(� + �
0
− �

0
z)
∑b

i=1
giz

b−i = 0 
has exactly b roots inside the unit disk.

Proof Consider two complex-valued functions f (z) = zb and g(z) = −a∗(� + �
0
− �

0
z) ∑b

i=1
giz

b−i . Let H(z) = a∗(� + �0 − �0z) . Clearly, for a sufficiently small 𝛿 > 0 , 
H(z) is holomorphic inside and on the closed contour |z| = 1 + � . Thus, according 
to the Taylor’s theorem for analytic complex function there exists a power series ∑∞

k=0
hk(z − 1)k which converges to H(z). The coefficients hk (k = 0, 1, 2,…) are 

given by hk =
1

2��
∮
ℂ

H(z)

(z−1)k+1
dz =

H(k)(1)

k!
 , where � =

√
−1 and ℂ is any closed contour 

around 1 and lying completely inside |z| ≤ 1 + � . Then, employing the Taylor 
expansion for H(z), we may estimate |f(z)| and |g(z)| on the simple closed curve 
|z| = 1 − � , where 𝜖 > 0 and is also a sufficiently small quantity. Thus, on 
|z| = 1 − �

(18)(s − � − �0 + �0� )Q
∗
n,0
(s) =

(
�
b − a∗(s)

b∑
i=1

gi�
b−i

)
Qn−b,0(0), n ≥ b.

(19)

(
�
b − a∗(� + �0 − �0� )

b∑
i=1

gi�
b−i

)
Qn,0(0) = 0, n ≥ 0.

(20)zb − a∗(� + �0 − �0z)

b∑
i=1

giz
b−i = 0
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Consequently, as all the conditions of Rouché ’s theorem (see Klimenok 2001) are 
satisfied, f (z) + g(z) has exactly b zeros inside the unit circle, since f(z) has b.   ◻

It has been shown by many authors that in queueing theory, roots of the char-
acteristic equation are well structured, and they are generally distinct, see, e.g., 
Tijms (2003) and Chaudhry et al. (1990). Therefore, if we assume that the roots 
of Eq.  (20) are distinct, denoted by rj, j = 1, 2,… , b , the general solution of 
Eq. (19) can be expressed in the form

where �j (j = 1,… , b) are real or complex constants to be determined. Substituting 
Eq. (21) into Eq. (18) yields

It is now necessary to turn to determine the unknown function Q∗
n,0
(s) from the above 

equation. Treating s as a fixed constant, Eq. (22) can be regarded as a first order non-
homogeneous difference equation with constant coefficients and its general solution 
consists of two parts: solution to the corresponding homogeneous equation plus a 
particular solution to the nonhomogeneous equation. For Eq. (22), the general solu-
tion of the homogeneous part is written as Q∗(hom)

n,0
(s) = D1

(
1 +

�−s

�0

)n

 , where D1 is 
an arbitrary constant. On the other hand, we note that an appropriate trial solution 
for (s − � − �

0
+ �

0
� )Q∗

n,0
(s) =

�
r−b
j
�
b − a∗(s)

∑b

i=1
gir

−b
j
�
b−i

�
�jr

n
j
 is Q∗

n,0
(s) = djr

n
j
 , 

j = 1, 2,… , b . Thus, a particular solution of the nonhomogeneous Eq. (22) can be 
given as follows

|f (z)| = (1 − 𝜖)b = 1 − b𝜖 + o(𝜖),

|g(z)| = |H(z)|
||||||

b∑
i=1

giz
b−i

||||||
≤ H(|z|)

b∑
i=1

gi|z|b−i = H(1 − 𝜖)

b∑
i=1

gi(1 − 𝜖)b−i

=

[
H(1) +

H�(1)

1!
(1 − 𝜖 − 1) +

∞∑
k=2

H(k)(1)

k!
(1 − 𝜖 − 1)k

]
b∑
i=1

gi[1 − (b − i)𝜖 + o(𝜖)]

=

[
�

∞

0

(1 − 𝜖𝜇0t)e
−𝜂tdA(t) + o(𝜖)

] b∑
i=1

gi[1 − (b − i)𝜖 + o(𝜖)]

≤
[
�

∞

0

(1 − 𝜖𝜇0t)dA(t) + o(𝜖)

] b∑
i=1

gi[1 − (b − i)𝜖 + o(𝜖)]

=
[
1 −

𝜇0

𝜆
𝜖 + o(𝜖)

][
1 + ḡ𝜖 − b𝜖 + o(𝜖)

]

= 1 − b𝜖 +
(
ḡ −

𝜇0

𝜆

)
𝜖 + o(𝜖) ≤ |f (z)|

(21)Qn,0(0) =

b∑
j=1

�jr
n
j
, n ≥ 0,

(22)(s − � − �0 + �0� )Q
∗
n,0
(s) =

(
�
b − a∗(s)

b∑
i=1

gi�
b−i

)
b∑
j=1

�jr
n−b
j

, n ≥ b.
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Adding this particular solution to the general solution of the associated homogene-
ous equation, the solution of Eq. (22) is presented as

As s tends to zero, since 
∑∞

n=b
Q∗

n,0
(0) =

∑∞

n=b
Qn,0 < 1 , we must have D1 = 0 , other-

wise the sum 
∑∞

n=b
Qn,0 will diverge. Hence, Eq. (24) reduces to

We now find the conditions under which Q∗
n,0
(s) has the same expression as in 

Eq. (25) for 1 ≤ n ≤ b − 1 . To this end, substituting Eq. (21) into Eqs. (8) and (9), 
and comparing the last term of the right hand side of the above two equations, we 
may observe that the unknown constants �j satisfy the relationship

Respectively setting n = b − 1, b − 2,… , 1 in Eq.  (26) and noting that gb ≠ 0 , 
we can construct a system of b − 1 linear equations in b variables which can be 
employed to determine the unknown constants �j (j = 1, 2,… , b) in later analysis

(23)
Q

∗(part)

n,0
(s) =

b�
j=1

�j

�
rb
j
− a∗(s)

b∑
i=1

gir
b−i
j

�

s − � − �0(1 − rj)
rn−b
j

, n ≥ b.

(24)
Q∗

n,0
(s) = D1

�
1 +

� − s

�0

�n

+

b�
j=1

�j

�
rb
j
− a∗(s)

b∑
i=1

gir
b−i
j

�

s − � − �0(1 − rj)
rn−b
j

, n ≥ b.

(25)

Q∗
n,0
(s) =

b�
j=1

�j

�
rb
j
− a∗(s)

b∑
i=1

gir
b−i
j

�

s − � − �0(1 − rj)
rn−b
j

=

b�
j=1

�j

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

s − � − �0(1 − rj)
, n ≥ b.

(26)

a∗(s)

n∑
i=1

gi

b∑
j=1

�jr
n−i
j

=a∗(s)

b∑
i=1

gi

b∑
j=1

�jr
n−i
j

⇒

b∑
j=1

�j

b∑
i=n+1

gir
n−i
j

= 0, 1 ≤ n ≤ b − 1.

(27)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�1

r1
+

�2

r2
+⋯ +

�b−1

rb−1
+

�b

rb
= 0,

�1

r2
1

+
�2

r2
2

+⋯ +
�b−1

r2
b−1

+
�b

r2
b

= 0,

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

�1

rb−2
1

+
�2

rb−2
2

+⋯ +
�b−1

rb−2
b−1

+
�b

rb−2
b

= 0,

�1

rb−1
1

+
�2

rb−1
2

+⋯ +
�b−1

rb−1
b−1

+
�b

rb−1
b

= 0.
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If the above results hold true, for any n ≥ 1

Next, let us once again apply the right shift operator �  to Eq. (12). Then, we have

By setting s = �1 − �1�  in Eq. (29) and substituting Eq. (28) into Eq. (29) yields

Adopting Rouché ’s theorem similar to that used for the previous Theorem 1, the fol-
lowing Theorem 2 shows that under certain conditions, the characteristic equation of 
the above difference equation also has exactly b roots inside the unit circle |z| = 1 . 
We shall use the letters �1 , �2 , … , �b to denote these b roots.

Theorem  2 When ḡ𝜆
𝜇1

< 1 , the characteristic equation zb − a∗(�
1
− �

1
z)
∑b

i=1
giz

b−i = 0 
has exactly b roots inside the unit disk.

Furthermore, combining the results of Theorems 1 and Theorem 2, the obvious 
stability condition of the current queueing system is that ḡ𝜆

𝜇1

< 1 . By analogy with 
the corresponding procedure to compute Q∗

n,0
(s) , the general solution of the non-

homogeneous Eq. (30) is given by

Here, the first term in the right-hand side of Eq. (31) is a solution to the associated 
homogeneous equation of Eq. (30), and k1 , k2 , … , kb are the arbitrary constants that 
can be obtained from later analysis. On the other hand, the second term is a particu-
lar solution of Eq. (30). Substituting Eqs. (28) and (31) into the right-hand side of 
Eq. (29), we have

(28)
Q∗

n,0
(s) =

b�
j=1

�j

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

s − � − �0(1 − rj)
.

(29)

(s − �1 + �1� )Q
∗
n,1
(s) =

(
�
b − a∗(s)

b∑
i=1

gi�
b−i

)
Qn−b,1(0) − �Q∗

n,0
(s), n ≥ b.

(30)

�
�
b − a∗

�
�1 − �1�

� b�
i=1

gi�
b−i

�
Qn,1(0) = �Q∗

n+b,0
(�1 − �1� )

= �

b�
j=1

�j

�
rb
j
− a∗(�1 − �1� )

b∑
i=1

gir
b−i
j

�

�1 − �1� − � − �0(1 − rj)
rn
j
, n ≥ 0.

(31)Qn,1(0) =

b∑
j=1

kj�
n
j
+ �

b∑
j=1

�j

(�1 − �0)(1 − rj) − �
rn
j
, n ≥ 0.
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which is also a nonhomogeneous difference equation with constant coefficients. 
Similar to the discussions surrounding Eq. (22), we of course first find the general 
solution of the associated homogeneous equation of Eq.  (32). It has the form 
Q

∗(hom)

n,1
(s) = D2

(
1 −

s

�1

)n

 , where D2 is an undetermined constant. Then, utilizing 
the Table 2.3 presented in the monograph by Elaydi (2005), a particular solution of 
Eq. (32) can be given by

Thus, for n ≥ b , the general solution of Eq.  (32) can be written as 
Q∗

n,1
(s) = Q

∗(part)

n,1
(s) + Q

∗(hom)

n,1
(s) . Summing over all permissible n from b to ∞ and tak-

ing the limit as s → 0 , the formula 
∑∞

n=b
Q∗

n,1
(0) =

∑∞

n=b
Qn,1 ≤ 1 clearly holds. This 

means that the undetermined constant D2 = 0 . Otherwise, the limit of 
∑∞

n=b
D2

�
1 −

s

�2

�n

 , 
as s approaches 0, is infinity. Therefore, the solution of Eq. (32) takes the below form

(32)

(s − �1 + �1� )Q
∗
n,1

(s) =

�
�
b − a∗(s)

b�
i=1

gi�
b−i

��
b�
j=1

kj�
n−b
j

+�

b�
j=1

�j

(�1 − �0)(1 − rj) − �
rn−b
j

�

− �

b�
j=1

�j

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

s − � − �0(1 − rj)
,

=

b�
j=1

kj�
n
j
− a∗(s)

b�
j=1

kj

b�
i=1

gi�
n−i
j

+ �

b�
j=1

�j

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

(�1 − �0)(1 − rj) − �

− �

b�
j=1

�j

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

s − � − �0(1 − rj)
, n ≥ b,

(33)

Q
∗(part)

n,1
(s) =

b�
j=1

kj

�
�
n
j
− a∗(s)

b∑
i=1

gi�
n−i
j

�

s − �1(1 − �j)
+

b�
j=1

�j�

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

s − �1(1 − rj)�
1

(�1 − �0)(1 − rj) − �
−

1

s − � − �0(1 − rj)

�

=

b�
j=1

kj

�
�
n
j
− a∗(s)

b∑
i=1

gi�
n−i
j

�

s − �1(1 − �j)

+

b�
j=1

�j�

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

�
(�1 − �0)(1 − rj) − �

��
s − � − �0(1 − rj)

� .
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We now find the condition under which the expression for Q∗
n,1
(s) presented in 

Eq. (34) also holds when 1 ≤ n ≤ b − 1 . Insert Eqs. (28) and (32) into Eqs. (11) and 
(12), respectively. By comparing the last term of the right hand side of Eqs. (11) and 
(12), we need to imposes the following restrictions on the constants kj and �j.

By putting n = b − 1, b − 2,… , 1 in Eq. (35) and noting that gb ≠ 0 , Eq. (35) can be 
conveniently written in the form of a linear equation with 2b variables, i.e., k1 , k2 , … , 
kb , �1 , �2 , … , �b.

In other words, for 1 ≤ n ≤ b − 1 and n ≥ b , if the above Eq. (36) holds, Q∗
n,1
(s) has 

the uniform expression as follows:

Setting s = � and using Eqs. (31) and (37) in Eq. (10), we can obtain another linear 
equation in the same 2b variables

(34)

Q∗
n,1
(s) =

b�
j=1

kj

�
�
n
j
− a∗(s)

b∑
i=1

gi�
n−i
j

�

s − �1(1 − �j)

+

b�
j=1

�j�

�
rn
j
− a∗(s)

b∑
i=1

gir
n−i
j

�

�
(�0 − �1)(1 − rj) − �

��
s − � − �0(1 − rj)

� , n ≥ b.

(35)

b∑
j=1

kj

b∑
i=n+1

gi�
n−i
j

+ �

b∑
j=1

��j[
(�1 − �0)(1 − rj) − �

]
b∑

i=n+1

gir
n−i
j

= 0, 1 ≤ n ≤ b − 1.

(36)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b∑
j=1

kj

�j

+

b�
j=1

�j��
(�1 − �0)(1 − rj) − �

�
rj

= 0,

b∑
j=1

kj

�
2
j

+

b�
j=1

�j��
(�1 − �0)(1 − rj) − �

�
r2
j

= 0,

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

b∑
j=1

kj

�
b−2
j

+

b�
j=1

�j��
(�1 − �0)(1 − rj) − �

�
rb−2
j

= 0,

b∑
j=1

kj

�
b−1
j

+

b�
j=1

�j��
(�1 − �0)(1 − rj) − �

�
rb−1
j

= 0.

(37)

Q∗
n,1
(s) =

b∑
j=1

kj

(
1 − a∗(s)G(�−1

j
)
)
�
n
j

s − �1(1 − �j)

+

b∑
j=1

�j�

(
1 − a∗(s)G(r−1

j
)
)
rn
j[

(�1 − �0)(1 − rj) − �
][
s − � − �0(1 − rj)

] , n ≥ 1.
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By summing over all possible n from 0 to ∞ in Eq. (16) and employing Eqs. (21) 
and (31), we can further derive a relationship for �j and kj , j = 1, 2,… , b.

So far, by the use of Eqs. (27), (36), (38) and (39), we have established a system of 
2b linear equations in 2b variables which can be solved to obtain the constants �j ’s 
and kj’s, j = 1, 2,… , b . Once the arbitrary constants are determined by solving the 
linear algebraic equations, the stationary queue-length distributions at pre-arrival 
and arbitrary epochs are given, respectively, by

Remark 1 Our queueing model is a generalization of the classical M/M/1 queue. More 
precisely, such a model reduces to M/M/1 queue when � → 0 , � → ∞ , �0 = �1 , g1 = 1 
and a∗(s) = �

s+�
 . For this case b = 1 , thus the single characteristic root inside the unit 

circle is r1 = �1 = �∕�1 . Hence, we may compute the probability that an arriving cus-
tomer finds an empty system (denoted as Q−

0
 ) from Eq.  (40) and obtain 

Q
−
0
= Q

−
0,0

+ Q
−
0,1

=
�
1
+k

1

�
 . On the other hand, substituting r1 = �1 = �∕�1 into Eq. (39), 

we can find that �1+k1

�
 satisfies the relationship �1+k1

�
=
(
1 −

�

�1

)
= (1 − �) = Q−

0
 . The 

relationship also implies that Q−
n
= Q−

n,0
+ Q−

n,1
=

�1+k1

�
rn
1
= (1 − �)�n , n = 1, 2,… , 

where Q−
n
 represents the probability that there are n customers in the system just before 

the arrival of a customer. Therefore, according to the PASTA property (Poisson Arriv-
als See Time Averages), we get exactly the same results that have been reported in the 
existing literature on queueing theory (see Gross and Harris 1985).

(38)

b∑
j=1

kj + �

b∑
j=1

�j

(�1 − �0)(1 − rj) − �
− �1

b∑
j=1

kj

(
1 − a∗(�)G(�−1

j
)
)
�j

� − �1(1 − �j)

− �1

b∑
j=1

�j�

(
1 − a∗(�)G(r−1

j
)
)
rj[

(�1 − �0)(1 − rj) − �
][
� − � − �0(1 − rj)

] = 0.

(39)
b∑
j=1

�j(�1 − �0)

(�1 − �0)(1 − rj) − �
+

b∑
j=1

kj

1 − �j

= �.

(40)

⎧⎪⎪⎨⎪⎪⎩

Q−
n,0

=
1

�
Qn,0(0) =

1

�

b�
j=1

�jr
n
j
, n ≥ 0,

Q−
n,1

=
1

�
Qn,1(0) =

1

�

�
b�
j=1

kj�
n
j
+ �

b�
j=1

�j

(�1 − �0)(1 − rj) − �
rn
j

�
, n ≥ 0,

(41)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qn,0 = Q∗
n,0
(0) =

b�
j=1

�j

�
G(r−1

j
) − 1

�

� + �
0
(1 − rj)

rn
j
, n ≥ 1,

Qn,1 = Q∗
n,1
(0) =

b�
j=1

kj

�
G(�−1

j
) − 1

�
�
n
j

�
1
(1 − �j)

+

b�
j=1

�j�

�
G(r−1

j
) − 1

�
rn
j�

(�
1
− �

0
)(1 − rj) − �

��
� + �

0
(1 − rj)

� , n ≥ 1.
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Furthermore, setting s = 0 in Eq. (10), we obtain

With the help of the normalizing condition 
∑∞

n=0
Qn,0 +

∑∞

n=0
Qn,1 = 1 , we may fur-

ther obtain

This completes the analysis of queue-length distribution at different epochs.

5  Sojourn time for an arbitrary customer

The sojourn time TA is the total time that an arbitrary customer in an arriving batch 
spends in the system until it departs from the system. Using the pre-arrival epoch 
probabilities Q−

n,0
 and Q−

n,1
 that we have derived in Sect. 4, we will investigate the 

Laplace–Stieltjes transform and the expectation of an arbitrary customer’s sojourn 
time in this section. For this purpose, we introduce a tagged customer who may 
arrive at a random position in the queue. Clearly, it may be seen that a tagged cus-
tomer arrival may belong to one of the following cases:

(42)

Q0,1 =Q∗
0,1
(0) =

1

�

�
�1Q

∗
1,1
(0) − Q0,1(0)

�

=
�1

�

⎛
⎜⎜⎜⎝

b�
j=1

kj

�
G(�−1

j
) − 1

�
�j

�1(1 − �j)
+

b�
j=1

�j�

�
G(r−1

j
) − 1

�
rj�

(�1 − �0)(1 − rj) − �
��
� + �0(1 − rj)

�
⎞
⎟⎟⎟⎠

−
1

�

�
b�
j=1

kj + �

b�
j=1

�j

(�1 − �0)(1 − rj) − �

�
.

(43)

Q0,0 = 1 −

b�
j=1

�jrj

�
G(r−1

j
) − 1

�

�(1 − rj) + �0(1 − rj)
2
−

b�
j=1

kj�j

�
G(�−1

j
) − 1

�

�1(1 − �j)
2

−

b�
j=1

�jrj�
�
G(r−1

j
) − 1

�
�
(�1 − �0)(1 − rj)

2 − �(1 − rj)
��
� + �0(1 − rj)

�

−
�1

�

⎛⎜⎜⎜⎝

b�
j=1

kj

�
G(�−1

j
) − 1

�
�j

�1(1 − �j)

+

b�
j=1

�j�

�
G(r−1

j
) − 1

�
rj�

(�1 − �0)(1 − rj) − �
��
� + �0(1 − rj)

�
⎞⎟⎟⎟⎠

+
1

�

�
b�
j=1

kj + �

b�
j=1

�j

(�1 − �0)(1 − rj) − �

�
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Case 1. A batch containing the tagged customer arrives at the system during the 
normal working period and finds n customers already present in the system. Mean-
while, the number of customers that arrive in the same batch as the tagged customer, 
but enter service before the tagged customer is l (l = 0, 1,… , b − 1) . To discuss 
the sojourn time of the tagged customer, this case can further be divided into two 
subcases: (i) The time until the random partial breakdown of the server is no less 
than the total service time of n + l + 1 customers. That is to say, the tagged cus-
tomer completes its service and leaves the system in the normal working period; (ii) 
There are only m (m = 0, 1,… , n + l) service completions during the normal work-
ing period. In other words, the tagged customer leaves the system when the server 
undergoes in the defective state.

Case 2. An arriving batch sees the state of the system is (n, 1), n ≥ 0 , and the 
(l + 1) th customer in this batch is the tagged customer. Then, the sojourn time of 
the tagged customer equals the total customers’ service times ahead of him plus his 
service time. Since the server is defective, these services are only provided with the 
low service rate �1.

Let WA(t) be defined as the probability distribution function of TA , and g−
l
 denotes 

the probability of l number of customers ahead of a randomly selected tagged cus-
tomer within the batch. From Burke (1975) and Chaudhry and Templeton (1983), g−

l
 

is given by g−
l
=

1

ḡ

∑∞

j=l+1
gj . Based on the above different cases, we have, from the 

theorem of total probability,

The Laplace–Stieltjes transform of the distribution of TA is given by
(44)

WA(t) = Pr
{
TA ≤ t

}

=

∞∑
n=0

Q−
n,0

[
b−1∑
l=0

g−
l

(
Pr

{
TA =

n+l+1∑
h=1

Sh ≤ t

||||||

n+l+1∑
h=1

Sh ≤ L

}
Pr

{
n+l+1∑
h=1

Sh ≤ L

}

+

n+l∑
m=0

Pr

{
TA = L +

n+l+1∑
h=m+1

S̃h ≤ t

||||||

m∑
h=1

Sh ≤ L <

m+1∑
h=1

Sh

}

Pr

{
m∑
h=1

Sh ≤ L <

m+1∑
h=1

Sh

})]

+

∞∑
n=0

Q−
n,1

b−1∑
l=0

g−
l
Pr

{
TA =

n+l+1∑
h=1

S̃h ≤ t

}

=

∞∑
n=0

Q−
n,0

[
b−1∑
l=0

g−
l

(
�

t

0

𝜇0(𝜇0x)
n+l

(n + l)!
e−(𝜇0+𝜂)xdx

+

n+l∑
m=0

�
t

0

(𝜇0x)
m

m!
e−𝜇0x𝜂e−𝜂x

(
1 − e−𝜇1(t−x)

n+l−m∑
i=0

(𝜇1(t − x))i

i!

)
dx

)]

+

∞∑
n=0

Q−
n,1

b−1∑
l=0

g−
l

[
1 − e−𝜇1t

n+l∑
i=0

(𝜇1t)
i

i!

]
.
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Hence, the first and second moments of TA may be found from the Laplace–Stieltjes 
transform as

From the numerical examples presented in the next section, we will see that Eq. (46) 
can provide us an effective way to validate the correctness of our theoretical analysis 
results. Moreover, using Eqs.  (46) and (47) we can compute the variance of TA as 
Var(TA) = E

[
T2
A

]
− E2

[
TA

]
.

(45)

W∗
A
(s) =∫

∞

0

e−stdWA(t)

=

∞∑
n=0

Q−
n,0

[
b−1∑
l=0

g−
l

((
�0

s + �0 + �

)n+l+1

+

n+l∑
m=0

��
m
0

(s + �0 + �)m+1

(
�1

s + �1

)n+l+1−m
)]

+

∞∑
n=0

Q−
n,1

b−1∑
l=0

g−
l

(
�1

s + �1

)n+l+1

.

(46)

E
[
TA

]
=−

d

ds
W∗

A
(s)

||||s=0
=

∞∑
n=0

Q−
n,0

[
b−1∑
l=0

g−
l

(
(n + l + 1)�n+l+1

0

(�0 + �)n+l+2

+

n+l∑
m=0

(m + 1)��m
0

(�0 + �)m+2
+

��
m
0

(�0 + �)m+1
(n + l + 1 − m)

�1

)]

+

∞∑
n=0

Q−
n,1

b−1∑
l=0

g−
l

(n + l + 1)

�1

,

(47)

E
[
T2
A

]
=

d2

ds2
W∗

A
(s)

||||s=0
=

∞∑
n=0

Q−
n,0

[
b−1∑
l=0

g−
l

(
(n + l + 1)(n + l + 2)�n+l+1

0

(�0 + �)n+l+3

+

n+l∑
m=0

(
(m + 1)(m + 2)��m

0

(�0 + �)m+3

+
2(m + 1)(n + l + 1 − m)��m

0

(�0 + �)m+2�1

+
(n + l + 1 − m)(n + l + 2 − m)

(�0 + �)m+1�2
1

))]

+

∞∑
n=0

Q−
n,1

b−1∑
l=0

g−
l

(n + l + 1)(n + l + 2)

�
2
1

.
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6  Numerical illustrations

To demonstrate the working schemes of the difference equation approach based on 
the right shift operator, we first describe the solution algorithm for calculating the 
steady-state probabilities Q−

n,0
 , Q−

n,1
 , Qn,0 and Qn,1 , for n ≥ 0 . Given the values of �0 , 

�1 , � , � , the Laplace–Stieltjes transform expression of the inter-batch arrival time 
a∗(s) and the probability mass function gi = Pr {X = i} , i = 1, 2,… , b , the steps of 
the solution algorithm are stated as follows:

• Step 1: Find the roots of the following two characteristic equations 
zb − a∗(� + �0 − �0z)

∑b

i=1
giz

b−i = 0 and zb − a∗(�1 − �1z)
∑b

i=1
giz

b−i = 0 
inside the unit circle, respectively. Denote these roots as rj and �j , j = 1, 2,… , b.

• Step 2: Insert these roots directly into Eqs. (27), (36), (38) and (39), and solve a 
system of linear equations to find the values of the unknown constants �j and kj , 
j = 1, 2,… , b.

• Step 3: Substituting the values of �j and kj into Eq. (40), find Q−
n,0

 and Q−
n,1

 , for 
n ≥ 0.

• Step 4: Inserting the values of �j and kj into Eqs. (41), (42) and (43), compute 
Qn,0 and Qn,1 , for n ≥ 0.

All the calculations are performed on a PC having Corei7 processor at 3.20 giga-
hertz with 16 gigabytes RAM using Mathematica and Matlab software packages. 
We use Mathematica software to find the roots of the associated characteristic equa-
tions, and then write a Matlab code to solve a linear system of equations in 2b vari-
ables. Next, to illustrate the solution algorithm, we provide three numerical exam-
ples where the inter-batch arrival time distributions are 2-stage Erlang, uniform and 
deterministic, respectively. A variety of numerical results have been presented in 
self-explanatory tables and graphs. The notations used in these tables are the same 
as those defined earlier in the previous sections except E

[
TA

]
Little

 , which denotes the 
average sojourn time of an arbitrary customer evaluated through Little’s formula.

Example 1 Consider the E X
2
/M/1 queueing system with fault tolerance capabilities. 

The 2-stage Erlang distribution is made up of two independent and identical expo-
nential stages, each with mean 2.5. In this case, we have a∗(s) =

(
0.4

s+0.4

)2

 . The num-
ber of customers (X) belonging to each arrival has the following probability mass 
function gi = Pr {X = i} =

0.55(1−0.55)i−1

1−(1−0.55)10
 ( i = 1, 2,… , 10 ) with mean value 

ḡ = 1.814776 . For computation purpose, we fix the other parameters as �0 = 0.7 , 
�1 = 0.4 , � = 0.005 and � = 0.2 . Table 1 displays the the roots of the characteristic 
equations inside the unit circle, where � is the imaginary unit. The corresponding 
constants �j and kj for j = 1, 2,… , 10 are determined by solving a systems of linear 
equations with twenty variables in computing software. The calculation results are 
reported in Table 2.

With the known values of �j , kj , rj and �j , Table 3 also gives a few queue-length 
distributions at pre-arrival and arbitrary epochs. Utilizing the data presented in 
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Table 3, an effective approach is provided to verify the correctness of our numeri-
cal as well as analytical results. Actually, there are two different ways to get the 
average sojourn time for an arbitrary customer. One way is to substitute Q−

n,0
 and 

Q−
n,1

 into Eq.  (46) and calculate E
[
TA

]
 directly. The other is to apply Little’s for-

mula to obtain E
[
TA

]
= Ls∕ḡ𝜆 , where Ls =

∑∞

n=1
n(Qn,0 + Qn,1) . The results from 

numerical computation (see the bottom of Table 3) indicate that E
[
TA

]
 evaluated 

through Eq. (46) exactly matches with the one obtained from Little’s formula. It 
also implies that the theoretical analysis and numerical experiments performed in 
this paper is valid and reliable.

In the first example, we consider the case when inter-arrival times of groups 
have Erlangian distribution of order 2. We note that such an arrival process is 
a particular case of the batch Markovian arrival process (BMAP). The corre-
sponding numerical results can be much easier obtained by using the well-known 
matrix geometric method. To further demonstrate the universality of the pro-
posed method, some other examples with an inter-batch arrival time that does not 
belong to the class of PH distribution are given below.

Example 2 Consider the U X/M/1 queue with fault tolerance capabilities, where the 
inter-batch arrival times are independent random variables, each distributed uni-
formly on interval 0 to 2∕� . If we set � = 0.2 , the uniform distribution has the 
Laplace–Stieltjes transform a∗(s) = 1

10s
(1 − e−10s) . The maximum batch size is 

b = 12 , and take the probability mass function of batch size to be 
gi = Pr {X = i} =

e−22i

i!
∑b

n=1
e−22n

n!

 , i = 1, 2,… , 12 with mean value ḡ = 1.930825 . Since 

a∗(s) is a transcendental function, the corresponding characteristic equations cannot 
be directly solved by using the standard Mathematica commands. For the purpose of 
finding the roots of the characteristic equations, we wish to approximate a∗(s) by 
means of a rational approximation ℙ1(s)∕ℙ2(s) , where ℙ1(s) and ℙ2(s) are polynomi-
als of degree m1 and m2 respectively. It is well known that the Padé approximation is 
a particular and classical type of rational fraction approximation. Many practical 
applications have proven that it is the best approximation of a function by a rational 
function of a given order. In this example, we shall use the so-called Padé rational 
approximation of degree (15, 16) to approximate a∗(s)

Here, calculations with Padé approximant of a∗(s) are straightforward and can be 
performed with Mathematica command “PadeApproximant”. How the choice of 
Padé ( m1 , m2 ) affects the accuracy of numerical results and how one can trade off 
between computation-time and accuracy is discussed in detail in the work of Singh 

a∗(s) =
ℙ1(s)

ℙ2(s)

=
1 +

350s2

93
+

3250s4

899
+

687500s6

509733
+

343750s8

1529199
+

312500s10

18423207
+

7812500s12

15088606533
+

78125000s14

18061062020001

⎛
⎜⎜⎜⎝

1 + 5s +
375s2

31
+

1750s3

93
+

56875s4

2697
+

16250s5

899
+

893750s6

72819
+

3437500s7

509733

+
171875s8

56637
+

1718750s9

1529199
+

1718750s10

5024511
+

1562500s11

18423207
+

19531250s12

1160662041

+
39062500s13

15088606533
+

195312500s14

668928222963
+

390625000s15

18061062020001
+

244140625s16

307038054340017

⎞
⎟⎟⎟⎠

.
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et al. (2014). By the fixed values of certain parameters �0 , �1 , � and � as 0.75, 0.5, 
0.003 and 0.1 respectively, we present the numerical results for the roots of the char-
acteristic equations inside the unit circle in Table 4.

Substituting these roots into Eqs. (27), (36), (38) and (39), and solving a simul-
taneous set of twenty-four linear equations, Table 5 gives the numercal results of 
�j and kj for j = 1, 2,… , 12.

The summary of the calculations for the queue-length distributions at pre-
arrival and arbitrary epochs is shown in Table 6. At the same time, the expected 
sojourn time for an arbitrary customer estimated in two different ways is also 
summarized at the bottom of Table 6. We may see that the numerical experiments 
verify our theoretical results and show their correctness once again.

Example 3 Consider the D X/M/1 queue with a fault-tolerant server, in which the 
batch arrivals are equally spaced in time. For this inter-batch arrival time distribu-
tion a∗(s) = e

−
s

� , here we take � = 0.2 . Now, let us conduct the numerical experi-
ment with the following parameters: �0 = 0.8 , �1 = 0.6 , � = 0.0025 and � = 0.15 . 
Additionally, the corresponding numerical results were obtained by assuming that 
the batch size distribution has a p.g.f. G(z) = 0.25z + 0.5z2 + 0.1z4 + 0.1z6 + 0.05z8 . 
This suggests that the batch size can be either 1, 2, 4, 6, or 8 with 25% , 50% , 10% , 
10% and 5% probabilities, respectively. Since the deterministic inter-batch arrival 
time does not have a rational Laplace–Stieltjes transform, Mathematica software 
package cannot solve the characteristic equations (transcendental equations) directly. 
Through the Padé approximation of degree (8, 9), we also approximate the Laplace–
Stieltjes transform of the inter-batch arrival time distribution e−5s with a rational 
function of the type ℙ1(s)∕ℙ2(s):

Letting s = 0.8025 − 0.8z and s = 0.6 − 0.6z in the above expression, respectively, 
and putting them into the characteristic equations, Table 7 gives all distinct roots 
that are found within the contour of a unit circle |z| = 1.

e−5s =
ℙ1(s)

ℙ2(s)

=
1 −

40s

17
+

175s2

68
−

175s3

102
+

625s4

816
−

625s5

2652
+

3125s6

63648
−

15625s7

2450448
+

15625s8

39207168

1 +
45s

17
+

225s2

68
+

175s3

68
+

375s4

272
+

1875s5

3536
+

3125s6

21216
+

15625s7

544544
+

15625s8

4356352
+

78125s9

352864512

.

Table 1  The roots of the characteristic equations with modulus less than one in Example 1

j rj j rj j �j j �j

1 0.656426 6 −0.135281 − 0.323903� 1 0.932260 6 −0.140912 − 0.345224�

2 0.294296 − 0.270739� 7 −0.135281 + 0.323903� 2 0.314966 − 0.276982� 7 −0.140912 + 0.345224�

3 0.294296 + 0.270739� 8 −0.284697 − 0.188870� 3 0.314966 + 0.276982� 8 −0.302061 − 0.202056�

4 0.074476 − 0.361137� 9 −0.284697 + 0.188870� 4 0.084063 − 0.381289� 9 −0.302061 + 0.202056�

5 0.074476 + 0.361137� 10 −0.338701 5 0.084063 + 0.381289� 10 −0.360414
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The unknown constants �j and kj for j = 1, 2,… , 8 can be found in the same man-
ner as described earlier. Table 8 displays all the calculation results.

Using Eqs.  (40), (41), (42) and (43), we compute the probability distributions 
of the queue length at two different epochs, and the numerical results are listed in 
Table 9. It is also found that E

[
TA

]
 matches exactly with the mean sojourn time cal-

culated using Little’s law.

Example 4 In this example, the computer software, e.g., Mathematica and Matlab, 
are used to compare three configurations in terms of their E

[
TA

]
 and Ls for three dif-

ferent inter-batch arrival time distributions: 2-stage Erlang, uniform and determinis-
tic. We first perform a comparison for the average sojourn time of an arbitrary 

Table 2  The values of �j and kj for j = 1, 2,… , 10 in Example 1

j �j j �j j kj j kj

1 0.032427 6 0.006740 + 0.000394� 1 0.003565 6 0.000159 + 0.000020�

2 0.006332 + 0.001687� 7 0.006740 − 0.000394� 2 0.000124 + 0.000069� 7 0.000159 − 0.000020�

3 0.006332 − 0.001687� 8 0.006745 + 0.000173� 3 0.000124 − 0.000069� 8 0.000161 + 0.000009�

4 0.006695 + 0.000769� 9 0.006745 − 0.000173� 4 0.000153 + 0.000038� 9 0.000161 − 0.000009�

5 0.006695 − 0.000769� 10 0.006745 5 0.000153 − 0.000038� 10 0.000161

Table 3  Steady-state queue-
length distributions at pre-
arrival and arbitrary epochs in 
Example 1

E

[
T
A

]
= 13.304375 , E

[
T
A

]
Little

= 13.304375

n Q−
n,0

Q−
n,1

Qn,0 Qn,1

0 0.460979 0.012428 0.371024 0.009600
1 0.099255 0.011868 0.128965 0.011014
2 0.066009 0.012336 0.085781 0.011917
3 0.043884 0.012349 0.057042 0.012210
4 0.029159 0.012078 0.037916 0.012116
5 0.019360 0.011636 0.025187 0.011784
6 0.012839 0.011099 0.016716 0.011311
7 0.008499 0.010514 0.011079 0.010761
8 0.005611 0.009911 0.007326 0.010176
9 0.003691 0.009312 0.004829 0.009581
10 0.002418 0.008728 0.003167 0.008994
11 0.001579 0.008168 0.002063 0.008424
12 0.001037 0.007634 0.001355 0.007880
⋮ ⋮ ⋮ ⋮ ⋮

70 0.000000 0.000000 0.000000 0.000136
71 0.000000 0.000000 0.000000 0.000127
72 0.000000 0.000000 0.000000 0.000118
73 0.000000 0.000000 0.000000 0.000110
⋮ ⋮ ⋮ ⋮ ⋮

Sum 0.756301 0.243699 0.755040 0.244960
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customer using the assumption that these distributions have the same mean 5 but 
different standard deviations. We choose �0 = 0.9 , �1 = 0.75 , � = 0.0025 , and sup-
pose X is a discrete uniform random variable on the consecutive integers 1, 2, … , 6, 
so that the traffic intensity � = 0.883333 . At the same time, to evaluate the impact of 
the repair rate � on the value of E

[
TA

]
 , we vary the values of � from 0.05 to 0.25 and 

draw the plot of E
[
TA

]
 as a function of � . Figure 1(a) depicts that E

[
TA

]
 decreases as 

� increases. That is to say, moderate shortening the sojourn time of an arbitrary cus-
tomer can be achieved by choosing a higher repair rate. On the other hand, we also 
observe that the expected sojourn time is larger for 2-stage Erlang distribution as 
compared to uniform and deterministic distributions. We think in most of the cases, 
by comparing E

[
TA

]
 in terms of three different distributions of the inter-batch arrival 

time usually yields E
[
TA

]
E2

> E
[
TA

]
U
> E

[
TA

]
D
 . This is due to the fact that the 

standard deviation of the deterministic distribution equals zero. In Figure 1(b), under 
the same parameter settings, it can be seen that the average queue length in the case 
of 2-stage Erlang inter-batch arrival time distribution with a higher standard devia-
tion is larger than the one with lower standard deviations. Again deterministic distri-
bution with zero standard deviation yields the lowest average queue length. Such 
results indicate that the inter-batch arrival time plays a significant role in determin-
ing the performance of the queueing system.

Example 5 In this example, we perform a comparative analysis on E[TA] and Ls 
based on changes in specific random arrival batch size distributions and assume that 
the inter-batch arrival times have a common 3-phase hyperexponential distribution, 
whose density and Laplace transform are given by

A k-phase hyperexponential distribution is frequently used in queueing theory to 
model the distribution of the superposition of k independent events. For instance, 
the arrival of different types of customer to a single queueing station is often mod-
eled as a hyperexponential distribution. To demonstrate the performance evaluation, 
we consider the following three batch size distributions:

Case 1: Batch size X follows the discrete uniform distribution on the interval 
[1, 2,… , 16].

Case 2: The batch size distribution has the probability mass function: g4 = 0.25 , 
g8 = 0.25 , g10 = 0.25 , and g12 = 0.25.

Case 3: The arriving batch size follows a 6-8-12 distribution with probability 
mass function g6 = 0.25 , g8 = 0.5 , and g12 = 0.25.

All these distributions are characterized by the average batch size equal to 
8.5. However, these are qualitatively different in that they have different vari-
ances, the variances of above probability distributions are 21.25, 8.75 and 4.75, 
respectively. The numerical experiment has been done by fixing other system 

a(t) = 0.2 ⋅
1

10
e
−

1

10
t + 0.5 ⋅

1

5
e
−

1

5
t + 0.3 ⋅

2

5
e
−

2

5
t
, t > 0,

a∗(s) =
(
0.2 × 0.1

0.1 + s

)
+
(
0.5 × 0.2

0.2 + s

)
+
(
0.3 × 0.4

0.4 + s

)
.
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Table 4  The roots of the characteristic equations with modulus less than one in Example 2

j rj j rj j �j j �j

1 0.706120 7 0.157883 + 0.199331� 1 0.939953 7 −0.144906 + 0.215858�

2 0.104655 − 0.252812� 8 −0.140320 − 0.209351� 2 0.105721 − 0.264803� 8 −0.226770 − 0.120915�

3 0.104655 + 0.252812� 9 −0.140320 + 0.209351� 3 0.105721 + 0.264803� 9 −0.226770 + 0.120915�

4 −0.025770 − 0.255885� 10 −0.219786 − 0.117292� 4 −0.026809 − 0.264007� 10 −0.256024

5 −0.025770 + 0.255885� 11 −0.219786 + 0.117292� 5 −0.026809 + 0.264007� 11 0.154847 − 0.200497�

6 0.157883 − 0.199331� 12 −0.248186 6 −0.144906 − 0.215858� 12 0.154847 + 0.200497�

Table 5  The values of �j and kj for j = 1, 2,… , 12 in Example 2

j �j j �j j kj j kj

1 0.030493 7 −0.000330 + 0.002237� 1 0.003538 7 0.000224 − 0.000005�

2 0.006432 − 0.001180� 8 0.004912 + 0.000029� 2 0.000278 − 0.000086� 8 0.000227 + 0.000003�

3 0.006432 + 0.001180� 9 0.004912 − 0.000029� 3 0.000278 + 0.000086� 9 0.000227 − 0.000003�

4 0.004860 − 0.000060� 10 0.004955 + 0.000017� 4 0.000221 + 0.000009� 10 0.000228
5 0.004860 + 0.000060� 11 0.004955 − 0.000017� 5 0.000221 − 0.000009� 11 −0.000025 − 0.000066�

6 −0.000330 − 0.002237� 12 0.004968 6 0.000224 + 0.000005� 12 −0.000025 + 0.000066�

Table 6  Steady-state queue-
length distributions at pre-
arrival and arbitrary epochs in 
Example 2

E

[
T
A

]
= 13.797044 , E

[
T
A

]
Little

= 13.797044

n Q−
n,0

Q−
n,1

Qn,0 Qn,1

0 0.385597 0.019724 0.280157 0.013109
1 0.081461 0.011536 0.101078 0.010511
2 0.069503 0.012420 0.091017 0.012049
3 0.053002 0.012565 0.070927 0.012557
4 0.038103 0.012330 0.051284 0.012512
5 0.026865 0.011933 0.036161 0.012221
6 0.018913 0.011458 0.025438 0.011813
7 0.013342 0.010943 0.017939 0.011336
8 0.009421 0.010409 0.012668 0.010820
9 0.006654 0.009870 0.008947 0.010286
10 0.004699 0.009339 0.006318 0.009751
11 0.003318 0.008821 0.004461 0.009223
12 0.002343 0.008321 0.003150 0.008710
⋮ ⋮ ⋮ ⋮ ⋮

70 0.000000 0.000232 0.000000 0.000243
71 0.000000 0.000218 0.000000 0.000229
72 0.000000 0.000205 0.000000 0.000215
73 0.000000 0.000193 0.000000 0.000202
⋮ ⋮ ⋮ ⋮ ⋮

sum 0.718849 0.281151 0.717115 0.282885
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parameters as �0 = 2.5 , �1 = 2 , � = 0.001 and � = 0.08 . We observe that E[TA] 
and Ls decrease as the variance of the batch size distribution decreases, namely 
E[TA](case 1) = 9.384734 > E[TA](case 2) = 8.329050 > E[TA](case 3) = 7.990203 and 
Ls(case 1) = 15.194332 > Ls(case 2) = 13.485130 > Ls(case 3) = 12.936519 . So, we can 

Table 7  The roots of the characteristic equations with modulus less than one in Example 3

j rj j rj j �j j �j

1 0.718566 5 −0.067063 + 0.382496� 1 0.903423 5 −0.060858 + 0.435105�

2 0.240016 − 0.397509� 6 −0.278315 − 0.234259� 2 0.284431 − 0.440947� 6 −0.423080

3 0.240016 + 0.397509� 7 −0.278315 + 0.234259� 3 0.284431 + 0.440947� 7 −0.315605 − 0.277986�

4 −0.067063 − 0.382496�8 −0.359817 4 −0.060858 − 0.435105� 8 −0.315605 + 0.277986�

Table 8  The values of �j and kj for j = 1, 2,… , 8 in Example 3

j �j j �j j kj j kj

1 0.030899 5 0.009947 + 0.000445� 1 0.003109 5 0.000332 − 0.000013�

2 0.011785 − 0.001844� 6 0.009897 − 0.000170� 2 0.000430 − 0.000026� 6 0.000368
3 0.011785 + 0.001844� 7 0.009897 + 0.000170� 3 0.000430 + 0.000026� 7 0.000340 + 0.000005�

4 0.009947 − 0.000445� 8 0.010227 4 0.000332 + 0.000013� 8 0.000340 − 0.000005�

Table 9  Steady-state queue-
length distributions at pre-
arrival and arbitrary epochs in 
Example 3

E

[
T
A

]
= 7.346311 , E

[
T
A

]
Little

= 7.346311

n Q−
n,0

Q−
n,1

Qn,0 Qn,1

0 0.521915 0.018047 0.293656 0.009315
1 0.077257 0.009211 0.128732 0.008344
2 0.059618 0.008867 0.115829 0.009375
3 0.048505 0.008618 0.061027 0.008072
4 0.039700 0.008460 0.059961 0.008416
5 0.030600 0.008109 0.046542 0.008189
6 0.022298 0.007609 0.043862 0.008250
7 0.015623 0.007020 0.028160 0.007620
8 0.010897 0.006437 0.023791 0.007263
9 0.007735 0.005883 0.013819 0.006578
10 0.005647 0.005384 0.010219 0.006064
11 0.004088 0.004914 0.007521 0.005570
12 0.002939 0.004473 0.005485 0.005099
⋮ ⋮ ⋮ ⋮ ⋮

70 0.000000 0.000013 0.000000 0.000015
71 0.000000 0.000011 0.000000 0.000013
72 0.000000 0.000010 0.000000 0.000012
73 0.000000 0.000009 0.000000 0.000011
⋮ ⋮ ⋮ ⋮ ⋮

Sum 0.854297 0.145703 0.852568 0.147432
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conclude that the variance of batch size has obvious impact on performance metrics 
like average system size and average sojourn time.

7  Conclusions

In order to mitigate the severe potential consequences of system failure, fault-tol-
erant operating has become a critical attribute of the manufacturing system. In this 
paper, we have developed a GIX/M/1 queue with a fault-tolerant server to study the 
behavior of key performance indicators for such a system. The mathematical analy-
sis of the queueing model is carried out by employing a combination of two meth-
ods. One is the well-known supplementary variable technique, and the other is the 
shift operator method in difference equations theory. The most important reason 
why we adopt the above approach is that we want to avoid discussing the transi-
tion probability matrix associated with the embedded Markov chain. Because with 
the increase in the complexity involved in the queue, the derivation of the transition 
probability matrix becomes extremely difficult, and many practitioners cannot fully 
master these complicated and tedious probabilistic arguments. In essence, it is our 
intention to solve a practical queueing problem in the most simple and pragmatic 
way using the roots of the model’s characteristic equation. From the algorithmic 
steps and numerical experiments presented in our work, we may also see that the 
methodology is nicely implemented in flexible scientific computing software that is 
easy to use even for users who are not professional mathematicians. A feasible plan 
for further study is to consider the discrete-time counterparts of this queue. Since 
several possible events may occur simultaneously in discrete-time queues, the analy-
sis and computation will become more elaborate under such a situation.
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