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Abstract
In this paper we propose a fuzzy neural network prediction approach based on 
metaheuristics for container flow forecasting. The approach uses fuzzy if–then rules 
for selection between two different heuristics for developing neural network archi-
tecture, simulated annealing and genetic algorithm, respectively. These non-para-
metric models are compared with traditional parametric ARIMA technique. Time 
series composed from monthly container traffic observations for Port of Barcelona 
are used for model developing and testing. Models are compared based on the most 
important criteria for performance evaluation and for each of the data sets (total con-
tainer traffic, loaded, unloaded, transit and empty) the appropriate model is selected.

Keywords Neural networks · Simulated annealing · Genetic algorithm · ARIMA · 
Container · Forecasting

1 Introduction

The aim of this paper is to emphasize the importance of container flow forecasting 
and provide a comprehensive tool for that purpose. Container manipulation process 
in terminals is characterized by high uncertainty which influences on regularity of 
intermodal transport service. Therefore, in order to reduce this uncertainty and to 
improve efficiency of intermodal transport service, forecasts of container through-
put in terminals are required. Forecasting of container throughput represents an 
essential component of planning and control in port intermodal terminals. The accu-
racy of predicting container flow volume contributes to higher utilisation of assets, 
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increased reliability and flexibility, lower lead time and costs of intermodal transport 
chain. Forecasting of future throughput is also important for planning the develop-
ment of terminal infrastructure.

There are numerous forecasting techniques which are applicable to container 
throughput forecasting. In the context of this paper, all techniques may be classi-
fied in those handling only linear time series data and advanced methods capable 
to model complex nonlinear relationships. Time series models and causal analysis 
models generate accurate performances only in case of linear or near linear container 
flow time series. On the other side, Artificial Neural Networks (ANNs) can handle 
complex patterns and generate models which adequately reflect nonlinear relation-
ships. In case of ANNs, there is no need to define an explicit model form. Model 
is adaptively determined based on the characteristics of the time series. However, 
potential issues in developing an efficient ANN structure may arise in determining 
an optimal set of ANN input variables and number of neurons in hidden layer. This 
limitation motivated authors to look for an improved container throughput forecast-
ing methodology. Therefore, in this paper we propose a hybrid methodology for 
developing an optimal ANN architecture for the container throughput in port ter-
minals. Two well-known global search heuristic methods are used for developing a 
neural network (NN) architecture, genetic algorithm (GA) and differential simulated 
annealing (SA) algorithm, respectively. Both methods use if–then rules for selecting 
the optimal NN architecture based on their performances.

Comparisons of proposed approaches, with each other and with traditional 
ARIMA method, are performed on a case study of Port of Barcelona. Performances 
were evaluated according to various metrics independently for total container traffic, 
volume of loaded, unloaded, transit and empty containers. At the time of our analy-
sis a time series of monthly container throughput observations from January 2010 to 
December 2016 (84 months) were available.

Paper is organised as follows. Section 2 contains a comprehensive analysis of rel-
evant literature. Section 3 describes the methodology used in the container flow time 
series modelling and forecasting. In Sect. 4 proposed models have been tested on 
five different time series related to total, transit, loaded, unloaded and empty con-
tainer flows of Port of Barcelona. To investigate the performance of the proposed 
approaches, Sect. 4 compares the results obtained by the proposed neural network 
based approaches and ARIMA. Concluding remarks and future research directions 
are given in the last section.

2  Literature overview

Due to the importance of container ports for economy and of container through-
put forecasting for efficient terminal management and intermodal transport chain 
planning many research efforts related to container flow forecasting were published 
in literature. Forecasting approaches for container throughput modeling can be 
categorized in: time series models, causal analysis models and nonlinear dynam-
ics forecasting models. Time series models that are based on establishing a mathe-
matical model only by historical throughput data, include Autoregressive Integrated 
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Moving Average (ARIMA) model (Box et al. 2008), exponential smoothing model 
(Schulze and Prinz 2009; Diaz et al. 2011), grey model (Liu et al. 2007; Peng and 
Chu 2009) and decomposition approach (X-11) (Chen and Chen 2010). In causal 
analysis models correlation between container flows and a set of explanatory vari-
ables is evaluated and the forecasting model is built based on relevant explanatory 
variables (Seabrooke et al. 2003; Hui et al. 2004). In contrast to these two classes, 
nonlinear dynamics forecasting models, such as Artificial Neural Networks (ANNs) 
or ANFIS method (Atsalakis and Valavanis 2008, 2009; Atsalakis et al. 2011; Lam 
et al. 2006; Lingras et al. 2000; Vlahogianni et al. 2004, 2005) represent data driven, 
self-adaptive methods which learn from examples and capture functional relation-
ships within the time series even if the underlying relationships are complicated to 
describe (Zhang et  al. 1998; Wei and Chen 2012). Remaining part of this section 
is dedicated to more detailed description of the relevant approaches related to con-
tainer throughput forecasting. Fung (2002) provided a systematic approach to fore-
cast the demand for Hong Kong container handling services. Author compared fore-
casting results of developed structural error correction model (SECM) and forecasts 
published by the Hong Kong Port and Maritime Board (PMB) and found out that the 
resulting forecasts were more accurate than that reported by government authority. 
Seabrooke et al. (2003) use regression analysis for predicting cargo growth and the 
development of the port of Hong Kong. Factors affected cargo throughput in Hong 
Kong are identified, qualitatively evaluated and then entered into forecast model. 
Hui et al. (2004) forecast Hong Kong’s port cargo throughput by estimating a coin-
tegrated error correction model, which addressed the non-stationary issue and the 
reliability difficulty of Port and Maritime Board’s simple regression model.

Lam et  al. (2004) proposed a neural network approach for forecasting port 
cargo throughput in Hong Kong. Results of the developed approach were com-
pared with regression analysis and it was concluded that neural network model 
significantly outperforms the regression model. In his Ph.D. dissertation Chou 
(2004) applied the graded multiple integrals representation method to model the 
total import and export container volume for ports in Taiwan. Liu et  al. (2007) 
applied a grey prediction model and a cubic polynomial curve prediction model 
combined with radial basis neural network to predict the port container through-
put. Results have shown that combined forecast methods produced more accu-
rate predictions than the simplex method. Chou et  al. (2008) proposed a modi-
fied regression model for forecasting the volumes of Taiwan’s import containers. 
Authors compared developed model with the traditional regression model and 
found out that the modified regression model exhibits higher prediction accuracy. 
Peng and Chu (2009) compared six univariate forecasting models in order to find 
the most accurate prediction of container throughput. Authors compared classical 
decomposition model, the trigonometric regression model, the regression model 
with seasonal dummy variables, the grey and hybrid grey model and the seasonal 
ARIMA (SARIMA) model. Based on performance measures authors have found 
that the classical decomposition model appears to be the best model for forecast-
ing container throughput with seasonal variations. Schulze and Prinz (2009) con-
sidered container transshipment at German ports using the SARIMA model and 
the Holt–Winters exponential smoothing approach for forecasting the quarterly 
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data of the German container transshipment. Different models are identified and 
tested for the whole German container throughput and for the throughput with 
destinations Asia, Europe and North America. Comparisons of predictive per-
formances have shown that SARIMA models perform slightly better than the 
Holt–Winter approach. Hui et al. (2010) proposed a nonlinear multivariate regres-
sion model for port throughput modeling. The model specified demonstrates 
high exploratory ability. Chen and Chen (2010) developed an optimal predictive 
model of volumes of container throughput at ports by using genetic program-
ming, decomposition approach and SARIMA models. Validation of models has 
been performed on a historical data from Taiwan’s major ports and results sug-
gest that genetic programming is the optimal method for this case. Thirty-seven 
ANN models were built to model thirty-seven types of freight movement. Com-
parison results have shown that neural network models outperform the regression 
model applied by Port and Maritime Board. Zhang and Cui (2011) built a com-
bination forecast model based on Elman neural network for forecasting the con-
tainer throughput. Empirical analysis based on container flows in Shanhai port, 
demonstrates the accuracy of developed model. Diaz et al. (2011) evaluated Win-
ters, Toiga group and United Nations methods for forecasting empty container 
volumes at container ports. Forecasting abilities of the three methods were tested 
in forecasting empty container volumes for the US container ports—Port of Long 
Beach, Port of Los Angeles and Port of Savannah. The evaluations found that the 
Winters method is a more accurate forecaster of empty container volumes than 
Toiga group and United Nations methods. Xie et al. (2013) combined traditional 
SARIMA, classical decomposition (CD) and structural decomposition (SD) 
methods with advanced least square support vector regression (LSSVR) model 
and proposed: SARIMA-LSSVR, SD-LSSVR and CD-LSSVR. In order to verify 
the effectiveness of the proposed hybrid approaches authors used the time series 
of container throughput at Shanghai Port and Shenzen Port. The proposed hybrid 
approaches were compared with each other and with individual approaches and 
the results suggested that they can achieve better forecasting performance. Huang 
et  al. (2015) proposed a hybrid forecasting model combining projection pursuit 
regression (PPR) and genetic programming algorithm for forecasting container 
throughput in Qingdao Port. Results have shown that the proposed model sig-
nificantly outperforms ANN, SARIMA and PPR models. Xiao et al. (2014) pro-
posed a transfer forecasting model guided by discrete particle swarm optimiza-
tion algorithm (TF-DPSO). Proposed model was tested on container throughput 
time series of Shanghai Port and Ningbo Port in China and the results have 
shown the effectiveness of proposed model. The model outperforms traditional 
analog complexing (AC) model, ARIMA modela and Elman network (ENN) 
model. Gao et  al. (2016) demonstrated the application of six commonly used 
criteria for model selection (AIC, BIC, HQC, Cp, LooCu and soCV) and com-
pared six frequentist model averaging (FMA) methods (S-AIC, S-BIC, S-HQC, 
JMA, LsoMA and AFTER) for monthly container port throughput forecasting. 
Results have shown that the LsoMA method is the best in the sense of achieving 
the lowest average of mean squared forecast errors. Moscoso-Lopez et al. (2016) 
proposed and compared different approaches based on artificial neural networks 
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and support vector machines for modeling the Ro–Ro transport flows. The perfor-
mance of the models is evaluated on real data from Ro–Ro freight transportation 
in the Port of Algeciras Bay. It was concluded that the values obtained with the 
SVM models are fitted better with the observed values than the values obtained 
with ANNs. Pang and Gebka (2017) proposed a novel approach for forecasting 
the total port container throughput. In place of forecasting the total throughput 
directly they suggested to utilize data from individual port´s terminals, both indi-
vidually and with account for interdependencies between terminals throughputs 
to obtain the aggregate total port´s throughput. Authors forecasted the demand for 
total container throughput at the Indonesia´s largest seaport employing SARIMA, 
the additive and multiplicative seasonal Holt–Winters (MSHW) and vector error 
correction model (VECM). MSHW model generated the most accurate forecasts 
of total container throughput whereas VECM provided the best model fits and 
forecasts for individual terminals. Twrdy and Batista (2016) applied a set of 
dynamic models to forecast container throughput in the North Adriatic ports of 
Koper, Trieste, Venice, Ravenna and Rijeka. Models applied are Markov-chain 
annual growth rate model, a time series trend model with periodical terms and 
the gray system model. Lee et al. (2017) provided a practical approach for esti-
mating the market share and cargo volume through the seaports in South Korea. 
Proposed approach based on a combining a port choice and ARIMA model and 
tested under various port development scenarios demonstrates practical usability.

Xie et al. (2017) proposed a procedure of data characteristic analysis (DCA) and 
model selection within a decomposition-ensemble methodology which includes 
data decomposition, DCA of components, individual prediction and ensemble pre-
diction. Based on the time series of container throughput at the Port of Singapore 
and the Port of Los Angeles the proposed approaches are illustrated and empirically 
compared with selected benchmark methods. Mo et  al. (2018) proposed a hybrid 
forecasting model based on decomposition the container throughput time series into 
linear and nonlinear parts. The linear part is predicted by the SARIMA model. The 
model adopts three nonlinear single models, Support Vector Regression (SVR), 
Back Propagation (BP) neural network and Genetic Programming (GP) to predict 
the residual subseries. Then the model establishes selective combination by the 
improved Group Method of Data Handling (GMDH) neural network on the non-
linear subseries and obtains its combination forecasting results. The predictions of 
two parts, linear and nonlinear are integrated to obtain the forecasting results of the 
original container throughput time series. Niu et  al. (2018) built a hybrid decom-
position-ensemble model named VMD–ARIMA–HGWO–SVR for the purpose of 
improving the stability and accuracy of container throughput prediction. Variational 
mode decomposition (VMD) algorithm is employed to decompose original series 
in several modes, ARIMA models are built to forecast the low frequency compo-
nents and the high frequency components are predicted by Support Vector Regres-
sion (SVR) which are optimized by hybridizing grey wolf optimization (HGWO). 
Historical container throughput data of Singapore port and Shanghai port are used 
for experimental simulations.

Based on detailed and comprehensive review of literature we may draw following 
conclusions:
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• The problem of container flow estimation and forecasting represents a very 
important problem that may have significant implications on a broad set of 
actions within the port and also the port hinterland.

• The significance of the problem implied the development and testing a huge 
diversity of various techniques (parametric as well as non-parametric) for con-
tainer flow assessment and prediction. Among the parametric techniques some 
researches (Peng and Chu 2009; Schulze and Prinz 2009) demonstrated the supe-
riority of ARIMA (SARIMA) models, and that was the reason for selecting this 
kind of models as a benchmark against the developed technique. On the other 
side, some other research papers (like Tsai and Huang (2015) and Gosasang et al. 
(2011) for example) clearly emphasized the potential of neural networks for con-
tainer throughput modelling which motivated authors to consider the possibility 
for improvement of existing ANN based container flow modelling approaches.

• However, all ANN based past research efforts (in the domain of container flow 
forecasting) treat the construction of neural network structure without finding the 
optimal neural architecture. Standard multi-layer ANNs are assumed with prede-
fined functional form and time consuming experiments with alternative architec-
tures are usually performed. This may lead to inappropriately designed network 
structure. Networks smaller than needed would be unable to learn, on the other 
side, networks larger than needed would probably end in over fitting the training 
samples. Therefore, determining an appropriate architecture of ANN for a par-
ticular problem is an important issue since the network topology directly affects 
its computational complexity and its generalization capability.

Based on these research findings we proposed a new and comprehensive meth-
odology for port container flow forecasting (which also can be used on other traf-
fic flow forecasting problems). Novelty is reflected in the fact, that as far as the 
knowledge of the authors goes, none of the existing literature has investigated and 
developed a new general framework for container throughput forecasting based on 
a fuzzy ANN (FANN) combined with metaheuristic algorithms. Therefore, in order 
to overcome the difficulty in ANN design architecture, and to make container flow 
forecasting more accurate, we hybridized FANN, with two very known metaheuris-
tics, genetic algorithms and simulated annealing, respectively. Comprehensiveness 
of this approach is based on separate analysis, assessment and forecasting of total, 
loaded, unloaded, empty and transit container flows which generates a more detailed 
input to the port managers as a support for solving a diversity of decision making 
problems.

3  Methodology

This research evaluates two methods to evolve neural networks architectures, 
one carried out with genetic algorithm (GA) and second one carried out with 
differential simulated annealing (SA) algorithm (Michalewicz and Fogel 2000; 
Wu et al. 2008; Soares et al. 2013). Work in this area demonstrated that apply-
ing evolutionary optimization and simulated annealing can replace trial and error 
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methods to determine optimal ANN architecture and increase the speed, accu-
racy and efficiency of the training phase. Sexton et al. (1999) proposed simulated 
annealing and genetic algorithm for optimizing neural networks and compared 
their performances. According to the results of their research genetic algorithm 
is superior to simulated annealing for optimizing neural networks. Blanco et al. 
(2000) and Abdalla et al. (2014) applied GA for determining the optimal architec-
ture and minimum number of required neurons in the ANN. Arifovic and Gencay 
(2001) used GA to determine the optimal ANN structure. Liao and Tsao (2006) 
proposed the chaos search genetic algorithm and simulated annealing method to 
tune the parameters of fuzzy neural networks for power-system load forecasting. 
The results of the research of Kaviani and MirRokni (2017) showed that the GA 
based approach for determining optimal state of ANN architecture may lead to 
increased speed, accuracy and efficiency of the training. Ghasemiyeh et al. (2017) 
proposed hybrid ANN models and metaheuristic algorithms to predict prices on 
stock exchange. According to statistical performances particle swarm optimiza-
tion was a dominant metaheuristic approach that produced the best ANN archi-
tecture. Inspired by these research efforts we proposed a hybrid fuzzy ANN 
approach for container throughput volume forecasting. The approach is described 
in Sect.  3.1. Developed approach is compared with traditional ARIMA models 
which are briefly described in Sect. 3.2. Flow chart on Fig. 1 summarizes meth-
odology applied in this paper. Alternative models are tested on a training data 
sample and their optimal configurations are chosen and compared on a test data 
sample. Fuzzy neural networks based metaheuristics include model initialization 
(expert knowledge matrix design), candidate models identification (neural fuzzy 
prediction network) and evaluation of candidate models (best network selected 
by GA-FANN or SA-FANN). Model which has the best performances for con-
sidered time series can be used for forecasting of container flow throughput in 
next period. ARIMA modelling follows Box and Jenkins methodology (Box et al. 
2008) that includes model identification, estimation of parameters and model 
validation.

Fig. 1  Comparative analysis of ARIMA, GA-FANN and SA-FANN methods for container flow model-
ling
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3.1  Fuzzy neural network based metaheuristics for time series analysis

3.1.1  Artificial neural networks and fuzzy neural networks

(a) Artificial neural networks

Artificial Neural Networks (ANNs) represent computer programs whose main 
purpose is to simulate the way in which human brain processes information. ANNs 
learn (or are trained) through experience with appropriate learning exemplars and 
gather their knowledge by detecting the patterns and relationships in data (Aga-
tonovic and Beresford 2000). ANNs are composed from simple interconnected pro-
cessing elements, known as neurons under a defined topology or layers. Each neu-
ron is connected to its neighbors with varying coefficients called weights in which 
the knowledge of ANN is stored (Ghasemiyeh et  al. 2017). Neural networks can 
automatically adjust their weights to optimize their behavior as pattern recognizers, 
decision makers, system controllers, predictors, etc. Adaptivity allows the neural 
network to perform well even when the environment or the system being controlled 
varies over time. Besides their good capability in pattern recognition, ANNs have a 
limitation reflected mainly in explaining how they reach their decisions. In order to 
overcome this limitation, we combined ANNs with fuzzy logic.

(b) Fuzzy neural networks

Fuzzy artificial neural networks (FANNs) represent a layered, feedforward net-
work that handles fuzzy set signals and/or has fuzzy set weights. FANNs implement 
fuzzy if–then conditional statements in a constructive way. Though they cannot 
use the standard error back propagation algorithm for learning directly, they can be 
trained by steepest descent methods to learn the parameters of the membership func-
tions which represent the linguistic terms in the rules (Herrera and Martinez 2000; 
Kosko 1992). In this paper a regular fuzzy neural network was used. It represents a 
neural network with fuzzy signals and sigmoidal transfer function. All operations 
are defined by Zadeh’s extension principle (Zadeh 1965). The fuzzy neural net con-
sidered in this paper is presented in Fig. 2.

It is a one hidden layer network with constant structure of input and output layers. 
Input layer contains a number of neurons (p) that corresponds to realized container 
flow (daily, monthly) observations in considered time series (total, transit, loaded, 
unloaded, empty), say period t − p to period t − 1 . The output layer contains a single 
neuron which represents the container flows in period t . The approach applied in 
this paper is based on utilization of fuzzy if–then rules for learning of neural net-
works. The learning algorithm is summarized as follows (the details can be found in 
Ishibuchi et al. 1993a, b, c):

Each input  xi interacts with the weight  wi to produce the product  Pi = wixi, 
i = 1,…,n where we use the extension principle to compute  Pi. The input information 
 Pi is aggregated, by standard extended addition, to produce the input:
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to the neuron. The neuron uses its transfer function f, which is a sigmoidal function, 
to compute the output:

where f is a sigmoidal function. The membership function of the output fuzzy set y is 
computed by the extension principle. This approach uses following fuzzy fuzzy rules:

Given some data on x, say A′, the fuzzy expert system comes up with its final 
conclusion y is B′. Let’s define [α1, α2] that contains the support of all the  Ai, plus 
the support of all the A′ we might have as input to the system. Also, let’s assume that 
[β1, β2] contains the support of all the  Bi, plus the support of all the B′ that we can 
obtain as outputs from the system. Let M ≥ 2 and N ≥ M be positive integers. Then,

for 1 ≤ j ≤ M , and

for 1 ≤ i ≤ N . The exact version of the system (Ishibuchi et  al. 1993a, b, c, 
1994) is obtained by defuzzification of B�(i), i = 1,… , N to obtain output 
b� = (B�(y1),… , B�(yN)) for every input

(1)net = P1 +⋯ + Pn = w1 x1 +⋯ + wn xn

(2)y = f(net) = f(w1 x1 +⋯ + wn xn)

(3)Ri ∶ if x is Ai then y is Bi, 1 ≤ i ≤ n

(4)xj = α1 + (j − 1)(α2 − α1)∕(M − 1)

(5)yi = β1 + (i − 1)(β2 − β1)∕(N − 1)

Fig. 2  Simple regular fuzzy neural net
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In order to improve computational performance of proposed FANNs, genetic algo-
rithm and simulated annealing, as the main representatives of multi-point search-
ing methods are applied for more accurate learning the relations of fuzzy inputs and 
outputs.

3.1.2  Genetic algorithm

Genetic algorithm (GA) represents a stochastic global search technique that solves 
problems by imitating the processes observed during natural evolution (Ghasemiyeh 
et al. 2017). It decreases the effect of original values greatly through crossover and 
mutation operations, and it can easily find the global optimal results (Donate et al. 
2011). With genetic algorithm, a population of candidate solutions (called individu-
als or phenotypes) to an optimization problem is continuously evolving toward bet-
ter solutions. Each candidate solution has a set of properties (its chromosomes or 
genotype) which can be mutated and altered. Traditionally, solutions are represented 
in binary form as strings of 0 s and 1 s, however, other encodings are also possible. 
The evolution usually starts from a population of randomly generated individuals and 
is an iterative process, with the population in each iteration called a generation. In 
each generation, the fitness of every individual in the population is evaluated. The fit-
ness is usually the value of the objective function in the optimization problem being 
solved. The more fit individuals are stochastically selected from the current popula-
tion, and each individual’s genome is modified (recombined and possibly randomly 
mutated) to form a new generation. The new generation of candidate solutions is 
then used in the next iteration of the algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations has been reached, or a satisfactory 
fitness level has been obtained for the population (Ghosh et al. 2005; Yan 2012; Glis-
ovic et al. 2015).

In this paper, we applied GA in order to determine the optimal architecture of fuzzy 
neural network. The main string (as the set of genes which represent one individual or 
number of neurons in case of this application) is composed of binary substrings which 
correspond to the neurons in hidden layer. All models from the training set are succes-
sively conveyed to the neural network input (Denai et al. 2007). The response of the 
neural network to the input data is calculated and the difference between the actual and 
the desired value of forecasted container flow is used to evaluate the error function over 
all models. This error represents the chromosome quality. GA parameters (mutation, 
fitness function and crossover) were varied in order to generate optimal values. The 
uniform crossing is used—every bit of descendants is with the probability 0.7 taken 
from one of the parents. Probability mutation is 0.05. One-point crossover was used 
(MacKay 2003). Pseudo code of GA-FANN algorithm developed for the purpose of 
container flow forecasting looks as follows:

(6)a� = (A�(x1),… , A�(xM))
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For given GA parameters, the initial ANN architecture is developed. Then the 
phasification is performed and thus obtained netPit for the network defined on the 
randomly selected input data belonging to a particular node to the hidden layer. 
netCit represents a new population obtained from old population according netPit 
according to their fitness.

3.1.3  Simulated annealing

Simulated Annealing (SA) algorithm represents a heuristic search algorithm which 
is widely used in a variety of combinatorial optimization problems (Szu and Hartley 
1987; Lee et al. 2008). SA algorithm mimics the solid cooling process. It begins in a 
high initial temperature T and gradually decreased, to optimize the results by itera-
tion (Chibante 2010). Updated conditions during the optimization process for the 
solution is the objective function whose value is better than the original value.

A measure of network performance is given by the “energy” as follows:

tj is the target output value, Oj is predicted value. The weight accepts the change with 
probability:

if Enew > Eold , and with probability P = 1 if the change decreases the energy. The 
parameter T is initially set at some relatively large value, and then decreased accord-
ing to the prescription:

after a fixed number of sweeps Nsw.
When the temperature T is set to zero from the start, the annealing algorithm 

reduces to a kind of iterated improvement. Changes in the network are accepted 
only if they decrease the energy, otherwise the network remains unchanged. In 

(7)E =
∑

j

[
tj − Oj

]2

(8)P = exp
[
−(Enew − Eold)∕T

]

(9)T → γT, γ < 1

If NetPn are parent chromosomes and netCn are daughter chromosomes at the nth iteration then 
pseudo GA-FANN is: 

Initialize iteration it=0; 
Specify the initial value of netPit; 
Estimate netPit using the fitness function; 
while not ( termination conditions) do 
{
 Cross netPit to produce netCit; 
 Mutate netCit; 
 Estimate netCit using the fitness function; 
 Select netPit+1 from netPit and netCit; 
 it= it+1; 
}
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this research cooling parameter is γ = 0.9 and the starting temperature is T0 = 100 
(Chibante 2010).

While simulated annealing is slower than other training algorithms, it outper-
forms greedy methods and remains popular when minimum error in the trained 
network is critical. SA algorithm serves as an alternative way to GA for devel-
oping an optimal FANN architecture. In case of this algorithm, every change of 
number of neurons in hidden layer has been executed separately. Current solu-
tion represents a random combination of input neurons or past observations of 
container flows) which are used for hidden layer/neurons. The basic idea of the 
method is to generate a random neural network configuration (trial point) itera-
tively through perturbation, and evaluate the objective function and the con-
straints after determining the state variables by using the simulator. The method 
uses temperature and other annealing parameters by trial and error to attain 
near-optimal solutions. Pseudo code of developed SA-FANN algorithm looks as 
follows:

Initialize a vector Woldof the weights of the Neural Network 
Fopt = F(Wopt) 
T= Tmax 
Tmin, iter = 0, maxIter 
while(T>Tmin) { 

while(iter<maxIter){ 
Wnew = newOf (Wold ) 
if( f=F(Wnew)-F(Wold)<0) then{ 

If(F(Wnew)>F(Wold)) then{ 
Wold=Wnew 
actualize Fold 

} 
} else 

If( new oldE E> )then 

P=1 
else 
{ 

[ ]new oldP exp (E E ) / T= − −
Wold = Wnew 

} 
} T=T* γ

} 

∆

For given SA parameters, the initialization of ANN parameters (architectures) 
is performed. After that the phasification follows and thus the netPit is obtained 
for the network defined on the randomly selected input data belonging to a par-
ticular node to the hidden layer. Wold represents the weights of netPit.



977

1 3

Container flow forecasting through neural networks based…

3.2  ARIMA and SARIMA models

ARIMA method represents one of the most popular parametric univariate time 
series modelling techniques. It is composed from Auto Regressive (AR) model, 
Moving Average (MA) model and combination of AR and MA, ARMA models 
(Suhartono 2011). AR model includes lagged terms on the time series itself and 
MA model includes lagged terms on the noise or residuals (Milenkovic et  al. 
2016). For applying the ARIMA models, it is required that the time series data to 
be stationary or can be differenced to make them stationary. The letter “I” (Inte-
grated) means that the first order difference is applied in order to make the given 
time series stationary.

The equation representing an ARIMA(p, d, q) model for time sequence  Yt can 
be expressed as:

where p is the order of AR process, d is the order of differencing and q is the order 
of MA process. εt is a white noise sequence assumed to be normal random variable 
with zero mean and variance σ2 . B is the backshift operator, whose effect on a time 
series  Yt can be summarized as Bd Yt = Yt−d . By extending the ARIMA model to 
incorporate seasonal variation in time series a SARIMA model is obtained that can 
be formulated as follows (Smith et al. 2002):

Notation is represented by SARIMA(p, d, q) × (P,D,Q)s where Φ and Θ are the 
seasonal ARMA coefficients and seasonal differencing operator (1 − Bs)D of order 
D is used to eliminate seasonal patterns.

Fitting the ARIMA and SARIMA models involves model identification, esti-
mation of parameters and validation (Box et al. 2008; Ruiz-Aguilar et al. 2014; 
Taskaya-Temizel and Casey 2005). By analyzing the behavior of the autocor-
relation function (ACF) and partial autocorrelation function (PACF) appropri-
ate model can be identified. To cope with subjectivity present in this step and 
to improve the determination of the final orders of the ARMA, Akaike Informa-
tion Criteria (AIC), Bayesian Information Criterion (BIC) and normalized ver-
sion of BIC have been used. Estimation step includes fitting the model to the time 
series and estimation of parameters. This is done by using the conditional sum 
of squares or maximum likelihood method. The last step, validation of selected 
model, is performed within the diagnostic checking by analysis of stationarity, 
invertibility and the presence of redundancy in model parameters (Milenkovic 
et al. 2016).

(10)ϕp(B)(1 − B)d Yt = θq(B)εt

(11)ϕp(B)ΦP(B
s)(1 − B)d(1 − Bs)D Yt = θq(B)ΘQ(B

s)εt
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4  Application and results

Port of Barcelona (PoB) realized a cargo throughput of 48.6 million tons in 2016. 
Barcelona is after Valencia and Algeciras, the third largest container port in 
Spain. With a volume of 2.2 million TEU, Barcelona is ninth largest container 
port in Europe. The port handles four different types of cargo, of which containers 
is the most important with a share of more than 66%. The other main cargo types 
are liquid bulk, cars and dry bulk. Since this study focuses on the observation 
and prediction of 20 feet containers throughput time series, the historical data for 
this type of cargo is presented on Fig. 3. The time series data are obtained from 
website of PoB (Port of Barcelona 2017). The sample data are monthly observa-
tions of container throughput covering the period from January 2010 to Decem-
ber 2016 with a total of 84 observations. First 72 monthly observations are used 
as a training data set whereas the remaining 12 observations served for verifica-
tion the forecasting capability of selected models. All components of container 
traffic—transit, loaded, unloaded and empty, together with total container traffic 
were independently investigated and appropriate models estimated.

In this study, nonlinear SA-FANN and GA-FANN models are developed and 
compared with traditional linear ARIMA model are used for predicting the volume 
of container flows in Port of Barcelona. SA-FANN and GA-FANN are implemented 
in C# programming language. The parameters used by SA and GA for each of the 
time series are the same and are presented in Table 1. ARIMA is implemented by 
the use of R software package. Following sections present the forecasting results of 
applied methods.

Fig. 3  Time series of monthly container flows for Port of Barcelona (January 2010–December 2016)
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4.1  Total container flow

(a) SA-FANN and GA-FANN results

SA-FANN generates the best topology with 7 neurons in hidden layer whereas the 
SA-FANN has 9 neurons in middle layers (Table 2). Table 2 summarizes the results 
obtained by differing the number of neurons in the hidden layer for total container flow 
time series. The stopping criteria was the architecture of the network for which the 
respective errors were the smallest (bold values).

For the total container flow, and all the subsequent time series we have also con-
ducted sensitivity analysis. The analysis of model sensitivity can show that the sim-
ulation results are more sensitive to some parameters than others. This study uses a 
single-value sensitivity index to evaluate the effect degree of parameters of FANN on 
simulation results. The index is defined as:

(12)S =
O2 − O1

I2 − I1
⋅

Iave

Oave

Table 1  Parameter description Genetic algorithm parameters Simulated annealing  
parameters

Population size 500 Initial temperature 1000
Crossover probability 0.7 Cooling parameter 0.9
Mutation probability 0.05 Epoch length 500

Stopping condition (s) 10

Table 2  Varying number of neurons in hidden layer for total container flow

Neurons in mid-
dle layer

SA-FANN GA-FANN

MAE MAPE RMSE MAE MAPE RMSE

1 2464.27 1.35 3324.63 2700.84 1.48 4922.91
2 2547.5 1.39 3353.57 2244.67 1.25 2873.22
3 2630.83 1.44 3394.58 2328 1.3 2912.71
4 2380.33 1.3 3124.1 2449.67 1.38 3161.36
5 2234.58 1.22 3002.67 2283 1.29 3101.57
6 2151.25 1.18 2975.63 1949.67 1.11 2558.59
7 2072.5 1.15 2597.08 1933 1.1 2557.74
8 2119.75 1.16 2959.91 1902.17 1.09 2545.66
9 2177.25 1.19 3079.81 1749.17 0.98 2280.73
10 2260.58 1.24 3105.94 1885.5 1.08 2543.56
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where S is the sensitivity index; I1 and I2 are the smallest and the largest input val-
ues respectively; O1 and O2 are the model output values corresponding to I1 and 
I2 respectively; Iave and Oave are the average I1 and I2 and the average O1 and O2, 
respectively. The greater the absolute value of S, the greater the effect an input 
parameter has on a particular output.

Number of scenarios and comparison of different scenarios with various train-
ing times and scenarios with various learning velocities for total container flow 
time series are presented in Table 3. Table 3 shows the scenarios with different 
parameters of FANN for sensitivity analysis, 3 training times, 2 learning veloci-
ties. When using the base mentioned above, the R-square  (R2) is measured for 
parameter training and validation. The result shows that statistical models, such 
as FANN technique, can be a flexible tool for the prediction of container flows.

To identify the sensitivity of parameters, the sensitivity index sensitivity, 
Eq. (12), is useful, although this index cannot be applied for the scenarios with dif-
ferent transfer functions. Table 4 lists the values of sensitivity index for parameter 
“training times” and “learning velocity”. A higher sensitivity index value shows a 
higher sensitivity of these parameters for which it is counted. In this case the simula-
tion results shown are more sensitive to parameter “training times” than parameter 
“learning velocity”. It is significant to comprehend the parameters of FANN to mini-
mize waste of time in the process of parameter training. 

(b) ARIMA results

From the historical data for total container flow (Fig. 1) it can be observed that 
time series shows nonstationary character with strong seasonality pattern and 
increasing trend. Long term trend is proven by very sharp decrease of autocorrela-
tion values in first four lags (0.64, 0.51, 0.41, 0.30). Annual lag also reported sig-
nificant autocorrelation (0.24) which points on existence of seasonality (Fig. 2). For 
additional proving of seasonality, we applied TBATS estimation procedure for iden-
tifying and handling a variety of seasonal patterns which relies on a Trigonomet-
ric functions, Box–Cox transform, ARMA errors, Trend and Seasonal components 
(De Livera et al. 2010). Augmented Dickey Fuller (ADF) test also gives very high p 
value (0.8846).

Therefore, in order to eliminate trend and seasonal pattern, first lag difference and 
seasonal difference terms are included in model. ADF test of new time series gives p 
value equal to 0.01 which means that the new differenced and seasonally differenced 
time series is stationary. Based on these conclusions SARIMA(p, 1, q) × (P, 1, Q)12 

Table 3  Scenarios for sensitivity 
analysis

Parameters of FANN Numbers of  
scenarios

Scenarios

Training times 3 100, 300, 500
Learning velocity 2 0.01, 0.0001
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was selected as the basic structure of alternative SARIMA models. Among a num-
ber of alternative statistical models SARIMA(1, 1, 1) × (1, 1, 1)12 was chosen as the 
most appropriate with the lowest AICc of 1295.02 and Mean Absolute Percent Error 
(MAPE) of 4.64. 69.2% of the variance of time series was covered by this model 
(Table 5). No outliers were identified by fitting this model. The model has the fol-
lowing equation:

Diagnostic checks prove correct specification of SARIMA model. According to 
Ljung–Box Q-test and p value (Ljung–Box Q = 11.1 and p value = 0.80) residuals 

(13)
(1 − 0.22B)(1 − 0.14B12)(1 − B)(1 − B12)Yt = (1 + 0.62B)(1 + 0.99B12)εt

Table 4  Prediction accuracy analysis for different parameters of FANN in case of total container flow 
time series

Comparison of different scenarios with various training times 
and scenarios with various learning velocities

Sensitivity analysis by using  
sensitivity index

GA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.329162
 R2 (Parameter training) 0.87 0.87 0.91 Learning velocity 0.271981
 R2 (Parameter validation) 0.74 0.78 0.83
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.88 0.9 0.93
 R2 (Parameter validation) 0.87 0.88 0.9

SA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.301163
 R2 (Parameter training) 0.82 0.83 0.9 Learning velocity 0.259121
 R2 (Parameter validation) 0.67 0.68 0.8
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.85 0.89 0.9
 R2 (Parameter validation) 0.77 0.84 0.89

Table 5  Akaike Information 
Criterion with correction 
(AICc), mean absolute 
percentage error (MAPE) and 
stationary  R2 of SARIMA 
models for total container flow

Models MAPE AICc Stationary  R2

SARIMA(0, 1, 1) × (0, 1, 1)12 5.04 1295.51 0.63
SARIMA(0, 1, 1) × (0, 1, 0)12 6.38 1303.05 0.57
SARIMA(0, 1, 0) × (0, 1, 1)12 5.59 1296.25 0.60
SARIMA(1, 1, 1) × (0, 1, 1)12 4.99 1295.66 0.64
SARIMA(1, 1, 1) × (1, 1, 1)12 4.64 1295.02 0.69
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were white noise and therefore there is no significant autocorrelation between resid-
uals at different lag times.

We have also conducted an additional analysis. Namely, we applied the Box–Jen-
kins procedure on the whole data set. In this case SARIMA(0, 1, 1) × (0, 1, 2)12 was 
selected as the best model. It reported slightly lower AICc (1559.4) then 
SARIMA(1, 1, 1) × (1, 1, 1)12 in case of applying it on the whole data set 
(AICc = 1561.28).

4.2  Transit container flow

(a) SA-FANN and GA-FANN results

In case of transit container flows topology with best results has 6 neurons in the 
middle layers for SA-FANN whereas for GA-FANN it has 7 neurons in middle lay-
ers. Table 6 summarizes the results obtained by differing the number of neurons in 
the hidden layer for transit container flow time series. As in previous case, the stop-
ping criteria was the architecture of the network for which the respective errors were 
the smallest (bold values).

Values for each scenario and sensitivity (Table 2) for transit container flow time 
series are given in Table 7. In this case the simulation results shown are more sensi-
tive to parameter “training times” than to parameter “learning velocity”.

(b) ARIMA results

Historical data for transit container flow (Fig. 1) exhibit nonstationary charac-
ter without seasonality pattern. ADF test of differenced time series gives p value 
equal to 0.01 which means that the new time series is stationary. In this case 

Table 6  Varying number of neurons in hidden layer for transit container flow

Neurons in mid-
dle layer

SA-FANN GA-FANN

MAE MAPE RMSE MAE MAPE RMSE

1 1261 4.7 1755.83 1115.5 4.78 1353.44
2 1217.67 4.58 1743.45 1222.17 5.24 1480.3
3 1344.33 5.1 1834.65 1151.5 5.02 1456.24
4 1177.67 4.72 1613.88 1126.5 4.88 1445.24
5 1094.33 4.46 1538.65 1138.83 4.9 1361.17
6 1011 3.7 1342.18 946.33 4.17 1210.33
7 1269.33 5.03 1735.01 828.67 3.31 1096.11
8 1102.67 4.36 1410.41 863 3.83 1061.32
9 1019.33 3.96 1306.24 1160.33 5.05 1456.9
10 1077.67 4.09 1377.28 979.67 4.08 1302.67
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ARIMA(p, 1, q) was selected as the basic structure. Based on observations from 
correlograms, we started from ARIMA(1, 1, 2) model and compared it with simi-
lar configurations based on AICc criteria. The best model (lowest AICc) which 
shows also statistically insignificant evidence of non-zero autocorrelation in the 
residuals is ARIMA(2, 1, 2) model (Table 8):

Further, if we consider the presence of outliers in selected ARIMA model we 
may observe following four outliers: Three temporary change outliers (June 2010, 
December 2010 and December 2012) and an additive outlier (January 2011). 
Therefore, we implement a procedure described by Chen and Liu (1993) for 

(14)(1 − 0.66B + 0.61B2)(1 − B)Yt = (1 − 0.99B + 0.56B2)εt

Table 7  Prediction accuracy analysis for different parameters of FANN in case of transit container flow 
time series

Comparison of different scenarios with various training times 
and scenarios with various learning velocities

Sensitivity analysis by using  
sensitivity index

GA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.330122
 R2 (Parameter training) 0.86 0.87 0.9 Learning velocity 0.279989
 R2 (Parameter validation) 0.73 0.75 0.82
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.88 0.89 0.92
 R2 (Parameter validation) 0.86 0.87 0.9

SA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.319933
 R2 (Parameter training) 0.8 0.82 0.9 Learning velocity 0.26112
 R2 (Parameter validation) 0.61 0.67 0.79
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.86 0.9 0.91
 R2 (Parameter validation) 0.79 0.87 0.87

Table 8  Akaike Information 
Criterion with correction 
(AICc), mean absolute 
percentage error (MAPE) and 
stationary  R2 of SARIMA 
models for transit container flow

Models MAPE AICc Stationary  R2

ARIMA(1,1,2) 13.38 1429.99 0.79
ARIMA(2,1,1) 13.03 1426.14 0.80
ARIMA(1,1,1) 13.12 1429.13 0.78
ARIMA(2,1,2) 12.78 1426.08 0.81
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identifying the best ARIMA model taking into account presence of outliers. The 
procedure consists from two main stages:

• Detection of outliers upon a chosen ARIMA model;
• Selection and/or refit of ARIMA model including the outliers detected in the previ-

ous step and removing those outliers that are not significant in the new fit.

After a series of iterations, ARIMA(1, 1, 1) (AICc = 1362.35) is selected and the 
series is adjusted for the detected outliers. The model with explicitly incorporated out-
lier effects looks like follows:

Additionally, when we take the full data set for model estimation we obtain 
ARIMA(1, 1, 0) as the best model (AICc = 1596.4). In this case, following seven outli-
ers were detected: two level shift outliers (July 2010, March 2011), two additive outli-
ers (January 2011, July 2016), temporary change outlier (December 2012), two innova-
tional outliers (May 2016 and December 2016). The model has the following equation:

4.3  Loaded container flow

(a) SA-FANN and GA-FANN results

The results obtained by differing the number of neurons in the hidden layer for 
loaded container flow time series are given in Table 9. In case of SA-FANN topol-
ogy with the best results for loaded container flows has 10 neurons in the middle 
layer. GA-FANN produces best results with 9 neurons in the middle layers. Criteria 
for this selection were the minimum values of MAE, MAPE and RMSE (bold values 
in the Table 9). 

In next table the values for each scenario and sensitivity (Table  2) for tran-
sit loaded flow time series are given. The simulation results are more sensitive to 
parameter “training times” than to parameter “learning velocity” (Table 10).

(15)
Yt = 9892

1

1 − B
It(7) + 29353

1

1 − 0.7B
It(13) − 17251

1

1 − B
It(14)

+ 8710
1

1 − 0.7B
It(36) +

(1 + 0.62B)

(1 + 0.32B)(1 − B)
εt

(16)

Yt = 12336
1

1 − B
It(7) + 25733It(13) + 25855It(79) − 12964

1

1 − B
It(15)

+ 10382
1

1 − 0.7B
It(36) + 12094

1

(1 + 0.59B)(1 − B)
It(77)

+ 13755
1

(1 + 0.59B)(1 − B)
It(84) +

1

(1 + 0.59B)(1 − B)
εt
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(b) ARIMA results

Time series for loaded container flow is characterized by an increasing 
trend and seasonal pattern. The trend is characterized by significant autocor-
relation values on first four lags (0.682, 0.505, 0.415, 0.342). Annual lags and 
its multiplies also have significant values. Therefore, in order to eliminate 
trend and seasonality, the first differencing (d = 1) and seasonal differencing 

Table 9  Varying number of 
neurons in hidden layer for 
loaded container flow

Neurons 
in middle 
layer

SA-FANN GA-FANN

MAE MAPE RMSE MAE MAPE RMSE

1 781.75 1.23 932.05 965.75 1.5 1092.79
2 865.08 1.37 986.17 954.58 1.48 1044.68
3 823.41 1.31 885.13 1046.25 1.61 1129.02
4 898.42 1.41 982.93 962.91 1.49 1072.39
5 790.08 1.21 870.43 915.75 1.44 1044.66
6 745.53 1.14 844.48 907.42 1.43 1022.19
7 703.91 1.07 841.26 949.08 1.5 1203.43
8 749.92 1.14 868.17 907.41 1.44 1174.18
9 699.92 1.07 840.31 896.25 1.4 964.97
10 698.42 1.11 796.79 904.58 1.41 974.19

Table 10  Prediction accuracy analysis for different parameters of FANN in case of loaded container flow 
time series

Comparison of different scenarios with various training times 
and scenarios with various learning velocities

Sensitivity analysis by using sensi-
tivity index

GA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.290107
 R2 (Parameter training) 0.89 0.89 0.9 Learning velocity 0.289989
 R2 (Parameter validation) 0.84 0.86 0.87
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.89 0.9 0.9
 R2 (Parameter validation) 0.87 0.87 0.88

SA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.373013
 R2 (Parameter training) 0.9 0.9 0.93 Learning velocity 0.31899
 R2 (Parameter validation) 0.87 0.88 0.9
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.91 0.93 0.94
 R2 (Parameter validation) 0.89 0.9 0.92
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(S = 12, D = 1) are included into the model. Then, in this case we may suggest 
SARIMA(p, 1, q) × (P, 1, Q)12 model structure. Among the set of selected alterna-
tive configurations SARIMA(1, 1, 3) × (1, 1, 1)12 was selected as the most appro-
priate (Table 11). There are no identified outliers in this time series. The model 
looks as follows:

Selected SARIMA model appears to be stationary and invertible without 
redundant parameters. Ljung–Box Q-test and p value (Ljung–Box Q = 10.718, p 
value = 0.8266) prove that residuals are white nose and therefore there is no sig-
nificant autocorrelation between residuals at different lags. Coefficient of deter-
mination of selected model is 0.87. If we use the full dataset for model building 
SARIMA(1, 1, 1) × (1, 1, 1)12 has the lowest AICc value (1397.30).

4.4  Unloaded container flow

(a) SA-FANN and GA-FANN results

In case of unloaded container flow, optimal FANN architecture contains 7 neu-
rons in middle layer in both case, SA-FANN and GA-FANN, respectively.  The 
proof for this conclusion are minimum values of MAE, MAPE and RMSE, which 
are highlighted in Table 12.

In Table 13 the values for each scenario and sensitivity (Table 2) for unloaded 
flow time series are given. As in case of previous time series the simulation 
results are more sensitive to “training times” then to “learning velocity”.

(b) ARIMA results

Time series related to unloaded containers shows variable trend (decreasing 
in period from January 2010 to June 2014, increasing afterwards). To validate 
the need for first differencing we applied Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test for level and trend stationarity and results (KPSS Level = 0.57863, 
p value = 0.02458; KPSS Trend = 0.47013, p value = 0.01) suggest that first 

(17)
(1 + 0.71B)(1 − 0.30B12)(1 − B)(1 − B12)Yt = (1 + 0.07B − 0.76B2 − 0.30B3)(1 − B12)εt

Table 11  Akaike Information 
Criterion with correction 
(AICc), mean absolute 
percentage error (MAPE) and 
stationary  R2 of SARIMA 
models for loaded container 
flow

Models MAPE AICc Stationary  R2

SARIMA(1, 1, 1) × (1, 1, 1)12 4.22 1166.26 0.8724
SARIMA(1, 1, 2) × (1, 1, 2)12 4.25 1166.43 0.8733
SARIMA(1, 1, 1) × (1, 1, 2)12 4.23 1164.22 0.8722
SARIMA(2, 1, 1) × (2, 1, 2)12 4.22 1168.19 0.8760
SARIMA(1, 1, 3) × (1, 1, 1)12 4.21 1161.83 0.8740
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differencing is required (p value < 0.05). The Osborn–Chui–Smith–Birchen-
hall (Osborn et  al. 1988) seasonal unit root test is used for proving the neces-
sity for seasonal differencing (OCSB test returns positive results, output = 1). 
After performed first and seasonal differencing (d = 1, D = 1) a stationary time 
series has been obtained (KPSS test: p value = 0.1). Therefore, for unloaded 

Table 12  Varying number of 
neurons in hidden layer for 
unloaded container flow

Neurons 
in middle 
layer

SA-FANN GA-FANN

MAE MAPE RMSE MAE MAPE RMSE

1 926.75 2.11 1283.39 915.08 2.06 1280.74
2 843.42 1.91 1063.3 856.75 1.94 1258.92
3 918.41 2.07 1104.06 831.75 1.88 1247.81
4 835.08 1.89 1006.04 706.75 1.58 1016.26
5 811.91 1.84 1000.27 623.42 1.4 799.55
6 786.91 1.78 983.76 606.75 1.36 715.93
7 760.08 1.71 883.61 581.75 1.29 635.84
8 770.75 1.74 975.51 598.42 1.35 711.96
9 853.25 1.95 1079.41 590.08 1.33 701.21
10 786.58 1.79 933.77 923.41 2.16 1432.84

Table 13  Prediction accuracy analysis for different parameters of FANN in case of unloaded container 
flow time series

Comparison of different scenarios with various training times 
and scenarios with various learning velocities

Sensitivity analysis by using sensi-
tivity index

GA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.355177
 R2 (Parameter training) 0.88 0.89 0.92 Learning velocity 0.301981
 R2 (Parameter validation) 0.84 0.86 0.88
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.9 0.9 0.93
 R2 (Parameter validation) 0.87 0.87 0.91

SA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.341163
 R2 (Parameter training) 0.87 0.87 0.89 Learning velocity 0.277101
 R2 (Parameter validation) 0.77 0.78 0.82
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.88 0.88 0.91
 R2 (Parameter validation) 0.83 0.84 0.89
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container time series SARIMA(p, 1, q) × (P, 1, Q)12 model is suggested. Assess-
ment of alternative configurations based on AICc criteria led to selection of 
SARIMA(1, 1, 2) × (1, 1, 1)12 as the most appropriate model (Table 14). No outli-
ers were detected. The model looks as follows:

Diagnostic checks show that residuals are white noise and that there is no sig-
nificant autocorrelation between them at different lag times. Coefficient of deter-
mination of selected model is 0.75. Additional tests based on model building per-
formed on the whole dataset point on the SARIMA(1, 1, 1) × (0, 1, 1)12 as the most 
appropriate model  (AICc = 1332.41).

4.5  Empty container flow

(a) SA-FANN and GA-FANN results

Table 15 presents the topology with the best results based on the smallest errors 
(bold values in the table). In case of SA-FANN 5 neurons exist in the middle layer 
whereas the topology for GA-FANN has 8 neurons in the middle layer.

The values for each scenario and sensitivity (Table 2) for empty container flow 
time series are given in Table  16. As in previous cases, the simulation results of 
training times are more sensitive to parameter “learning velocity”.

(b) ARIMA results

The last time series considers empty container flows. Large p values of KPSS 
test (p value = 0.1) point on stationarity of training dataset. OCSB test also 
returns negative results regarding the need for seasonal differencing. Reason 
for this lies in a possibility (evident from time series plot) that seasonality does 
not exists in all 12  months but just for some months (seasonal pulse in month 8 
beginning from year 2011). Therefore, a SARIMA(p, 0, q) × (P, 0, Q)12 model is 
selected as a general structure for empty container flow time series. ACF/PACF 
observations point on SARIMA(1, 0, 2) × (0, 0, 1)12 as a first tentative model. 

(18)
(1 − 0.78B)(1 + 0.08B12)(1 − B)(1 − B12)Yt = (1 − 1.67B + 0.82B2)(1 − 0.47B12)εt

Table 14  Akaike Information 
Criterion with correction 
(AICc), mean absolute 
percentage error (MAPE) and 
stationary  R2 of SARIMA 
models for unloaded container 
flow

Models MAPE AICc Stationary  R2

SARIMA(1,0,2) × (0, 0, 1)12 10.10 1441.92 0.32
SARIMA(1,0,1) × (1, 0, 1)12 9.82 1440.91 0.34
SARIMA(2,0,2) × (2, 0, 2)12 9.27 1446.96 0.42
SARIMA(1,0,0) × (1, 0, 0)12 9.91 1437.14 0.33
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Alternatives based on slight modifications of parameters result in a conclusion that 
the SARIMA(1, 0, 0) × (1, 0, 0)12 is the model with minimum AICc (Table 17).

As in the case of transit container flows, we considered the presence 
of outliers and identified a temporary change (TC) outlier in May 2011. 
SARIMA(1, 0, 0) × (1, 0, 0)12 model selected in first phase remains the 

Table 15  Varying number of neurons in hidden layer for empty container flow

Neurons in mid-
dle layer

SA-FANN GA-FANN

MAE MAPE RMSE MAE MAPE RMSE

1 1362.08 2.79 1544.07 1725.42 3.46 1863.68
2 1328.75 2.73 1516.73 1642.08 3.26 1768.65
3 1245.42 2.54 1374.22 1567.08 3.13 1666.61
4 1162.08 2.34 1331.53 1533.75 3.05 1634.01
5 964.42 1.96 1245.31 1608.75 3.21 1687.17
6 1078.75 2.14 1235.98 1633.75 3.26 1714.04
7 995.41 1.98 1145.78 1550.41 3.05 1638.83
8 1014.42 2.01 1227.86 1496.75 3.03 1711.86
9 1064.42 2.1 1298.63 1500.41 2.96 1586.81
10 1006.08 1.97 1270.38 1512.58 3.01 1640.76

Table 16  Prediction accuracy analysis for different parameters of FANN in case of unloaded container 
flow time series

Comparison of different scenarios with various training times 
and scenarios with various learning velocities

Sensitivity analysis by using sensi-
tivity index

GA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.300122
 R2 (Parameter training) 0.86 0.87 0.9 Learning velocity 0.229989
 R2 (Parameter validation) 0.71 0.73 0.82
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.85 0.89 0.9
 R2 (Parameter validation) 0.83 0.87 0.86

SA-FANN
 Training times 100 300 500 Parameters Sensitivity index
 Learning velocity 0.01 0.01 0.01 Training times 0.319863
 R2 (Parameter training) 0.88 0.88 0.91 Learning velocity 0.240011
 R2 (Parameter validation) 0.8 0.81 0.87
 Training times 100 300 500
 Learning velocity 0.0001 0.0001 0.0001
 R2 (Parameter training) 0.9 0.9 0.92
 R2 (Parameter validation) 0.87 0.86 0.9
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same (considering the effect of TC outlier) but with slightly improved AICc 
(AICc = 1428.17). The model looks like follows:

Diagnostic check proves validity of selected model. Ljung–Box Q test and p value 
(Ljung–Box Q = 12.043, p value = 0.741) prove validity of the model. If we take the 
whole dataset for ARIMA model building we obtain SARIMA(0, 1, 1) × (1, 0, 0)12 
(AICc = 1659.23). The model identifies two outliers (temporary change outlier—
May 2011 and additive outlier—November 2016) and looks as follows:

4.6  Discussion of results

Each of the forecasting methods has been applied for computing the predicted val-
ues of container flows for the test period from January 2016 to December 2016. One 
of the most important practical issues for obtaining a good forecast is the size of 
the sample used to build the prediction model. There is no specific rule that can 
be followed, however, a larger sample will in general provide a better chance for 
any model to adequately approximate the underlying data structure. In case of time 
series forecasting methods, like ARIMA is, Box and Jenkins (1976) have suggested 
at least 50 or even better 100 observations for building linear ARIMA models. For 
nonlinear models, like SA-FANN and GA-FANN are, larger sample sizes are desir-
able. A larger sample provides a better chance for neural networks to adequately 
approximate the underlying data structure. On the other side, if data in the sam-
ple are not homogeneous or the underlying data generating process in a time series 
changes over time, then a larger sample may even hurt performance of neural net-
works. Besides the data quantity, data quality is important too. The key is to use 
training data that generally span the problem data space. In concrete case, at the 
time of our analysis a time series of monthly container throughput observations 
from January 2010 to December 2016 (84 months) were available. However, despite 
the “limited data availability” the data set does not contain a lot of random variation 
(standard deviation versus mean ratio is much lower than 1 for all time series even 
with anomalies included) so the authors consider the data set is sufficient for reliable 
container flow modeling and short-term forecast generation even for dealing with 
periodical effects like such as seasonality.

(19)Yt = 14968
1

1 − 0.7B
It(17) +

1

(1 − 0.47B)(1 − 0.28B12)
εt

(20)Yt = 13614
1

1 − 0.7B
It(17) − 18685It(83) +

(1 − 0.51B)

(1 − B)(1 − 0.36B12)
εt

Table 17  Akaike Information 
Criterion with correction 
(AICc), mean absolute 
percentage error (MAPE) and 
stationary  R2 of SARIMA 
models for empty container flow

Models MAPE AICc Stationary  R2

SARIMA(1,0,2) × (0, 0, 1)12 10.10 1441.92 0.32
SARIMA(1,0,1) × (1, 0, 1)12 9.82 1440.91 0.34
SARIMA(2,0,2) × (2, 0, 2)12 9.27 1446.96 0.42
SARIMA(1,0,0) × (1, 0, 0)12 9.91 1437.14 0.33
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Actual observations as well as the predictions generated by each of proposed 
models for total, transit and loaded, unloaded and empty container flows are graphi-
cally illustrated on Fig. 4. 

Fig. 4  Container flows at Barcelona Port—fitting performances of SA-FANN, GA-FANN and ARIMA



992 M. Milenković et al.

1 3

In order to test forecasting performances, we selected the mean average error 
(MAE), the and mean absolute percent error (MAPE) and the root mean squared 
error (RMSE) defined as follows (Xie et al. 2013):

where  Yt and Yt represent the actual and the predicted values of the time series in 
period t, respectively.

Table  18 contains comparison of forecasting accuracy of proposed methods 
for all time series considered. Values of MAE, MAPE and RMSE clearly show 
that ARIMA model has much lower performance level than SA-FANN and GA-
FANN for each of the time series. In case of transit (MAPE = 22.49) and empty 
container flows (MAPE = 20.83) this difference is obvious. When we look at the 
transit container flow time series we may note that the beginning of the series 
obviously behaves very differently from later parts. Also, we have three large 
spikes during the test period which are not forecastable by ARIMA model. Empty 
container flow time series has a more “regular” pattern and that was the reason 
for slightly better shape of ARIMA model, but still much worse than in case of 
total (MAPE = 8.03), loaded (MAPE = 4.75) and unloaded (MAPE = 4.48) data 
samples. In this case the influence of outliers was not decisional, but the pattern 
itself.

(21)MAE =

∑n

t=1
(Yt − Yt)

n

(22)
MAPE =

100
∑n

t=1

�
��
�
1 −

Yt

Yt

�
��
�

n

(23)RMSE =

�
∑n

t=1
(Yt − Yt)

2

n

Table 18  Performance of proposed methods for forecasting container flows at Barcelona Port

Total container flow Transit container flow Loaded container flow

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

SA-ANN 1776.43 1.15 2404.43 866.57 3.70 1242.61 598.64 1.11 737.69
GA-ANN 1499.29 0.97 2111.54 710.93 3.31 1014.81 768.21 1.40 893.39
ARIMA 15,646.23 8.03 18,809.58 7042.03 22.49 10,671.28 3109.93 4.75 3883.79

Unloaded container flow Empty container flow

MAE MAPE RMSE MAE MAPE RMSE

SA-ANN 651.5 1.71 818.7 826.64 1.96 1152.94
GA-ANN 498.64 1.29 588.68 1282.93 3.03 1584.88
ARIMA 2084.56 4.48 2699.69 11,444.3 20.83 13,423.66
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The reason for this lies in embedded nonlinearity of considered time series. 
In general, to check for nonlinearity of time series and therefore necessity to use 
nonlinear dynamics forecasting models, one approach can be to fit a general lin-
ear model to the data (ARIMA model in this case) and then to use some statistics 
computed from the residuals. Existing analysis in this paper has been extended by 
the BDS test for detecting nonlinear serial dependence in time series. The BDS test 
produces a viable test of linearity against the alternative of non-linearity when the 
data are prefiltered by ARIMA fit. According to the results of BDS test for all con-
tainer flow time series, the null hypothesis (data are i.i.d) is rejected and hence, the 
series are nonlinear. In other words, fitted linear time series models have left cer-
tain aspects of the data unexplained—residuals dataset after fitting ARIMA contains 

Table 19  Non linearity testing 
for ARIMA residuals of 
container flow time series

m represents the embedding dimension. ε is equal to 0.5, 1.0, 1.5 and 
2.0 times the standard deviation. The critical value for confidence 
level of 5% is 1.96. The results presented in Table 19 demonstrate 
that the null hypothesis of i.i.d. for the residuals can be rejected at 
the 5% level of confidence

Parameter �∕� Dimension (m = 2) Dimension (m = 3)

Statistic Probability Statistic Probability

Total container flows
 0.5 2.2943 0.0218 5.2050 0.0000
 1.0 − 1.7847 0.0743 − 0.4378 0.6616
 1.5 − 2.0863 0.0370 − 1.3018 0.1930
 2.0 − 2.0921 0.0364 − 1.4595 0.1444

Transit container flows
 0.5 8.5184 0.0000 10.3138 0.0000
 1.0 8.6847 0.0000 10.0408 0.0000
 1.5 7.1944 0.0000 8.7226 0.0000
 2.0 3.0425 0.0023 5.6219 0.0000

Loaded container flows
 0.5 4.7451 0.0000 8.4215 0.0000
 1.0 2.0946 0.0362 1.4787 0.1392
 1.5 0.6356 0.5250 − 0.2618 0.7935
 2.0 − 0.3487 0.7273 − 0.5223 0.6014

Unloaded container flows
 0.5 4.3497 0.0000 9.9094 0.0000
 1.0 1.0649 0.2869 1.5427 0.1229
 1.5 − 0.4874 0.6260 − 0.4792 0.6318
 2.0 − 0.0128 0.9898 − 0.6568 0.5113

Empty container flows
 0.5 − 2.3816 0.0172 − 4.4955 0.0000
 1.0 − 1.5062 0.132 − 1.8122 0.0700
 1.5 − 1.4839 0.1378 − 1.3565 0.1749
 2.0 − 3.2268 0.0013 − 2.9551 0.0031
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nonlinear component and so can be properly modeled through an FANN. The results 
of BDS test are given in Table 19. 

If we compare performances of two non-parametric approaches, the results 
revealed different performances. More precisely, for total, transit and unloaded con-
tainer flow GA-ANN obtained a slightly better performance then SA-FANN. On the 
other side, for loaded and empty container flows SA-FANN has lower values against 
all performance measures. The reason for relative difference lies in the algorithmic 
differences between simulated annealing and genetic algorithm, specific characteris-
tics of considered time series, and the set of parameters used and their values.

Based on presented results we may apply the best method for predicting the future 
volume of container flows. Therefore, we apply GA-FANN method to generate fore-
casts for total, transit and unloaded container flows and SA-FANN for forecasting of 
loaded and empty container flows. Superiority of developed nonlinear techniques is 
aligned with results of comparison of nonlinear and linear techniques for container 
flow forecasting from literature (Lam et al. 2004; Chen and Chen 2010; Huang et al. 
2015; Xiao et al. 2014).

Forecasts generated by the developed methods are essential inputs for the control 
and scheduling of operations in any port system, and also for terminal operators in 
decision making and planning. Acquisition of additional equipment and material as 
well as the allocation and arrangement of workers and machines can be performed 
more efficiently. Synchronization between sea and land transportation modes can 
significantly be improved and on that way also the competitiveness of intermodal 
transportation. Good prediction model is essential for the terminal operators to 
make decisions for planning and modernization of building structure and other port 
facilities.

5  Concluding remarks

Long term strategic plan of port terminals is to gain higher market shares through 
improved intermodal transport services. Forecasts of future container flows repre-
sent important mean for better planning of intermodal supply chains. In this paper 
we proposed a hybrid methodology based on metaheuristics for designing an opti-
mal fuzzy ANN architecture for container flow forecasting. Proposed approach is 
combines fuzzy neural network method and two sophisticated heuristics for develop-
ing the neural network architecture. We compared the performance of the developed 
methods against the traditional ARIMA technique for forecasting container through-
put volumes. SA-FANN, GA-FANN and ARIMA have been applied to model con-
tainer throughput based on the monthly observations of Port of Barcelona, 9th larg-
est port in Europe which tends to become one of the main Euroregion distribution 
centers in the Mediterranean. Five container flow related time series: total, transit, 
loaded, unloaded and empty container flows were independently modeled. For each 
time series we compared the predicting accuracy of the models by calculating MAE, 
RMSE and MAPE for each of the models and selected the models which have the 
best performances. Developed non-parametric methods significantly outperform 
ARIMA technique for all time series. Between those two, GA-FANN outperforms 



995

1 3

Container flow forecasting through neural networks based…

SA-FANN in case of total, transit and unloaded container flows, whereas SA-FANN 
has much lower values of performance measures for loaded and empty container 
flows. Having in mind that container flows are highly dependent on a number of 
uncertainty factors, future research will be based on the development of more com-
plex multivariate AI-based modeling tools.

Acknowledgements Authors would like to express their gratitude to Prof. Nikolaos Fragkiskos Mat-
satsinis (Editor) and two  anonymous reviewers for their very useful suggestions which significantly 
improved this paper. The paper is supported by the Serbian Ministry of Education and Science (Project 
III44006 and I36022) and the project “Clusters 2.0: Open network of hyper connected logistics clusters 
towards Physical Internet” which has received funding from the European Union’s Horizon 2020 research 
and innovation programme under Grant Agreement No. 723265.

References

Abdalla OA, Osman A, AlMurtadha YM (2014) Optimizing the multilayer feed-forward aritificial neu-
ral networks architecture and training parameters using genetic algorithms. Int J Comput Appl 
96(10):42–48

Agatonovic KS, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its 
application in pharmaceutical research. J Pharm Biomed Anal 22:717–727

Arifovic J, Gencay R (2001) Using genetic algorithms to select architecture of feedforward artificial neu-
ral network. Physica 289:574–594

Atsalakis G, Valavanis K (2008) Surveying stock market forecasting techniques—Part II: soft computing 
methods. Expert Syst Appl 36:5932–5941

Atsalakis G, Valavanis K (2009) Forecasting stock market short-term trends using a neuro-fuzzy based 
methodology. Expert Syst Appl 36:10696–10707

Atsalakis G, Dimitrakakis E, Zopounidis C (2011) Elliot wave theory and neuro-fuzzy systems, in stock 
market prediction. Expert Syst Appl 38(8):9196–9206

Blanco A, Delgado M, Pegalajar MC (2000) A genetic algorithm to obtain the optimal recurrent neural 
network. Int J Approx Reason 23:67–83

Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden Day, San Francisco
Box GE, Jenkins GM, Reinsel GC (2008) Time series analysis, forecasting and control. Wiley, New 

Jersey
Chen SH, Chen JN (2010) Forecasting container throughputs at ports using genetic programming. Expert 

Syst Appl 37(3):2054–2058
Chen C, Liu LM (1993) Joint estimation of model parameters and outlier effects in time series. J Am Stat 

Assoc 88(421):284–297
Chibante R (2010) Simulated annealing theory with applications. Sciyo, Croatia
Chou CC (2004) A study on forecasting the container volume of international ports in Taiwan area. Ph.D. 

dissertation, Department of Shipping and Transportation Management, National Taiwan Ocean 
University

Chou CC, Chu CW, Liang GS (2008) A modified regression model for forecasting the volumes of Tai-
wan’s import containers. Math Comput Model 47(9–10):797–807

Denai MA, Palis F, Zeghbib A (2007) Modeling and control of non-linear systems using soft computing 
techniques. Appl Soft Comput 7(3):728–738

Diaz R, Talley W, Tulpule M (2011) Forecasting empty container volumes. Asian J Shipp Logist 
27(2):217–236

Donate JP, Li X, Sanchez GG, Miguel ASD (2011) Time series forecasting by evolving artificial neural 
networks with genetic algorithms, differential evolution and estimation of distribution algorithm. 
Neural Comput Appl 22(1):11–20

Fung MK (2002) Forecasting Hong Kong’s container throughput: an error-correction model. J Forecast 
21(1):69–80

Gao Y, Luo M, Zou G (2016) Forecasting with model selection or model averaging: a case study for 
monthly container port throughput. Transportmetrica A Transp Sci 12(4):366–384



996 M. Milenković et al.

1 3

Ghasemiyeh R, Moghdani R, Sana SS (2017) A hybrid artificial neural network with metaheuristic algo-
rithms for predicting stock price. Cybern Syst 48:365–392

Ghosh R, Ghosh M, Yearwood J, Bagirov A (2005) Comparative analysis of genetic algorithm, simulated 
annealing and cutting angle method for artificial neural networks, pp 62–70. In: Machine learning 
and data mining in pattern recognition: proceedings of the 4th international conference, MLDM 
2005, Germany

Glisovic N, Milenkovic M, Bojovic N, Svadlenka L, Avramovic Z (2015) A hybrid model for forecasting 
the volume of passenger flows on Serbian railways. Oper Res Int J 16(2):271–285

Gosasang V, Chandraprakaikul W, Kiattisin S (2011) A comparison of traditional and neural networks 
forecasting techniques for container throughput at Bangkok port. Asian J Shipp Logist 27(3):463–482

Herrera F, Martınez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. 
IEEE Trans Fuzzy Syst 8(6):746–752

Huang A, Lai KK, Li Y, Wang S (2015) Forecasting container throughput of Qingdao port with a hybrid 
model. J Syst Sci Complex 28(1):105–121

Hui ECM, Seabrooke W, Wong GKC (2004) Forecasting cargo throughput for the Port of Hong Kong: 
error correction model approach. J Urban Plan Dev 130(4):195–203

Hui ECM, Ng MH, Xu JJ, Yip TL (2010) The cargo throughput response to factor cost differentials—an 
analysis for the port of Hong Kong. Transportmetrica 6(4):235–248

Ishibuchi H, Kwon K, Tanaka H (1993) Implementation of fuzzy IF-THEN rules by fuzzy neural networks 
with fuzzy weights, In: Proceedings of the EUFIT’93 conference, Aachen, Germany, pp 209–215

Ishibuchi H, Fujioka R, Tanaka H (1993b) Neural networks that learn from fuzzy IF-THEN rules. IEEE 
Trans Fuzzy Syst 1:85–97

Ishibuchi H, Tanaka H, Okada H (1993) Fuzzy neural networks with fuzzy weights and fuzzy biases, In: 
Proceedings of the IEEE international conference on neural networks, San Francisco, pp 447–452

Ishibuchi H, Tanaka H, Okada H (1994) Interpolation of fuzzy IF THEN rules by neural networks. Int J 
Approx Reason 10:3–27

Kaviani M, MirRokni SM (2017) Applying genetic algorithm in architecture and neural network training. 
Int J Comput Sci Netw Secur 17(6):118–124

Kosko B (1992) Neural networks and fuzzy systems. Prentice-Hall, Englewood Cliffs
Lam WHK, Ng PLP, Seabrooke W, Hui ECM (2004) Forecasts and reliability analysis of port cargo 

throughput in Hong Kong. J Urban Plan Dev 130(3):133–144
Lam W, Tang Y, Chan K, Tam M (2006) Short-term hourly traffic forecasts using Hong Kong annual traf-

fic census. Transportation 33(3):291–310
Lee LW, Wang HF, Chen SM (2008) Temperature prediction & TAIFEX forecasting based on high-

order fuzzy logical relationships & genetic simulated annealing techniques. Expert Syst Appl 
34(1):328–336

Lee SY, Lim H, Kim HJ (2017) Forecasting container port volume: implications for dredging. Marit Econ 
Logist 19(2):296–314

Liao GC, Tsao TP (2006) Application of a fuzzy neural network combined with a chaos genetic algorithm 
and simulated annealing to short-term load forecasting. IEEE Trans Evol Comput 10(3):330–340

Lingras P, Sharma SC, Osborne P, Kalyar I (2000) Traffic volume time-series analysis according to the 
type of road use. Comput Aided Civ Infrastruct Eng 15(5):365–373

De Livera AM, Hyndman RJ, Snyder RD (2010) Forecasting time series with complex seasonal patterns 
using exponential smoothing. J Am Sta Assoc 106:1513–1527

Liu Z, Ji L, Ye Y, Geng Z (2007) Combined forecast method of port container throughput based on RBF 
neural network. J Tongji Univ (Nat Sci) 35(5):739

MacKay JCD (2003) Information theory, inference and learning algorithms. Cambridge University Press, 
Cambridge

Michalewicz Z, Fogel DB (2000) How to solve it: modern heuristics. Springer, Berlin
Milenkovic M, Svadlenka L, Melichar V, Bojovic N, Avramovic Z (2016) SARIMA modelling approach 

for railway passenger flow forecasting. Transport 33(5):1113–1120
Mo L, Xie L, Jiang X, Teng G, Xu L, Xiao J (2018) GMDH-based hybrid model for container throughput 

forecasting: selective combination forecasting in nonlinear subseries. Appl Soft Comput 62:478–490
Moscoso-Lopez JA, Turias IJ, Jimenez-Cone MJ, Ruiz-Aguilar JJ, Cerban M (2016) Short-term fore-

casting of intermodal freight using ANNs and SVR: case of the Port of Algeciras Bay. Transp Res 
Procedia 18:108–114

Niu M, Hu Y, Sun S, Liu Y (2018) A novel hybrid decomposition-ensemble model based on VMD and 
HGWO for container throughput forecasting. Appl Math Model 57:163–178



997

1 3

Container flow forecasting through neural networks based…

Osborn DR, Chui APL, Smith JP, Birchenhall CR (1988) Seasonality and the order of integration for con-
sumption. Oxford Bull Econ Stat 50:361–377

Pang G, Gebka B (2017) Forecasting container throughput using aggregate or terminal-specific data. The 
case of Tanjung Priok Port, Indonesia. Int J Prod Res 55:2454–2469

Peng WY, Chu CW (2009) A comparison of univariate methods for forecasting container throughput vol-
umes. Math Comput Model 50(7–8):1045–1057

Port of Barcelona (2017) Statistical reports 2010–2016. http://www.portd ebarc elona .cat/en/web/autor itat-
portu aria/estad istic as. Accessed 16 Jan 2017

Ruiz-Aguilar JJ, Turias IJ, Jiménez-Come MJ (2014) Hybrid approaches based on SARIMA and artificial 
neural networks for inspection time series forecasting. Transp Res Part E Logist Transp Rev 67:1–13

Schulze PM, Prinz A (2009) Forecasting container transshipment in Germany. Appl Econ 
41(22):2809–2815

Seabrooke W, Lam WHK, Wong GKC (2003) Forecasting cargo growth and regional role of the port of 
Hong Kong. Cities 20(1):51–64

Sexton RS, Dorsey RE, Johnson JD (1999) Optimization of neural networks: a comparative analysis of 
the genetic algorithm and simulated annealing. Eur J Oper Res 114:589–601

Smith BL, Williams BM, Keith Oswald R (2002) Comparison of parametric and nonparametric models 
for traffic flow forecasting. Transp Res Part C 10(4):303–321

Soares S, Antunes CH, Araujo R (2013) Comparison of genetic algorithm and simulated annealing for 
automatic neural network ensemble development. Neurocomputing 119:498–521

Suhartono S (2011) Time series forecasting by using seasonal autoregressive integrated moving average: 
subset: multiplicative or additive model. J Math Stat 7(1):20–27

Szu H, Hartley R (1987) Fast simulated annealing. Phys Lett A 122(3–4):157–162
Taskaya-Temizel T, Casey MC (2005) A comparative study of autoregressive neural network hybrids. 

Neural Netw 18(5–6):781–789
Tsai FM, Huang LJW (2015) Using artificial neural networks to predict container flows between the 

major ports of Asia. Int J Prod Res 55(17):5001–5010
Twrdy E, Batista M (2016) Modeling of container throughput in Northern Adriatic ports over the period 

1990–2013. J Transp Geogr 52:131–142
Vlahogianni EI, Golia JC, Karlaftis MG (2004) Short-term traffic forecasting: overview of objectives and 

methods. Transport Rev 24(5):533–557
Vlahogianni EI, Karlaftis MG, Golias JC (2005) Optimized and meta-optimized neural networks for short-

term traffic flow prediction: a genetic approach. Transp Res Part C Emerg Technol 13(3):211–234
Wei Y, Chen MC (2012) Forecasting the short-term metro passenger flow with empirical mode decompo-

sition and neural networks. Transp Res Part C 21(1):148–162
Wu TH, Chang CC, Chung SHA (2008) Simulated annealing algorithm for manufacturing cell formation 

problems. Expert Syst Appl 34(3):1609–1617
Xiao J, Xiao Y, Fu J, Lai KK (2014) A transfer forecasting model for container throughput guided by 

discrete PSO. J Syst Sci Complex 27(1):181–192
Xie G, Wang S, Zhao Y, Lai KK (2013) Hybrid approaches based on LSSVR model for container 

throughput forecasting: a comparative study. Appl Soft Comput 13(5):2232–2241
Xie G, Zhang N, Wang S (2017) Data characteristic analysis and model selection for container through-

put forecasting within a decomposition-ensemble methodology. Transp Res Part E 108:160–178
Yan W (2012) Toward automatic time-series forecasting using neural networks. IEEE Trans Neural Netw 

Learn Syst 23(7):1028–1039
Zadeh LA (1965) Fuzzy set. Inf Control 8(3):338–353
Zhang PL, Cui Y (2011) Research on combination forecast of port container throughput based on Elman 

neural network. In: Proceedings of the 3rd international conference on communication software and 
networks (ICCSN), pp 567–570

Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int 
J Forecast 14:35–62

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://www.portdebarcelona.cat/en/web/autoritat-portuaria/estadisticas
http://www.portdebarcelona.cat/en/web/autoritat-portuaria/estadisticas

	Container flow forecasting through neural networks based on metaheuristics
	Abstract
	1 Introduction
	2 Literature overview
	3 Methodology
	3.1 Fuzzy neural network based metaheuristics for time series analysis
	3.1.1 Artificial neural networks and fuzzy neural networks
	3.1.2 Genetic algorithm
	3.1.3 Simulated annealing

	3.2 ARIMA and SARIMA models

	4 Application and results
	4.1 Total container flow
	4.2 Transit container flow
	4.3 Loaded container flow
	4.4 Unloaded container flow
	4.5 Empty container flow
	4.6 Discussion of results

	5 Concluding remarks
	Acknowledgements 
	References




