Skip to main content
Log in

Using a MACBETH based multicriteria approach for virtual weight restrictions in each stage of a DEA multi-stage ranking process

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper proposes a new approach for fully ranking decision-making units (DMUs) in the context of Data Envelopment Analysis (DEA) models, in the presence of restrictions on virtual weights, which reflect the relative importance of certain inputs or outputs. The proposed approach is a multi-stage process involving the solution of a super-efficiency DEA model at each stage. The key idea behind our approach lies in the fact that decision-makers are allowed to apply different weight bounds at each stage of the process, taking into account the particular conditions concerning the DMUs under assessment at that stage. The different bounds of each stage are obtained using the MACBETH methodology. Our proposed approach enriches the discrimination power of the underlying super-efficiency model since it provides decision-makers with more control over the importance of inputs and outputs at each stage of the ranking process. Empirical results concerning 33 general hospitals of the Greek NHS reveal that the final rankings, as obtained by our approach, can indeed increase the discrimination power of the conventional super-efficiency DEA model and improve the DMUs’ ranking. This improvement may have serious implications in decisions related to the allocation of funds or other resources and is particularly relevant from a decision-making perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldamak A, Zolfaghari S (2017) Review of efficiency ranking methods in data envelopment analysis. Measurement 106(2017):161–172

    Article  Google Scholar 

  • Allen R, Athanassopoulos AD, Dyson RG, Thanassoulis E (1997) Weights restrictions and value judgments in data envelopment analysis: evolution, development and future directions. Ann Oper Res 73:13–34

    Article  Google Scholar 

  • Anderson P, Peterson NC (1993) A procedure for ranking efficient units in data envelopment analysis. Manage Sci 39:1261–1264

    Article  Google Scholar 

  • Ang S, Chen C-M (2016) Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega 58(C):139–153

    Article  Google Scholar 

  • Baltazar ME, Jardim J, Alves P, Silva J (2014) Air transport performance and efficiency: MCDA versus DEA approaches. Procedia Social Behav Sci 111(2014):790–799

    Article  Google Scholar 

  • Bana e Costa CA, Vansnick JC (1999) The MACBETH approach: basic ideas, software and an application. In: Meskens N, Roubens M (eds) Advances in decision analysis. Kluwer Academic Publishers, Dordrecht, pp 131–157

    Chapter  Google Scholar 

  • Bana e Costa CA, Vansnick JC, De Corte JM (2003) MACBETH. Working paper LSEOR 03.56, London School of Economics, London, 2003

  • Biswas S, Bandyopadhyay G, Guha B, Bhattacharjee M (2019) An ensemble approach for portfolio selection in a multi-criteria decision-making framework. Decis Mak Appl Manag Eng 2(2):138–158. https://doi.org/10.31181/dmame2003079b

    Article  Google Scholar 

  • Çalik A, Yapici Pehlivan N, Kahraman C (2018) An integrated fuzzy AHP/DEA approach for performance evaluation of territorial units in Turkey. Technol Econ Dev Econ 24(4):1280–1302

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of DMUs. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  • Charnes A, Cooper WW, Wei QL, Huang ZM (1989) Cone ratio data envelopment analysis and multi-objective programming. Int J Syst Sci 20(7):1099–1118. https://doi.org/10.1080/00207728908910197

    Article  Google Scholar 

  • Contreras I, Lozano S, Hinojosa MA (2019) A bargaining approach to determine common weights in DEA. Oper Res Int J. https://doi.org/10.1007/s12351-019-00498-w

    Article  Google Scholar 

  • Cook WD, Zhu J (2008) CAR-DEA: context-dependent assurance regions in DEA. Oper Res 56(1):69–78

    Article  Google Scholar 

  • Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis. A com- prehensive text with models, applications, references and DEA-Solver software, 2nd edn. Springer, New York

    Google Scholar 

  • Dhouib D (2014) An extension of MACBETH method for a fuzzy environment to analyze alternatives in reverse logistics for automobile tire wastes. Omega 42:25–32

    Article  Google Scholar 

  • Emrouznejad A, Yang G (2018) A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ Plan Sci 61(1):1–5. https://doi.org/10.1016/j.seps.2017.01.008

    Article  Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A (Gen). https://doi.org/10.2307/2343100

    Article  Google Scholar 

  • Hadad Y, Friedman L, Sinuany-Stern Z, Mehrez A (2003) DEA super efficiency multistage ranking. Comput Model New Technol 7(1):37–46

    Google Scholar 

  • Halme M, Korhonen P (2000) Restricting weights in value efficiency analysis. Eur J Oper Res 126(1):175–188

    Article  Google Scholar 

  • Halme M, Joro T, Korhonen P, Salo S, Wallenius J (1999) A value efficiency approach to incorporating preference information in data envelopment analysis. Manage Sci 45:103–115

    Article  Google Scholar 

  • Hatami-Marbini A, Saati S (2020) Measuring performance with common weights: network DEA. Neural Comput Appl 2020(32):3599–3617

    Article  Google Scholar 

  • Hatami-Marbini A, Emrouznejad A, Tavana M (2011) A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur J Oper Res 214(2011):457–472

    Article  Google Scholar 

  • Izadikhah M, Farzipoor Saen R (2015) A new data envelopment analysis method for ranking decision making units: an application in industrial parks. Exp Syst 32(5):596–608

    Article  Google Scholar 

  • Joro T, Korhonen P (2015) Extension of data envelopment analysis with preference information. Springer, Berlin

    Book  Google Scholar 

  • Kaffash S, Azizi R, Huang Y, Zhu J (2020) A survey of data envelopment analysis applications in the insurance industry 1993–2018. Eur J Oper Res 284(3):801–813

    Article  Google Scholar 

  • Kao C (2014) Network data envelopment analysis: a review. Eur J Oper Res 239(2014):1–16

    Article  Google Scholar 

  • Kao C, Liu S-T (2019) Cross efficiency measurement and decomposition in two basic network systems. Omega 83(3):70–79

    Article  Google Scholar 

  • Keskin B, Köksal C (2019) A hybrid AHP/DEA-AR model for measuring and comparing the efficiency of airports. Int J Prod Perform Manag. https://doi.org/10.1108/IJPPM-02-2018-0043

    Article  Google Scholar 

  • Kohl S, Schoenfelder J, Fügener A, Brunner JO (2019) The use of data envelopment analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag Sci 22:245–286. https://doi.org/10.1007/s10729-018-9436-8

    Article  Google Scholar 

  • Korpela J, Lehmusvaara A, Nisonen J (2007) Warehouse operator selection by combining AHP and DEA methodologies. Int J Prod Econ 108(2007):135–142

    Article  Google Scholar 

  • Kounetas K, Papathanassopoulos F (2013) How efficient are Greek hospitals? A case study using a double bootstrap DEA approach. Eur J Health Econ 14(6):979–994

    Article  Google Scholar 

  • Kritikos M (2017) A full ranking methodology in data envelopment analysis based on a set of dummy decision making units. Expert Syst Appl 77(2017):211–225

    Article  Google Scholar 

  • Kumar A, Shankar R, Debnath RM (2015) Analyzing customer preference and measuring relative efficiency in telecom sector: a hybrid fuzzy AHP/DEA study. Telem Inform 32:447–462

    Article  Google Scholar 

  • Lai P-L, Potter A, Malcolm B, Beresford A (2015) Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique. Transp Pol 42(C):75–85

    Article  Google Scholar 

  • Lin R, Chen Z, Xiong W (2016) An iterative method for determining weights in cross-efficiency evaluation. Comput Ind Eng 101(2016):91–102

    Article  Google Scholar 

  • Liu W, Wang Y-M (2018) Ranking DMUs by using the upper and lower bounds of the normalized efficiency in data envelopment analysis. Comput Ind Eng 125(2018):135–143

    Article  Google Scholar 

  • Liu JS, Lu LYY, Lu W-M (2016) Research fronts in data envelopment analysis. Omega 58(C):33–45

    Article  Google Scholar 

  • Loron AS, Loron MS, Peyvandi G (2015) An integrated fuzzy analytic hierarchy process-fuzzy data envelopment analysis (FAHP-FDEA) method for intelligent building assessment. Tehnički vjesnik 22(2):2015

    Google Scholar 

  • Mahmoudi R, Emrouznejad A, Shetab-Boushehri SN, Hejazi SR (2020) The origins, development and future directions of data envelopment analysis approach in transportation systems. Socio-Econ Plan Sci 69:2020. https://doi.org/10.1016/j.seps.2018.11.009

    Article  Google Scholar 

  • Mardani A, Zavadskas EK, Streimikiene D, Jusoh A, Khoshnoudi M (2017) A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew Sustain Energy Rev 70(2017):1298–1322

    Article  Google Scholar 

  • Mardani A, Streimikiene D, Balezentis T, Saman MZM, Nor K, Khoshnava SM (2018) Data envelopment analysis in energy and environmental economics: an overview of the state-of-the-art and recent development trends. Energies 11(8):2002. https://doi.org/10.3390/en11082002

    Article  Google Scholar 

  • Mariano EB, Sobreiro VA, Rebelatto DADN (2015) Human development and data envelopment analysis: a structured literature review. Omega 54(C):33–49

    Article  Google Scholar 

  • Omid A, Zegordi SH (2015) Integrated AHP and network DEA for assessing the efficiency of Iranian handmade carpet industry. Decis Sci Lett 4:477–486

    Article  Google Scholar 

  • Osman I, Anouze ALM, Emrouznejad A (2013) Handbook of research on strategic performance management and measurement using data envelopment analysis. IGI Global, Pennsylvania

    Google Scholar 

  • Ozturk O, Girginer N (2015) The export efficiency of Turkish textile and apparel firms: an investigation employing Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) methods. Tekstil ve Konfeksiyon 25(1):10–23

    Google Scholar 

  • Pakkar MS (2015) An integrated approach based on DEA and AHP. Comput Manag Sci 2015(12):153–169

    Article  Google Scholar 

  • Pakkar MS (2016) Using DEA and AHP for hierarchical structures of data. Ind Eng Manag Syst 15(1):49–62

    Google Scholar 

  • Pamučar D, Ćirović G (2015) The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst Appl 42(6):3016–3028

    Article  Google Scholar 

  • Peykani P, Mohammadi E, Rostamy-Malkhalifeh M, Hosseinzadeh Lotfi F (2019) Fuzzy data envelopment analysis approach for ranking of stocks with an application to tehran stock exchange. Adv Math Finance Appl 4(1):31–43. https://doi.org/10.22034/amfa.2019.581412.1155

    Article  Google Scholar 

  • Pishdar M, Ghasemzadeh F, Antuchevičienė J (2019) A mixed interval type-2 fuzzy best-worst MACBETH approach to choose hub airport in developing countries: case of Iranian passenger airports. Transport 34(6):639–651. https://doi.org/10.3846/transport.2019.11723

    Article  Google Scholar 

  • Podinovski V (2001) DEA models for the explicit maximisation of relative efficiency. Eur J Oper Res 131(3):572–586

    Article  Google Scholar 

  • Podinovski V (2004) Production trade-off and weight restrictions in data envelopment analysis. J Oper Res Soc 55:1311–1322

    Article  Google Scholar 

  • Podinovski V (2007) Computation of efficient targets in DEA models with production trade-offs and weight restrictions. Eur J Oper Res 181:586–591

    Article  Google Scholar 

  • Podinovski V (2016) Optimal weights in DEA models with weight restrictions. Eur J Oper Res 254(2016):916–924

    Article  Google Scholar 

  • Podinovski V, Bouzdine-Chameeva T (2013) Weight restrictions and free production in data envelopment analysis. Oper Res Articles Adv 61:1–12

    Google Scholar 

  • Premachandra IM (2001) Controlling factor weights in data envelopment analysis by incorporating decision-maker’s value judgement: an approach based on AHP. Inf Manag Sci 12(2):67–82

    Google Scholar 

  • Rezaeiani MJ, Foroughi AA (2018) Ranking efficient decision making units in data envelopment analysis based on reference frontier share. Eur J Oper Res 264(2018):665–674

    Article  Google Scholar 

  • Roll Y, Golany B (1993) Alternate methods of treating factor weights in DEA. Omega 21:99–109

    Article  Google Scholar 

  • Roll Y, Cook WD, Golany B (1991) Controlling factor weights in data envelopment analysis. IIE Trans 23(1):2–9. https://doi.org/10.1080/07408179108963835

    Article  Google Scholar 

  • Rubem APS, Brandao LC (2015) Multiple criteria data envelopment analysis: an application to UEFA EURO 2012. Procedia Comput Sci 55(2015):186–195

    Article  Google Scholar 

  • Salahi M, Toloo M, Torabi N (2020) A new robust optimization approach to common weights formulation in DEA. J Oper Res Soc. https://doi.org/10.1080/01605682.2020.1718016

    Article  Google Scholar 

  • Sarrico CS, Dyson RG (2004) Restricting virtual weight restrictions in data envelopment analysis. Eur J Oper Res 159:17–34

    Article  Google Scholar 

  • Shang J, Sueyoshi T (1995) A unified framework for the selection of a Flexible Manufacturing System. Eur J Oper Res 85(1995):297–315

    Article  Google Scholar 

  • Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Simon de Blas C, Simon Martin J, Gomez Gonzalez D (2018) Combined social networks and data envelopment analysis for ranking. Eur J Oper Res 266(3):990–999

    Article  Google Scholar 

  • Soares de Mello JCCB, Lins MPE, Soares de Mello MHC, Gomes EG (2002) Evaluating the performance of calculus classes using operational research tools. Eur J Eng Ed 27(2):209–218

    Article  Google Scholar 

  • Soares de Mello JCCB, Benicio J, Braganca L, Guimaraes V (2013) The Macbeth method for ranking Olympic sports: a complementary analysis for the DEA efficiency. In: Proceedings of the 4th international conference on mathematics in sport, pp 108–114

  • Soheilirad S, Govindan K, Mardani A, Zavadskas EK, Nilashi M, Zakuan N (2018) Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis. Ann Oper Res 271:915–969

    Article  Google Scholar 

  • Sueyoshi T (1999) DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives. Omega 27:315–326

    Article  Google Scholar 

  • Thanassoulis E (2003) Introduction to the theory and application of data envelopment analysis. a foundation text with integrated software. Springer, Berlin. LLC, ISBN-13: 978-0-7923-7429-9

  • Thanassoulis E, Portela MCS, Despic O (2008) Data envelopment analysis: the mathematical programming approach to efficiency analysis. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency and productivity growth. Oxford University Press, New York, pp 251–420

    Chapter  Google Scholar 

  • Thompson RG, Singleton FR Jr, Thrall RM, Smith BA (1986) Comparative site evaluation for locating a high-energy physics lab in Texas. Interfaces 16(6):35–49

    Article  Google Scholar 

  • Vieira Junior H (2008) Multicriteria approach to data envelopment analysis. Pesquisa Operacional 28(2):231–242

    Article  Google Scholar 

  • Wang H (2016) A generalized MCDA-DEA approach to construct slacks-based composite indicator. Energy 80:114–122

    Article  Google Scholar 

  • Wong Y-HB, Beasley JE (1990) Restricting weight flexibility in data envelopment analysis. J Oper Res Soc 41(9):829–835

    Article  Google Scholar 

  • Wu J, Chu J, Sun J, Zhu Q, Liang L (2016) Extended secondary goal models for weights selection in DEA cross-efficiency evaluation. Comput Ind Eng 93:143–151

    Article  Google Scholar 

  • Zakowskaa I, Godycki-Cwirkoa M (2020) Data envelopment analysis applications in primary health care: a systematic review. Fam Pract 2020:147–153

    Google Scholar 

  • Zhou HY, Chen Y, Zhu J (2018) Data envelopment analysis application in sustainability: the origins, development and future directions. Eur J Oper Res 264(1):1–16

    Article  Google Scholar 

  • Ziari S, Raissi S (2016) Ranking efficient DMUs using minimizing distance in DEA. J Ind Eng Int 12:237–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Gkouvitsos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gkouvitsos, I., Giannikos, I. Using a MACBETH based multicriteria approach for virtual weight restrictions in each stage of a DEA multi-stage ranking process. Oper Res Int J 22, 1787–1811 (2022). https://doi.org/10.1007/s12351-020-00619-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-020-00619-w

Keywords

Navigation