
Vol.:(0123456789)

Operational Research (2022) 22:1291–1332
https://doi.org/10.1007/s12351-020-00574-6

1 3

ORIGINAL PAPER

A robust augmented ε‑constraint method (AUGMECON‑R) 
for finding exact solutions of multi‑objective linear 
programming problems

Alexandros Nikas1   · Angelos Fountoulakis1 · Aikaterini Forouli1 · 
Haris Doukas1

Received: 15 April 2020 / Revised: 15 April 2020 / Accepted: 14 May 2020 / Published online: 24 May 2020 
© The Author(s) 2020

Abstract
Systems can be unstructured, uncertain and complex, and their optimisation often 
requires operational research techniques. In this study, we introduce AUGMECON-
R, a robust variant of the augmented ε-constraint algorithm, for solving multi-
objective linear programming problems, by drawing from the weaknesses of AUG-
MECON 2, one of the most widely used improvements of the ε-constraint method. 
These weaknesses can be summarised in the ineffective handling of the true nadir 
points of the objective functions and, most notably, in the significant amount of time 
required to apply it as more objective functions are added to a problem. We subse-
quently apply AUGMECON-R in comparison with its predecessor, in both a set of 
reference problems from the literature and a series of significantly more complex 
problems of four to six objective functions. Our findings suggest that the proposed 
method greatly outperforms its predecessor, by solving significantly less models in 
emphatically less time and allowing easy and timely solution of hard or practically 
impossible, in terms of time and processing requirements, problems of numerous 
objective functions. AUGMECON-R, furthermore, solves the limitation of unknown 
nadir points, by using very low or zero-value lower bounds without surging the time 
and resources required.

Keywords  Augmecon · ε-constraint · Multi-objective programming · Optimisation · 
Pareto

 *	 Alexandros Nikas 
	 anikas@epu.ntua.gr

1	 Decision Support Systems Laboratory, School of Electrical and Computer Engineering, 
National Technical University of Athens, Iroon Politechniou 9, 157 80 Athens, Greece

http://orcid.org/0000-0002-6795-3848
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-020-00574-6&domain=pdf


1292	 A. Nikas et al.

1 3

1  Introduction

Despite rapid technological advancements in software and hardware perfor-
mance, many problems featuring numerous evaluation criteria or objective func-
tions (Wiedemann 1978), multiple constraints of different nature and hundreds 
to thousands of decision variables remain challenging to solve (Carrizosa et  al. 
2019). Several methods have been developed to solve multi-objective linear pro-
gramming problems, each of which features strengths and weaknesses (Sylva and 
Crema 2007). Among these, the ε-constraint method, along with its variants, has 
been used in many systems and applications (e.g. Liu and Papageorgiou 2013; 
Paul et  al. 2017; Zhou et  al. 2018; Jenkins et  al. 2019), reported as a powerful 
way to solve multi-objective linear programming problems and preferred over 
competing techniques (Kadziński et al. 2017a, b; Jabbarzadeh et al. 2019).

In this study, we focus on one of the most widely used improvements of 
ε-constraint, the AUGMECON method (Mavrotas 2009) as subsequently 
improved in AUGMECON 2 (Mavrotas and Florios 2013). By looking at its main 
novelties, its core weaknesses are identified and discussed in detail, serving as a 
motivation for developing a new model that effectively overcomes them. These 
weaknesses, although dependent on various characteristics and processes of the 
method, can be summarised in the ineffective handling of the true nadir points of 
the objective functions of a problem and, most notably, in the significant amount 
of time required to apply it as more objective functions are added to a problem, 
which can even make a problem practically insolvable. Drawing on these, we 
introduce AUGMECON-R, a powerful and robust improvement that addresses 
these weaknesses, and apply it in comparison with its predecessor, in both a set of 
reference problems from the literature and a series of significantly more complex 
problems of four to six objective functions.

The rest of the paper is organised as follows. Section 2 carries out a brief over-
view of the ε-constraint, AUGMECON and AUGMECON 2 methods, by high-
lighting their characteristics of significance to introducing AUGMECON-R in 
Sect. 3. Section 4 performs a comparative analysis between AUGMECON-R and 
its predecessor (AUGMECON 2). Finally, Sect. 5 draws conclusions and outlines 
prospects for future work.

2 � A brief overview of the augmented ε‑constraint method

According to Hwang et  al. (1980), Multiple-Objective Mathematical Program-
ming (MOMP) solving algorithms can be organised in three groups: a priori 
methods, in which the decision makers have the capacity to express their pref-
erences or objective function weights prior to solving the problem; interactive 
methods, which feature an ongoing dialogue between analysts and decision mak-
ers, eventually leading to preferences converging with solutions; and a posteriori 
methods, in which the problem is solved and the effective Pareto solutions are 



1293

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

found, allowing the decision makers to select among these based on their prefer-
ences. Given the infrequency of early knowledge and quantification capacity of 
the decision makers’ preference model, which is prerequisite to a priori methods, 
and the difficulty in the decision makers having complete overview of (an approx-
imation of) the Pareto front, associated with interactive methods, this paper ori-
ents on a posteriori methods to solving a MOMP problem of the form:

where x is the vector of decision variables, f1(x), f2(x),… , fp(x) are the p objective 
functions, and S is the space of efficient solutions.

Among these methods, the ε-constraint algorithm aims at optimising one objec-
tive function, while considering all other objective functions as constraints. The 
model, widely applied for multi-objective linear programming problems (Mavrotas 
et al. 2011; Sakar and Koksalan 2013), is thus transformed to:

By changing the right-hand side of the constrained objective functions ( ei ), effi-
cient solutions are obtained. The problem is solved on a step-by-step basis on an 
N2 × N3 ×… × Np grid, where Ni is the integer range of the objective function fi.

One of the method’s main advantages is that the number of efficient solutions 
can be controlled, by appropriately adjusting the number of grid points, on which 
each optimisation is solved, along the range of each objective function. However, 
this range must be calculated; it cannot be secured that solutions are not weak but 
effective; and solving any problem with more than two objective functions is very 
time-consuming.

These weaknesses motivated the development of augmented ε-constraint or 
AUGMECON (Mavrotas 2009), which transforms the problem into the following:

max
{

f1(x), f2(x),… , fp(x)
}

s.t. ∶ x ∈ S

max
{

f1(x)
}

s.t. ∶

f2(x) ≥ e2

f3(x) ≥ e3

…

fp(x) ≥ ep

x ∈ S



1294	 A. Nikas et al.

1 3

In essence, AUGMECON introduces the following modifications to the original 
ε-constraint method, to ensure that only effective Pareto solutions are obtained: (i) 
all constraints corresponding to the p − 1 objective functions become strict inequali-
ties; and (ii) slack (or surplus) variables are introduced both to the primary objective 
function and to the constrained ones.

Another significant novelty of AUGMECON is that it exploits cases where 
the problem is infeasible, leading to an early exit from the nested loop of the step 
increase function: the algorithm initially sets lower bounds to the constrained objec-
tive functions, which gradually become stricter; if the problem becomes infeasible, 
i.e. the model cannot be solved for the given constraint of an objective function, 
after a specific grid point increase, there is no point in strengthening the constraints 
and the algorithm exits from the innermost loop and continues to the next grid point 
of said objective function. This way AUGMECON contributes to faster model solu-
tion, especially when the problem features more than two objective functions.

AUGMECON has been employed in various applications and systems, includ-
ing supply chain management (Torabi et al. 2013; Bootaki et al. 2014, 2016; Can-
ales-Bustos et al. 2017; Musavi and Bozorgi-Amiri 2017; Ravat et al. 2017; Vieira 
et al. 2017; Sazvar et al. 2018; Ehrenstein et al. 2019; Oiu et al. 2019; Shekarjan 
et al. 2019; Xin et al. 2019), energy planning (Hombach and Walther 2015; Tartibu 
et al. 2015; Arancibia et al. 2016; Cambero and Sowlati 2016; Cambero et al. 2016; 
Mohammadkhani et al. 2018; Rabbani et al. 2018; Sedighizadeh et al. 2018; Razm 
et  al. 2019), waste management (Mavrotas et  al. 2013; Mavrotas et  al. 2015a, b; 
Inghels et al. 2016), portfolio analysis (Xidonas et al. 2010, 2011; Khalili-Damghani 
et al. 2012), transportation (Resat and Turkay 2015; Babakeik et al. 2018) and oth-
ers (Khalili-Damghani and Amiri 2012; Aras and Yurdakul 2016; Yu et  al. 2018; 
Behmanesh and Zandieh 2019; Zhang et al. 2019; Xiong et al. 2019); and has been 
combined with or compared against evolutionary algorithms (Khalili-Damghani 
et al. 2013; Dabiri et al. 2017; Wang et al. 2018; Mohammadi et al. 2019).

Mavrotas and Florios (2013) further extended this algorithm in AUGMECON 2, 
by introducing a bypass coefficient as well as a type of lexicographic optimisation to 
all objective functions, the order of which was insignificant in AUGMECON:

By means of the bypass coefficient, AUGMECON 2 makes use of the information 
provided by the slack/surplus variables of the constrained objective functions to 

max
{

f1(x) + eps ×
(

s2 + s3 +⋯ + sp
)}

, eps ∈
(

10−6, 10−3
)

s.t. ∶

f2(x) − s2 = e2

f3(x) − s3 = e3

…

fp(x) − sp = ep

x ∈ S

max
{

f1(x) + eps ×
(

s2∕r2 + 10−1s3∕r3 +⋯ + 10−(p−2)sp∕rp
)}



1295

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

avoid unnecessary iterations and accelerate solution. The jumps made in the inner-
most loop to help accelerate grid scanning allow for decreasing the step of the pro-
cess and therefore increasing the grid points; by doing so, the exact Pareto set can 
be identified. But, in order to do so, (a) the objective function coefficients must be 
integer and (b) the nadir points of the Pareto set must be known.

To deal with the first limitation, non-integer coefficients can be multiplied by the 
appropriate power of 10, as necessary, which can however significantly expand the 
grid and increase the grid points, leading to very large solution times. Regarding the 
second limitation, adding steps to accurately calculate the nadir points of the Pareto 
set can also increase the algorithm’s complexity, so the AUGMECON 2 algorithm 
only uses an underestimation (overestimation), i.e. a lower (upper) bound, in cases 
of maximisation (minimisation) objectives.

Despite its weaknesses, which are analysed in detail below, AUGMECON 2 has 
significantly better performance over AUGMECON, and this is why it has also been 
applied in a wide range of problem domains since its introduction, including supply 
chain management (Gavranis and Kozanidis 2017; Bal and Satoglu 2018; Attia et al. 
2019; Habibi et al. 2019; Resat and Unsal 2019; Roshan et al. 2019; Saedinia et al. 
2019; Vafaeenezhad et al. 2019; Mohammed and Duffuaa 2020), project selection 
(Mavrotas et al. 2015a, b; Schaeffer and Cruz-Reyes 2016), and network optimisa-
tion and planning (Florios and Mavrotas 2014; Oke and Siddiqui 2015; Mousaza-
deh et al. 2018; Rahimi et al. 2019), as well as in policy-related problems, such as 
energy and climate action (Forouli et al. 2019a, b; Van de Ven et al. 2019; Doukas 
and Nikas 2020).

3 � Augmecon‑r

3.1 � Motivation

Although AUGMECON 2 constitutes a significant upgrade to AUGMECON and a 
powerful algorithm for solving multi-objective integer programming (MOIP) prob-
lems and finding the exact Pareto set of a problem, it features certain weaknesses, 
the need to overcome which has motivated the development of AUGMECON-R.

First, the solution time for large-scale problems of more than twoobjective func-
tions is still high, since jumps only occur in the innermost loop and not across the 
grid and for all nested loops, which represent the constrained objective functions: 
a problem of m objective functions of average range n would have an AUGME-
CON 2 complexity of O

(

nm−1
)

 , which is relatively large for programs running in 
environments like GAMS. For example, a 6kpY problem (a knapsack problem of 6 
objective functions, 6 constraints and Y decision variables), with an average integer 
range of 1000 for each objective function, would feature a complexity of O

(

1015
)

 , or 
slightly less given the iterations avoided due to the bypass coefficient of the inner-
most loop. The more objective functions a problem has, the more time-consuming 
AUGMECON 2 becomes for solving said problem.

Second, AUGMECON 2 requires that objective function coefficients be integer. If 
this is not the case, non-integer coefficients are multiplied by the appropriate power 



1296	 A. Nikas et al.

1 3

of 10, thereby also increasing the complexity accordingly: a problem of m objective 
functions of average range n and an average number of decimals k would have an 
AUGMECON 2 complexity of O

(

nm−1 × 10k×(m−1)
)

.

Third, implementing AUGMECON 2 requires a priori knowledge of the nadir 
points of the objective functions. Nadir point calculation algorithms are usually 
complex, hard to program and could require writing chunks of code larger than 
those of AUGMECON 2 itself; are generally capable of solving problems of up to 
three objective functions; and their running time is comparable to the one required 
by AUGMECON 2 (Alves and Costa 2009). This is why AUGMECON 2 opts for 
underestimation of nadir points, i.e. the use of lower bounds of the objective func-
tions, thereby only slightly increasing computation time. This process of approx-
imating the nadir points, in AUGMECON 2, takes place in the problem’s payoff 
table where the lowest values, which in theory are equal to or greater than the nadir 
points, are multiplied by an arbitrary coefficient (e.g. 90%), resulting in what is 
hopefully an underestimation of the actual nadir points. Academically speaking, one 
heuristic approach around this would be the calculation of all payoff tables, consid-
ering all possible orders of the constrained objective functions; this would expect-
edly give a closer approximation to the actual nadir points, allowing tightening the 
arbitrary coefficient, e.g. to 95%, hopefully ensuring that the nadir point would be 
included in the new, smaller grid. However, this approach would simply improve 
computation time, without avoiding either the arbitrary or the hopeful nature of the 
approximation process.

Fourth, the correlation between the order of constrained objective functions 
across loops and computation time is a weakness by itself: AUGMECON 2 features 
a bypass coefficient only for the innermost loop of the process, resulting in getting 
rid of only those unnecessary grid point checks that can be avoided within the inner-
most loop. In order to maximise the number of unnecessary iterations avoided as 
much as possible, after calculating the payoff table, the algorithm should be in a 
position to switch order of constrained objective functions accordingly, so that the 
objective function of the largest range could be placed in the innermost loop.

These four limitations associated with AUGMECON 2 constitute the motivation 
of developing a new algorithm that can significantly improve computation time and 
efficiency, as well as allow for easily solving problems that have so far been hard or 
practically impossible to solve.

3.2 � An improved search algorithm

Reading through (Mavrotas and Florios 2013) and the performance recorded 
for AUGMECON 2, there appears to be a large deviation between the number 
of models solves and the solutions included in the Pareto front. For example, in 
the case of the 3kp100 problem—i.e. of a knapsack problem of three objective 
functions, three constraints and a hundred decision variables—there are 103,049 
models solved, which is approximately sixteen times the number of the solutions 
included in the Pareto Front (6,500). However, given that this is a MOIP prob-
lem and AUGMECON 2 calculates the exact Pareto set by using a unity step to 



1297

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

explore all possible integer values of the objective functions across the grid, one 
would expect that the models solved would be equal or at least close to the num-
ber of Pareto front solutions, which is not the case.

This large number of unnecessary optimisations computed can be attributed to 
the use of only one bypass coefficient in the innermost loop and, in addition, to 
the large number of infeasibilities that could have otherwise been to some extent 
foreseen and avoided.

In this direction, AUGMECON-R introduces a novelty that is largely based 
on the existing notion of the bypass coefficient, by incorporating to the model as 
many bypass coefficients as objective functions, which would be of the form:

where int() is the function that returns the integer part of a real number, and si is the 
slack/surplus variable for an objective function i , and stepi is the discretisation step 
for this objective function:

where ri is the range of the objective function i , and qi the number of equal intervals 
that the range is divided to formulate the grid, so that the latter comprise qi + 1 grid 
points.

This way, instead of having one bypass coefficient acting at the innermost 
loop like AUGMECON 2, AUGMECON-R features an active bypass coefficient 
in each one of the outer loops as well. In every iteration, bypass coefficients 
bi = int

(

si∕stepi
)

 are calculated. When si > stepi , in the next iteration for b′
i
 cor-

responding to e�

i
= ei + stepi the optimisation will again lead to the same solution, 

with s�
i
= si − stepi , making the iteration unnecessary. The bi bypass coefficient 

indicates how many iterations should be bypassed, provided that these iterations 
concern the ith objective function and the right-hand sides of all other constrained 
objective functions remain constant. The new process introduced in the proposed 
algorithm can be shown with a simple example. Assume that we have a four-
objective problem with the following payoff table as shown in Table 1 (all objec-
tive functions to be maximised):

From the payoff table, we have r2 = r3 = r4 = 10 , which are divided into ten 
equal intervals, with a unity step of step2 = step3 = step4 = 1 . AUGMECON-R 
includes the following process: 

b2 = int
(

s2∕step2
)

b3 = int
(

s3∕step3
)

…

bp = int
(

sp∕stepp
)

stepi = ri∕qi



1298	 A. Nikas et al.

1 3

The objective function f2(x) is represented in the innermost loop (k counter). 
Assume that we currently are at the 2nd iteration of the innermost loop ( k = 1) , 
the 4th iteration of the middle loop ( j = 3)and the 3rd iteration of the outermost 
loop ( i = 2) , with e2 = 103 , e3 = 80 , and e4 = 48 , as displayed in brackets and 
bold in Table 2.

After the optimisation, we obtain s2 = 4 , s3 = 3 , and s4 = 4 , meaning that 
f2 = 103 + 4 = 107 , f3 = 80 + 3 = 83 , and f4 = 48 + 4 = 52 (and, for the sake of 
completeness, f1 = 97 ). Hence, b2 = 4 , b3 = 3 , and b4 = 4 . While AUGMECON 
2 wouldconsider unnecessary only the four next iterations of the innermost loop, 
AUGMECON-R acknowledges that any combination of k ∈ [1, 5] , j ∈ [3, 6] , 

Table 1   Payoff table of example 
problem

f1 f2 f3 f4

max f1(x) 105 102 77 50
max f2(x) 95 112 80 53
max f3(x) 100 108 87 46
max f4(x) 100 110 80 56

Table 2   Grid points of the example problem

Objective 
function

Counter Grid points

0 1 2 3 4 5 6 7 8 9 10

f2(x) k 102 [103] 104 105 106 107 108 109 110 111 112
f3(x) j 77 78 79 [80] 81 82 83 84 85 86 87
f4(x) i 46 47 [48] 49 50 51 52 53 54 55 56



1299

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

i ∈ [2, 6] would return the same solution. In this problem, AUGMECON-R would 
avoid 19 unnecessary iterations that AUGMECON 2 would not.

Assuming we have the capacity to store the values of the bypass coefficients 
bi in optimisation h and defining as pure any optimisation that leads to a solution 
different from the one resulting from a unity decrease of any of the parameters 
for the right-hand side for a specific iteration drawn from the grid points of the 
objective functions, ei , then AUGMECON-R can avoid:

iterations compared to AUGMECON 2, where: h is a pure optimisation and D is the 
sum of all pure optimisations.

In order to achieve this for any problem of p objective functions, as suggested 
above, the AUGMECON-R algorithm requires that a (p − 1)-dimensional array be 
introduced to store integer flag values, flag

[(

N2 + 1
)

×
(

N3 + 1
)

×⋯ ×
(

Np + 1
)]

 , 
where Ni is the integer range of the objective function fi . The array is initialised 
with zero values and, prior to any optimisation, the algorithm examines if the 
corresponding value of the array is zero or not; if it is zero, the optimisation is 
performed, otherwise the algorithm jumps in the innermost loop as many steps as 
the array value indicates.

By introducing the flag array and the notion of pure optimisations, AUGME-
CON-R can at the same time avoid any unnecessary optimisations due to infeasi-
bilities: if, for any value of e∗

2
, e∗

3
,… , e∗

p
 of the right-hand side of the constrained 

objective functions, there lies an infeasibility, then for an increase of any of 
e2, e3,… , ep with all others equal to or greater than e∗

2
, e∗

3
,… , e∗

p
 an infeasibility 

will also be reached. Therefore, for �i ∈ N , any 
{

e∗
i
+ �i

}

 combination on the 
right-hand side of the constrained objective functions will return an infeasibility; 
while AUGMECON 2 would only avoid infeasibilities for 
{

e∗
2
+ 𝛿2, e

∗
3
,… , e∗

p

}

, 𝛿2 > 0 , AUGMECON-R avoids all infeasibilities for 
{

e∗
2
+ �2, e

∗
3
+ �3,… , e∗

p
+ �p

}

.
The proposed algorithm can, therefore, avoid all iterations, for which all right-

hand sides of the constrained objective functions are equal to or greater than the 
e∗
i
 values that led to an infeasibility.
The flow chart of AUGMECON-R is shown in Fig. 1.

∑

h∈D

{

b3,h
}

, if p = 3

∑

h∈D

{

b3,h + b4,h ∗
(

b3,h + 1
)}

, if p = 4

∑

h∈D

{

b3,h + b4,h ∗
(

b3,h + 1
)

+ b5,h ∗
(

b4,h + 1
)(

b3,h + 1
)}

, if p = 5

∑

h∈D

{

b3,h + b4,h
(

b3,h + 1
)

+ b5,h
(

b4,h + 1
)(

b3,h + 1
)

+…+ bp,h
(

bp−1,h + 1
)(

bp−2,h + 1
)

…
(

b3,h + 1
)}

, if p ≥ 6



1300	 A. Nikas et al.

1 3

Fig. 1   Flowchart of the AUGMECON-R algorithm



1301

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

3.3 � Source code

The code for AUGMECON-R customised for a representative model of a 4kp40 
problem, freely available on GitHub1, has largely been based on the AUGMECON 2 
source code and is presented in Appendix 1.

4 � Comparative analysis and discussion

In this section, AUGMECON-R is employed for numerous problems and its perfor-
mance is compared against the performance of AUGMECON 2. Initially, the bench-
mark problems presented by Mavrotas and Florios (2013) are solved, acting as a 
reference, followed by a series of random, more challenging in terms of objective 
functions and density problems; for the latter, AUGMECON 2 was also used by the 
authors, to provide for a comparative analysis.

It must be noted that all problems presented in the section have been solved in 
GAMS version 23.5, using CPLEX 12.2, a 64-bit Windows 10 operating system, a 
2.7 GHz i5-6400 processor and an 8GB RAM memory.

4.1 � Reference benchmark problems

Here, given that AUGMECON-R was designed as an upgrade to AUGMECON 2, 
we use as reference the 3kpY problems Mavrotas and Florios (2013) used to com-
pare the performance of and establish AUGMECON 2 against AUGMECON; these 
include a 3kp100, a 3kp50 and a 3kp40 problem, i.e. selected knapsack problems of 
three objective functions, three constraints, and 100, 50 and 40 decision variables 
respectively. The 2kpY problems used in the same study were disregarded since, 
based on the proposed model outlined in Sect. 3.2, AUGMECON-R is identical to 
AUGMECON2 when dealing with only two objective functions.

It should also be noted that, in their study, Mavrotas and Florios (2013) do not 
use their originally proposed AUGMECON 2 algorithm, but a programming modi-
fication of it that arbitrarily avoids certain optimisations at the initial stages, both in 
the innermost loop and in the outer loop. This is noteworthy as, although the use of 
this modification does not significantly change the order of the resulting difference 
(cf. the performance reported in Mavrotas and Florios 2013), here the performance 
of AUGMECON-R is compared against the original AUGMECON 2 algorithm, and 
not against the ad hoc modified one. Table 3 summarises the performance between 
the two algorithms, in terms of the CPU time needed, the grid points per objective 
function, the total models solved, the infeasibilities found, the number of models 
solved multiple times (‘duplicate solutions’), the dominated solutions and the solu-
tions found in the Pareto front.

1  https​://githu​b.com/Katfo​rEpu/Augme​con-R

https://github.com/KatforEpu/Augmecon-R


1302	 A. Nikas et al.

1 3

Our findings suggest that, for the same number of solutions in the Pareto front, 
AUGMECON-R is multiple times faster and solves significantly less models, 
leading to significantly fewer infeasibilities and duplicate solutions (Table 4). To 
make up for potential randomness in CPU times due to different levels of CPU 
core availability, the CPU times presented are average times after a series of 
model runs, so that comparison can be considered unbiased and representative. 
This is also why the number of models solved is highlighted as a comparison met-
ric, indicating similar ratios. It should be noted that the differences in CPU time 
ratios and models solved can be attributed to the time needed by AUGMECON-R 
to perform the bypass condition checks. Furthermore, the differences of ratios 
among the three problems can be attributed to the different density of the prob-
lems, i.e. the ratio of the number of solutions included in the Pareto front over the 
number of models solved: the denser the problem, the smaller the time difference 
between the two algorithms, as fewer iterations are avoided in the loops outside 
the innermost loop.

To highlight the enhanced performance of AUGMECON-R over AUGMECON 
2, the arbitrary selection of the lower bounds loosens, to maximise the probability 
of including the actual nadir points in the analysis and ensure that no solution is 
missed. So, instead of multiplying the nadir values of the payoff tables by 95%, as 
was the case in the problems above, we reiterate our analysis of these three prob-
lems, by multiplying the nadir values by 5%, leading to an emphatically larger grid, 

Table 3   Performance comparison between AUGMECON 2 (AUGM 2) and AUGMECON-R (AUGM-R) 
for the 3kpY problems

3kp100 3kp50 3kp40

AUGM 2 AUGM-R AUGM 2 AUGM-R AUGM 2 AUGM-R

CPU Time 23 h 268 min 113 min 695 s 42 min 220 s
Grid points per objective function 1236 1236 846 846 540 540
Models solved 103,652 11,727 25,245 1951 11,098 746
Infeasibilities 1093 137 564 78 420 34
Duplicate solutions 96,020 5071 23,630 823 10,287 321
Dominated solutions 39 19 3 2 2 2
Solutions in the Pareto front 6500 6500 1048 1048 389 389

Table 4   Comparison ratios of performance of AUGMECON 2 over AUGMECON-R for the 3kpY prob-
lems

Problem CPU time ratio Models solved 
ratio

Infeasibilities ratio Duplicate 
solutions 
ratio

3kp100 5.15 8.84 7.98 18.93
3kp50 9.75 12.94 7.23 28.71
3kp40 11.45 14.88 12.35 32.05



1303

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

in order to evaluate how this impacts the performance of the two algorithms in com-
parison (Table 5).

Although the difference of the two algorithms is now more evident for the case of 
significantly lower bounds, by looking at Tables 3 and 5, it is worth pointing out that 
this problem modification led to a CPU time increase of 2.24%, 6.00% and 6.40% 
for AUGMECON-R, compared to a CPU time increase of 170.00%, 103.50% and 
209.52% for AUGMECON 2, for 3kp100, 3kp50 and 3kp40 respectively. Simi-
lar findings can be observed for all other relevant metrics; for example, the addi-
tional models solved by AUGMECON-R are negligible in all three problems (41, 
2 and 2), the same cannot be said for AUGMECON 2 (314,157, 36,197 and 28,550 
respectively).

4.2 � Complex benchmark problems

Here, we implement both algorithms to evaluate AUGMECON-R in problems 
of more than three objective functions. Before doing so, however, we distinguish 
between uncorrelated and weakly correlated problems (Martello and Monaci 2020; 
Shah and Reed 2011): uncorrelated problems assume no correlation between ele-
ments of the objective function coefficient matrix and those of the constraint coef-
ficient matrix, while weakly correlated problems assume a weak correlation between 
these elements. This weak correlation makes their solution significantly more diffi-
cult, as the solver requires more time resources, and given the time requirements for 
AUGMECON 2 to solve such problems, only uncorrelated problems are assumed in 
this study.

We define the following problems:

•	 A 4kp40 problem, with 155, 119 and 121 being the true nadir points of the three 
constrained objective functions and 123, 127 and 140 being their ranges respec-
tively.

•	 A 4kp40* problem, which is identical with the 4kp40 problem but without a 
priori knowledge of nadir points, hence with the consideration of significantly 

Table 5   Performance comparison between AUGMECON 2 (AUGM 2) and AUGMECON-R (AUGM-R) 
for the 3kpY problems with lower bounds

3kp100* 3kp50* 3kp40*

AUGM 2 AUGM-R AUGM 2 AUGM-R AUGM 2 AUGM-R

CPU time 62 h 274 min 230 min 737 s 130 min 234 s
Grid points per objective function 3940 3940 1880 1880 1560 1560
Models solved 417,809 11,768 61,442 1953 39,648 748
Infeasibilities 1093 137 564 78 420 34
Duplicate solutions 410,138 5090 59,827 825 38,836 322
Dominated solutions 78 41 3 2 3 3
Solutions in the Pareto front 6500 6500 1048 1048 389 389



1304	 A. Nikas et al.

1 3

lower bounds: 15, 11 and 13 being the lower bounds and 263, 235 and 248 the 
range respectively.

•	 A 4kp50 binary problem, with objective function coefficients resulting from a 
uniform distribution U[0, 1] and constraint coefficients from a uniform distri-
bution U[50, 70] , with 718, 735 and 713 being the true nadir points, and 51, 35 
and 44 being the ranges respectively.

•	 A 4kp50* binary problem, which is identical with the 4kp50 binary prob-
lem but after extending the range of the objective functions by assigning new 
lower bounds at 70, 69 and 57.

•	 A 5kp40 problem, with objective function coefficients resulting from a uni-
form distribution U[50, 40] and constraint coefficients from a uniform dis-
tribution U[2, 10] , with 29, 32, 27 and 27 being the true nadir points of the 
four constrained objective functions, and 21, 21, 27 and 25 being the ranges 
respectively.

•	 A 5kp40* problem, which is identical with the 5kp40 problem but after 
extending all ranges to 45, to make sure we include the now unknown true 
nadir points, with 5, 8, 9 and 7 being the new lower bounds.

•	 A 6kp50 binary problem, with objective function coefficients resulting from 
a uniform distribution U[0, 1] and constraint coefficients from a uniform dis-
tribution U[0, 5] , with 38, 37, 31, 27 and 30 being the true nadir points of 
the five constrained objective functions, and 21, 24, 26, 30 and 22 being the 
ranges respectively.

•	 A 6kp50* problem, which is identical with the 6kp50 binary problem but after 
extending all ranges to 50, to make sure we include the now unknown true 
nadir points, with 9, 11, 7, 7 and 2 being the new lower bounds.

The matrices of the objective function and constraint coefficients are provided 
in Appendix 2, for all of the above pairs of problems, i.e. for 4kp40 – 4kp40*, 
4kp50 – 4kp50*, 5kp40 – 5kp40* and 6kp50 – 6kp50*.

Table 6 summarises the performance differences between AUGMECON 2 and 
AUGMECON-R, for the problems 4kp40 and 4kp40*, while Fig. 2 visualises the 
Pareto front of the problem.

Table 6   Performance comparison between AUGMECON 2 and AUGMECON-R for the 4kp40 problem, 
with the true nadir points (4kp40) and with lower bounds (4kp40*)

4kp40 4kp40*

AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R

CPU time 1214 min 56 min 85 h 59min
Models solved 290,443 14,735 1,431,195 10,846
Infeasibilities 14,735 359 35,363 359
Duplicate solutions 272,530 7324 1,392,653 7315
Dominated solutions 6 0 7 0
Solutions in the Pareto front 3172 3172 3172 3172



1305

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

It is evident, from Table 4, that AUGMECON-R is almost 21 times faster than 
its predecessor, with the latter solving almost 26 times more models, in the prob-
lem where the actual nadir points are known a priori; this ratio difference is, as 
discussed above, due to the number of checks made by AUGMECON-R in its flag 
array. When considering the case of the true nadir points being unknown and thus 
extending the grid to secure that the actual nadir points are included in the analy-
sis and that no solution is missed, AUGMECON-R outperforms AUGMECON 2 by 
solving about 131 times less models, more than 85 times faster. One odd finding is 

Fig. 2   The Pareto front of the 4kp40 problem

Table 7   Performance comparison between AUGMECON 2 and AUGMECON-R for the 4kp50 problem, 
with the true nadir points (4kp50) and with lower bounds (4kp50*)

4kp50 4kp50*

AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R

CPU Time 1021 s 31 s 161 h 939 s
Models solved 6296 176 > 4,000,000 161
Infeasibilities 1211 28 – 28
Duplicate solutions 5039 102 – 87
Dominated solutions 0 0 – 0
Solutions in the Pareto front 46 46 46 46



1306	 A. Nikas et al.

1 3

that AUGMECON-R now solves even less models than before; given how small the 
lower bounds are, the surplus variables are significantly larger, and this circumstan-
tially leads to less models. This, however, does not bear any negative impacts on the 
accuracy of the algorithm, as it stumbles upon equally as many infeasibilities.

Similarly, Table  7 summarises the performance differences between AUGME-
CON 2 and AUGMECON-R, for the binary problems 4kp50 and 4kp50*, while 
Fig. 3 visualises the Pareto front of the problem.

Again, AUGMECON-R solves the 4kp50 problem almost 32 times faster, 
having solved about 35 times less models. But what is strikingly interesting is 
that, when considering the 4kp50* problem, AUGMECON 2 required 161 hours 
and solved more than four million models. These findings clearly indicate that 

Fig. 3   The Pareto front of the 4kp50 problem

Table 8   Performance comparison between AUGMECON 2 and AUGMECON-R for the 5kp40 problem, 
with the true nadir points (5kp40) and with lower bounds (5kp40*)

5kp40 5kp40*

AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R

CPU time 12,035 s 175 s 27 h 194 s
Models solved 52,030 618 458,760 622
Infeasibilities 9351 114 47,521 114
Duplicate solutions 42,553 378 411,113 382
Dominated solutions 0 0 0 1
Solutions in the Pareto front 126 126 126 126



1307

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

AUGMECON-R has the capacity to timely solve time-wise non-viable, complex 
problems, ensuring accuracy and assuring no solution is missed.

Moving onto a five-objective problem, Table  8 summarises the performance 
differences between AUGMECON 2 and AUGMECON-R, for the problems 
5kp40 and 5kp40*, while Fig. 4 visualises the Pareto front of the problem.

AUGMECON-R solved the 5kp40 problem almost 68 times faster, having 
solved about 83 times less models, while in the case of lack of a priori knowledge 
lower bounds considering the 4kp50* problem, these differences surge to 505 and 
737 times respectively. In both cases, however, it is evident that AUGMECON-R 
outperforms AUGMECΟN 2 even more than in the previous two sets of prob-
lems of four objective functions; as previously discussed, the larger the number of 
objective functions is, the larger this outperformance is. This can be highlighted 
in the final problem of six objective functions, as follows in Table 9 and Fig. 5.

As with the 4kp50 binary problem, the 6kp50 binary problem solved by both 
AUGMECON 2 and AUGMECON-R emphasises the performance difference 
between the two methods. Given the significantly higher complexity that a sixth 
objective function adds to the problem, the CPU time and models solved ratios 

Fig. 4   The Pareto front of the 5kp40 problem



1308	 A. Nikas et al.

1 3

are even higher in this case, with AUGMECON 2 solving 175 more models 155 
times slower. By extending the grid in order to ensure that the a priori unknown 
true nadir points are included in the analysis, AUGMECON 2 cannot solve the 

Table 9   Performance comparison between AUGMECON 2 and AUGMECON-R for the 6kp50 problem, 
with the true nadir points (6kp50) and with lower bounds (6kp50*)

6kp50 6kp50*

AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R

CPU time 52 h 1207 s – 4145 s
Models solved 1,104,406 6269 – 6242
Infeasibilities 193,612 863 – 863
Duplicate solutions 909,949 4563 - 4536
Dominated solutions 2 0 – 0
Solutions in the Pareto front 843 843 843 843

Fig. 5   The Pareto front of the 6kp50 problem



1309

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

problem in a reasonable amount of time—it took the algorithm 47 hours to cross 
the grid once.

5 � Conclusions

In this study, an improved version of the augmented ε-constraint method, AUGME-
CON-R, is introduced, allowing robust and timely optimisation of complex systems. 
Drawing from the weaknesses associated with its predecessor (AUGMECON 2), 
the concept and mathematical model of the proposed method is presented in detail 
and its code provided in Appendix 1, before implementing both methods in com-
parison. The problems solved in Sects. 4.1, 4.2 suggest that the proposed method, 
AUGMECON-R, greatly outperforms its predecessor, AUGMECON 2, by solving 
significantly less models in emphatically less time and allowing us to easily and 
timely solve hard or even impossible, in terms of time and processing requirements, 
problems of multiple objective functions. AUGMECON-R, furthermore, solves the 
problem of unknown nadir points, by using very low or zero-value lower bounds 
without increasing the time requirements.

As with ε-constraint (e.g. Ehrgott and Ryan 2002; Laumanns et al. 2006), there 
exist in the literature a few other attempts to identify weaknesses associated with 
and improve accordingly the AUGMECON 2 algorithm (e.g. Domínguez-Ríos 
et al. 2019), which however tend to perform a posteriori and numerous checks that 
potentially enhance complexity and time requirements, such as (Zhang and Reimann 
2014), which additionally is developed in Visual Studio Express instead of the usual 
operational research problem solving implementation platform, GAMS.

One limitation of the proposed method lies in the introduction of a flag array, the 
size of which is directly linked to the range of the objective functions and therefore 
can lead to occupy a large memory space that could be unavailable. To overcome 
this, AUGMECON-R could in the future be developed in an object-oriented lan-
guage like C++, instead of GAMS, which allows for dynamic memory allocation. 
This would enable using virtual memory, avoiding the flag array initialisation with 
zero values and releasing memory space whenever a counter moves across the grid.

Given that even the slightest uncertainty in the data can render system optimal-
ity meaningless from a practical point of view (Bertsimas and Sim 2004) and given 
recent advancements on robust linear optimisation (Bertsimas and Brown 2009), 
other prospects for future research include the all-in-one integration of AUGME-
CON-R with uncertainty and robustness analysis methods (Van de Ven et al. 2019; 
Mastorakis and Siskos 2016; Ben-Tal et  al. Ben-Tal et  al. 2010; Kadzinski et  al. 
2017a, b; Witting et al. 2013), thereby avoiding the use of numerous methods, code 
scripts, or even implementation platforms.



1310	 A. Nikas et al.

1 3

Acknowledgements  The most important part of this research is based on the H2020 European Com-
mission Project “PARIS REINFORCE” under grant agreement No. 820846. The sole responsibility for 
the content of this paper lies with the authors. The paper does not necessarily reflect the opinion of the 
European Commission.

Funding  European Commission Horizon 2020 Framework, ‘PARIS REINFORCE’ Research and Innova-
tion Project, Grant Agreement No. 820846.

Compliance with ethical standards 

Conflict of interest  Not applicable.

Availability of data and material  Data available in the Appendix, on request and on Github: https://github.
com/KatforEpu/Augmecon-R.

Code availability  Open source, code available on Github: https://github.com/KatforEpu/Augmecon-R

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1311

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

Appendix 1: Source code of AUGMECON‑R



1312	 A. Nikas et al.

1 3



1313

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1314	 A. Nikas et al.

1 3



1315

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1316	 A. Nikas et al.

1 3



1317

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1318	 A. Nikas et al.

1 3

Appendix 2: Datasets used for the complex problems

Dataset of the 4kp40 problem



1319

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1320	 A. Nikas et al.

1 3



1321

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1322	 A. Nikas et al.

1 3



1323

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1324	 A. Nikas et al.

1 3



1325

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1326	 A. Nikas et al.

1 3



1327

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…



1328	 A. Nikas et al.

1 3

References

Alves MJ, Costa JP (2009) An exact method for computing the nadir values in multiple objective linear 
programming. Eur J Oper Res 198(2):637–646

Arancibia AL, Marques GF, Mendes CAB (2016) Systems capacity expansion planning: Novel approach 
for environmental and energy policy change analysis. Environ Model Softw 85:70–79

Aras N, Yurdakul A (2016) A new multi-objective mathematical model for the high-level synthesis of 
integrated circuits. Appl Math Model 40(3):2274–2290

Attia AM, Ghaithan AM, Duffuaa SO (2019) a multi-objective optimization model for tactical planning 
of upstream oil & gas supply chains. Comput Chem Eng

Bababeik M, Khademi N, Chen A (2018) Increasing the resilience level of a vulnerable rail network: the 
strategy of location and allocation of emergency relief trains. Transp Res Part E Logist Transp Rev 
119:110–128



1329

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

Bal A, Satoglu SI (2018) A goal programming model for sustainable reverse logistics operations planning 
and an application. J Clean Prod 201:1081–1091

Behmanesh R, Zandieh M (2019) Surgical case scheduling problem with fuzzy surgery time: an advanced 
bi-objective ant system approach. Knowl Based Syst 186:104913

Ben-Tal A, Bertsimas D, Brown DB (2010) A soft robust model for optimization under ambiguity. Oper 
Res 58(4-PART-2):1220–1234

Bertsimas D, Brown DB (2009) Constructing uncertainty sets for robust linear optimization. Oper Res 
57(6):1483–1495

Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53
Bootaki B, Mahdavi I, Paydar MM (2014) A hybrid GA-AUGMECON method to solve a cubic cell for-

mation problem considering different worker skills. Comput Ind Eng 75:31–40
Bootaki B, Mahdavi I,Paydar MM (2016) New criteria for configuration of cellular manufacturing con-

sidering product mix variation. Comput Ind Eng 98:413–426
Cambero C, Sowlati T (2016) Incorporating social benefits in multi-objective optimization of forest-

based bioenergy and biofuel supply chains. Appl Energy 178:721–735
Cambero C, Sowlati T, Pavel M (2016) Economic and life cycle environmental optimization of for-

est-based biorefinery supply chains for bioenergy and biofuel production. Chem Eng Res Des 
107:218–235

Canales-Bustos L, Santibañez-González E, Candia-Véjar A (2017) A multi-objective optimization model 
for the design of an effective decarbonized supply chain in mining. Int J Prod Econ 193:449–464

Carrizosa E, Guerrero V, Morales DR (2019) Visualization of complex dynamic datasets by means of 
mathematical optimization. Omega 86:125–136

Dabiri N, Tarokh MJ, Alinaghian M (2017) New mathematical model for the bi-objective inventory 
routing problem with a step cost function: a multi-objective particle swarm optimization solution 
approach. Appl Math Model 49:302–318

Domínguez-Ríos MÁ, Chicano F, Alba E, del Águila I, del Sagrado J (2019) Efficient anytime algorithms 
to solve the bi-objective Next Release Problem. J Syst Softw 156:217–231

Doukas H, Nikas A (2020) Decision support models in climate policy. Eur J Oper Res 280(1):1–24
Ehrenstein M, Wang CH, Guillén-Gosálbez G (2019) Strategic planning of supply chains considering 

extreme events: novel heuristic and application to the petrochemical industry. Comput Chem Eng 
125:306–323

Ehrgott M, Ryan DM (2002) Constructing robust crew schedules with bicriteria optimization. J Multi-
Criter Decis Anal 11(3):139–150

Florios K, Mavrotas G (2014) Generation of the exact Pareto set in multi-objective traveling salesman 
and set covering problems. Appl Math Comput 237:1–19

Forouli A, Doukas H, Nikas A, Sampedro J, Van de Ven DJ (2019a) Identifying optimal technologi-
cal portfolios for European power generation towards climate change mitigation: a robust portfolio 
analysis approach. Util Policy 57:33–42

Forouli A, Gkonis N, Nikas A, Siskos E, Doukas H, Tourkolias C (2019b) Energy efficiency promotion in 
Greece in light of risk: evaluating policies as portfolio assets. Energy 170:818–831

Gavranis A, Kozanidis G (2017) Mixed integer biobjective quadratic programming for maximum-value 
minimum-variability fleet availability of a unit of mission aircraft. Comput Ind Eng 110:13–29

Habibi F, Barzinpour F, Sadjadi SJ (2019) A mathematical model for project scheduling and mate-
rial ordering problem with sustainability considerations: a case study in Iran. Comput Ind Eng 
128:690–710

Hombach LE, Walther G (2015) Pareto-efficient legal regulation of the (bio) fuel market using a bi-objec-
tive optimization model. Eur J Oper Res 245(1):286–295

Hwang CL, Paidy SR, Yoon K, Masud ASM (1980) Mathematical programming with multiple objec-
tives: a tutorial. Comput Oper Res 7(1–2):5–31

Inghels D, Dullaert W, Bloemhof J (2016) A model for improving sustainable green waste recovery. 
Resour Conserv Recycl 110:61–73

Jabbarzadeh A, Azad N, Verma M (2019) An optimization approach to planning rail hazmat shipments in 
the presence of random disruptions. Omega

Jenkins PR, Lunday BJ, Robbins MJ (2019) Robust, multi-objective optimization for the military medical 
evacuation location-allocation problem. Omega, 102088.

Kadziński M, Labijak A, Napieraj M (2017a) Integrated framework for robustness analysis using ratio-
based efficiency model with application to evaluation of Polish airports. Omega 67:1–18



1330	 A. Nikas et al.

1 3

Kadziński M, Tervonen T, Tomczyk MK, Dekker R (2017b) Evaluation of multi-objective optimization 
approaches for solving green supply chain design problems. Omega 68:168–184

Khalili-Damghani K, Amiri M (2012) Solving binary-state multi-objective reliability redundancy alloca-
tion series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration 
algorithm, and DEA. Reliab Eng Syst Saf 103:35–44

Khalili-Damghani K, Abtahi AR, Tavana M (2013) A new multi-objective particle swarm optimization 
method for solving reliability redundancy allocation problems. Reliab Eng Syst Saf 111:58–75

Khalili-Damghani K, Tavana M, Sadi-Nezhad S (2012) An integrated multi-objective framework for 
solving multi-period project selection problems. Appl Math Comput 219(6):3122–3138

Laumanns M, Thiele L, Zitzler E (2006) An efficient, adaptive parameter variation scheme for 
metaheuristics based on the epsilon-constraint method. Eur J Oper Res 169(3):932–942

Liu S, Papageorgiou LG (2013) Multiobjective optimisation of production, distribution and capacity 
planning of global supply chains in the process industry. Omega 41(2):369–382

Martello S, Monaci M (2020) Algorithmic approaches to the multiple knapsack assignment problem. 
Omega 90:102004

Mastorakis K, Siskos E (2016) Value focused pharmaceutical strategy determination with multicriteria 
decision analysis techniques. Omega 59:84–96

Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical 
programming problems. Appl Math Comput 213(2):455–465

Mavrotas G, Florios K (2013) An improved version of the augmented ε-constraint method (AUGME-
CON2) for finding the exact pareto set in multi-objective integer programming problems. Appl 
Math Comput 219(18):9652–9669

Mavrotas G, Figueira JR, Antoniadis A (2011) Using the idea of expanded core for the exact solution of 
bi-objective multi-dimensional knapsack problems. J Global Optim 49(4):589–606

Mavrotas G, Figueira JR, Siskos E (2015a) Robustness analysis methodology for multi-objective combi-
natorial optimization problems and application to project selection. Omega 52:142–155

Mavrotas G, Gakis N, Skoulaxinou S, Katsouros V, Georgopoulou E (2015b) Municipal solid waste man-
agement and energy production: consideration of external cost through multi-objective optimization 
and its effect on waste-to-energy solutions. Renew Sustain Energy Rev 51:1205–1222

Mavrotas G, Skoulaxinou S, Gakis N, Katsouros V, Georgopoulou E (2013) A multi-objective pro-
gramming model for assessment the GHG emissions in MSW management. Waste Manag 
33(9):1934–1949

Mohammadi M, Jula P, Tavakkoli-Moghaddam R (2019) Reliable single-allocation hub location problem 
with disruptions. Transp Res Part E Logist Transp Rev 123:90–120

Mohammadkhani N, Sedighizadeh M, Esmaili M (2018) Energy and emission management of CCHPs 
with electric and thermal energy storage and electric vehicle. Therm Sci Eng Progress 8:494–508

Mohammed AM, Duffuaa SO (2020) A tabu search based algorithm for the optimal design of multi-
objective multi-product supply chain networks. Expert Syst Appl 140:112808

Mousazadeh M, Torabi SA, Pishvaee MS, Abolhassani F (2018) Accessible, stable, and equitable health 
service network redesign: a robust mixed possibilistic-flexible approach. Transp Res Part E Logist 
Transp Rev 111:113–129

Musavi M, Bozorgi-Amiri A (2017) A multi-objective sustainable hub location-scheduling problem for 
perishable food supply chain. Comput Ind Eng 113:766–778

Oke O, Siddiqui S (2015) Efficient automated schematic map drawing using multiobjective mixed integer 
programming. Comput Oper Res 61:1–17

Paul NR, Lunday BJ, Nurre SG (2017) A multiobjective, maximal conditional covering location problem 
applied to the relocation of hierarchical emergency response facilities. Omega 66:147–158

Qiu R, Zhang H, Gao X, Zhou X, Guo Z, Liao Q, Liang Y (2019) A multi-scenario and multi-objective 
scheduling optimization model for liquefied light hydrocarbon pipeline system. Chem Eng Res Des 
141:566–579

Rabbani M, Saravi NA, Farrokhi-Asl H, Lim SFW, Tahaei Z (2018) Developing a sustainable supply 
chain optimization model for switchgrass-based bioenergy production: a case study. J Clean Prod 
200:827–843

Rahimi Y, Torabi SA, Tavakkoli-Moghaddam R (2019) A new robust-possibilistic reliable hub protection 
model with elastic demands and backup hubs under risk. Eng Appl Artif Intell 86:68–82



1331

1 3

A robust augmented ε‑constraint method (AUGMECON‑R) for finding…

Rayat F, Musavi M, Bozorgi-Amiri A (2017) Bi-objective reliable location-inventory-routing problem 
with partial backordering under disruption risks: a modified AMOSA approach. Appl Soft Comput 
59:622–643

Razm S, Nickel S, Sahebi H (2019) A multi-objective mathematical model to redesign of global sustain-
able bioenergy supply network. Comput Chem Eng 128:1–20

Resat HG, Turkay M (2015) Design and operation of intermodal transportation network in the Marmara 
region of Turkey. Transp Res Part E Logist Transp Rev 83:16–33

Resat HG, Unsal B (2019) A novel multi-objective optimization approach for sustainable supply chain: a 
case study in packaging industry. Sustain Prod Consump 20:29–39

Roshan M, Tavakkoli-Moghaddam R, Rahimi Y (2019) A two-stage approach to agile pharmaceutical 
supply chain management with product substitutability in crises. Comput Chem Eng 127:200–217

Saedinia R, Vahdani B, Etebari F, Nadjafi BA (2019) Robust gasoline closed loop supply chain design 
with redistricting, service sharing and intra-district service transfer. Transp Res Part E Logist Transp 
Rev 123:121–141

Şakar CT, Köksalan M (2013) A stochastic programming approach to multicriteria portfolio optimiza-
tion. J Glob Optim 57(2):299–314

Sazvar Z, Rahmani M, Govindan K (2018) A sustainable supply chain for organic, conventional agro-
food products: The role of demand substitution, climate change and public health. J Clean Prod 
194:564–583

Schaeffer SE, Cruz-Reyes L (2016) Static R&D project portfolio selection in public organizations. Decis 
Support Syst 84:53–63

Sedighizadeh M, Esmaili M, Mohammadkhani N (2018) Stochastic multi-objective energy manage-
ment in residential microgrids with combined cooling, heating, and power units considering battery 
energy storage systems and plug-in hybrid electric vehicles. J Clean Prod 195:301–317

Shah R, Reed P (2011) Comparative analysis of multiobjective evolutionary algorithms for random 
and correlated instances of multiobjective d-dimensional knapsack problems. Eur J Oper Res 
211(3):466–479

Shekarian M, Nooraie SVR, Parast MM (2019) An examination of the impact of flexibility and agility on 
mitigating supply chain disruptions. Int J Prod Econ

Sylva J, Crema A (2007) A method for finding well-dispersed subsets of non-dominated vectors for mul-
tiple objective mixed integer linear programs. Eur J Oper Res 180(3):1011–1027

Tartibu LK, Sun BOHUA, Kaunda MAE (2015) Optimal design study of thermoacoustic regenerator 
with lexicographic optimization method. J Eng Des Technol 13(3):499–519

Torabi SA, Hamedi M, Ashayeri J (2013) A new optimization approach for nozzle selection and compo-
nent allocation in multi-head beam-type SMD placement machines. J Manuf Syst 32(4):700–714

Vafaeenezhad T, Tavakkoli-Moghaddam R, Cheikhrouhou N (2019). Multi-objective mathematical mod-
eling for sustainable supply chain management in the paper industry. Comput Ind Eng

Van de Ven DJ, Sampedro J, Johnson FX, Bailis R, Forouli A, Nikas A, Doukas H (2019) Integrated 
policy assessment and optimisation over multiple sustainable development goals in Eastern Africa. 
Environ Res Lett 14(9):094001

Vieira M, Pinto-Varela T, Barbosa-Póvoa AP (2017) Production and maintenance planning optimisation 
in biopharmaceutical processes under performance decay using a continuous-time formulation: A 
multi-objective approach. Comput Chem Eng 107:111–139

Wang S, Wang X, Yu J, Ma S, Liu M (2018) Bi-objective identical parallel machine scheduling to mini-
mize total energy consumption and makespan. J Clean Prod 193:424–440

Wiedemann P (1978) Planning with multiple objectives. Omega 6(5):427–432
Witting K, Ober-Blöbaum S, Dellnitz M (2013) A variational approach to define robustness for paramet-

ric multiobjective optimization problems. J Global Optim 57(2):331–345
Xidonas P, Mavrotas G, Psarras J (2010) Equity portfolio construction and selection using multiobjective 

mathematical programming. J Glob Optim 47(2):185–209
Xidonas P, Mavrotas G, Zopounidis C, Psarras J (2011) IPSSIS: An integrated multicriteria decision sup-

port system for equity portfolio construction and selection. Eur J Oper Res 210(2):398–409
Xin S, Liang Y, Zhou X, Li W, Zhang J, Song X, Zhang H (2019) A two-stage strategy for the pump opti-

mal scheduling of refined products pipelines. Chem Eng Res Des 152:1–19
Xiong B, Chen H, An Q, Wu J (2019) A multi-objective distance friction minimization model for perfor-

mance assessment through data envelopment analysis. Eur J Oper Res
Yu L, Zhang C, Yang H, Miao L (2018) Novel methods for resource allocation in humanitarian logistics 

considering human suffering. Comput Ind Eng 119:1–20



1332	 A. Nikas et al.

1 3

Zhang W, Reimann M (2014) A simple augmented∊-constraint method for multi-objective mathematical 
integer programming problems. Eur J Oper Res 234(1):15–24

Zhang Y, Masuku CM, Biegler LT (2019) An MPCC reactive distillation optimization model for multi-
objective Fischer-Tropsch synthesis. Comput Aided Chem Eng 46:451–456

Zhou L, Geng N, Jiang Z, Wang X (2018) Multi-objective capacity allocation of hospital wards combin-
ing revenue and equity. Omega 81:220–233

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems
	Abstract
	1 Introduction
	2 A brief overview of the augmented ε-constraint method
	3 Augmecon-r
	3.1 Motivation
	3.2 An improved search algorithm
	3.3 Source code

	4 Comparative analysis and discussion
	4.1 Reference benchmark problems
	4.2 Complex benchmark problems

	5 Conclusions
	Acknowledgements 
	References




