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Abstract
The physical environment of farming systems is rarely considered when conduct-
ing farm level efficiency analysis, which is likely to lead to bias of performance 
measurements based on benchmarking methods such as Data Envelopment Analysis 
(DEA). We incorporate variations of the physical environment (rainfall and length 
of growing season) through the specifications of the linear programming in DEA 
to investigate performance measurement bias. The derived technical efficiency esti-
mates are obtained using a sub-vector DEA which ensures farms are compared in a 
homogenous environment (i.e. accounting for differences in rainfall levels amongst 
distinct farm units). We use the Farm Business Survey to analyse a representative 
sample of 245 cereal farms in the East Anglia region between 2009 and 2010. Effi-
ciency rankings obtained from a standard DEA model and a non-discretionary DEA 
model that incorporates the variations in the physical environment. We show that 
incorporating rainfall and the length of the growing season as non-discretionary 
inputs into the production function had significantly altered the farm efficiency rank-
ing between the two models. Hence, to improve extension services to farmers and 
to reduce biased estimates of farm technical efficiency, variations in environmental 
conditions need to be integral to the analysis of efficiency.
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1 Introduction

Climate change (expressed in the short term as extreme weather phenomena) and 
the increased demand for food are two of the most important future global chal-
lenges for agricultural systems. The Foresight Report (2011) has projected a likely 
estimate increase in the global food demand equal to 70% by 2050 due to population 
increase and shifts in consumer attitudes and preferences.

The development, grow and yield of crops is influenced by the seasonal patterns 
in rainfall and temperature; and therefore, any future alteration of these, may have 
significant impacts on agricultural production (Knox et al. 2010a; Falloon and Betts 
2010; Murphy et  al. 2009). Future projections of increased daily temperature and 
humidity in the atmosphere can also increase the risk of agricultural pests and dis-
eases as well as deteriorate the land available for agricultural activities due to sea 
rise level (Daccache et al. 2011; Knox et al. 2010b).

According to the Department for the Environment, Food and Rural Affairs 
(Defra, UK), agricultural Total Factor Productivity (TFP) has realised a significant 
drop during the period 2007-2013 mainly due to the frequent appearance of extreme 
weather phenomena such as floods (2007, 2012, 2013) and persistent drought peri-
ods (2010, 2011, 2012). According to Defra (2013), these variations in the observed 
agricultural TFP are due to phenomena and disease outbreaks which are usually 
out of the sphere of control of farm managers. However, we argue that these varia-
tions in the physical environment should be isolated in cases where we are interested 
in measuring farm performance only (e.g. policies aiming to identify farmers that 
could potentially perform better regardless of the weather conditions).

For example, the combination of high daytime temperatures and reduced rainfall 
levels during the May–July would have direct impacts on the hydrological status of 
areas (increase in the demand for water abstraction licences from agriculture and 
other competitive industries as well as the reduced water availability) with high con-
centration of arable and horticulture farms (i.e. East Anglia) (Defra 2009; Environ-
ment Agency 2008, 2011).

A number of research papers in determining the performance of a production unit 
have proposed both parametric and non-parametric empirical models to account for 
spatial heterogeneity (Vidoli and Canello 2016) such as climatic conditions, topog-
raphy and socio-economic aspects. Within the parametric approaches, the most fre-
quently used framework comprises the consideration of contextual variables that 
are presupposed to affect efficiency (Areal et al. 2012a; Barrios and Lavado 2010; 
Hughes et al. 2011; Pede Valerien et al. 2018). In addition, Sherlund et al. (2002) 
demonstrated that the omission of potential relevant physical environment variables 
will cause bias which will be absorbed in the composite error (v − u) and hence into 
the estimation of an efficiency estimate which is computed from the non-negative u 
term. However, the non-parametric literature lacks specific contributions to account 
for spatial variations in the agricultural sector. The usual approach involves the 
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two-step approach (Simar and Wilson 2007) where the effect of contextual variables 
is isolated by (1) estimating efficiency of production units and (2) regress these effi-
ciency estimates on a set of environmental variables. However, spatial dependence is 
not controlled in the first stage and hence bias is not avoided at the second stage of 
the estimation process. An alternative approach includes the incorporation of spatial 
dependence into the efficiency term and the probabilistic formulation of the non-
parametric conditional measure (Bădin et al. 2012; Daraio and Simar 2007; Jeong 
et al. 2010) which also accounts for spatial heterogeneity within a set of contextual 
variables and not within a set of specific territorial characteristics.

This research paper adds to the nonparametric literature of production efficiency 
by suggesting a specification to account for spatial differences amongst production 
units. We analyse the relevance of considering the fluctuations in the attributes of 
the physical environment (rainfall and growing season variations) in the specifica-
tions of the Data Envelopment Analysis (DEA) linear programming. We do this by 
using rainfall and the growing season length as inputs in the production function. 
This enables us to (a) account for differences in the physical environment between 
farms in our sample, and consequently (b) to determine the significance of the varia-
tions in the climatic conditions on the technical efficiency estimates for arable farms. 
We treat rainfall and the length of the growing season as a production factor that is 
fixed (i.e. a non-discretionary input variable), which is equivalent to saying that the 
farm owners/managers do not have any management control.

The rationale behind this suggestion is that to improve extension services and 
advice for farming systems, differences in the environmental conditions realised by 
each individual farm should be considered to ensure the homogeneity of the bench-
marking sample and hence, to reduce any biased estimates of technical efficiency.

2  Materials and methods

2.1  The UK arable sector and data requirements

The total land allocated into crop production in England over the period of 2006 to 
2016 averaged to 4.8 million hectares with a growing season extending from early 
spring to the middle of autumn. For the same period approximately 3.9 million hec-
tares were cropped (arable crops, cereals, oilseeds, potatoes, horticulture crops). 
Production for cereals in 2009 was characterised by a declining but high variable 
and fixed costs with also declining sales values as the growing season progressed 
and the performance of growers was influenced by the timing of their purchases and 
sales (Lang 2010). The 2010 harvest year had similar variable costs but fertiliser 
expenditure was reduced. Furthermore, crop and straw prices for 2010 were higher 
and consequently gross margins were exceeding those of recent years (Lang 2011).



2586 Y. Gadanakis, F. J. Areal 

1 3

For the purposes of the DEA model, we used a balanced sample of 245 cereal farms 
from the Farm Business Survey (FBS)1 for the production years of 2009 and 2010 in 
England and Wales. The sample of cereal farms satisfies the homogeneity requirement 
of the DEA model when the structure of production is considered (crop mix) and the 
climatic and physical characteristics are accounted. This enables benchmarking per-
formance and the individual farming systems through the modelling process.

The production technology of each farm in the sample was defined by the agri-
cultural area under crop production, the various crop production costs (including 
fertiliser, crop protection, seed and other agricultural costs), the labour hours spend 
in agriculture per year, rainfall level and the growing season length.2 Since arable 
farms generate output from various crops the farm business gross margin was iden-
tified as the only output of each individual farm in the sample. In addition, in the 
short-run the farm business gross margin will approximate the profit maximising 
goal of the producer based on the input set and the available technology for each 
individual farm in the sample set.

The climate in England during the 2009 growing period for crops (April–Sep-
tember) was characterised by favourable spring growing conditions but a wet July 
in England and Wales. The 2010 production year was very dry and warm and had a 
negative impact to the crops drilled during the spring season. In addition, the grow-
ing period proved to be very dry and warm. The dry weather broke suddenly with 
more than twice the average July rainfall in most regions at the onset of harvest.

We combine rainfall data in England over the 2009–2010 period with the spatial 
information using the 10 km grid reference for the cereal farms in the sample (Fig. 1a, 
b). This allowed us to assign an average rainfall level per farm during the growing sea-
son. Figure 1b shows that rainfall levels for the 2010 period were reduced during the 
April–August period (timing of construction and production phases of the crop) thus, 
moisture conditions for the development of the crop were least favourable when com-
pare to 2009 (Fig. 1a). We would expect that incorporating rainfall into the technical 
efficiency analysis would have a greater impact on farm efficiency levels in 2009 than in 
2010 (i.e. there would be greater bias using a conventional efficiency analysis when dif-
ferences in rainfall across the sample are large as it is in 2009). Moreover, data available 
from the Met Office was used to assign an estimate of the length of the growing sea-
son per farm in the sample. Specifically, the growing season length is the period (days) 
bounded by a daily temperature mean over 5 °C for more than 5 consecutive days and 
less than 5 °C for more than 5 consecutive days (after the 1st July). Both rainfall and 
growing season data was derived from UK weather observations held at the Met Office.3

2 Rainfall level and growing season length are defined at farm level based on the UK Met-office records 
projected in a 10 × 10 km grid reference for each individual farm in the sample.
3 UKCP09 gridded observation datasets—The data sets have been created with financial support from 
the Department of Environment, Food and Rural Affairs and are promoted within the UK climate projec-
tions (UKCP09) –gridded climate data for the UK interpolated from station observations—available at 
https ://www.metoffi ce.gov.uk/clima te/uk/data/ukcp0 9.

1 The advantage of using the FBS is that it is an annual agricultural accounts survey rich in information 
regarding the operations, the financial management and the physical output of farm businesses in Eng-
land. http://www.defra .gov.uk/stati stics /foodf arm/farmm anage /fbs/.

https://www.metoffice.gov.uk/climate/uk/data/ukcp09
http://www.defra.gov.uk/statistics/foodfarm/farmmanage/fbs/
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Fig. 1  Map of rainfall at 10 km square level for 2009 (a) and 2010 (b)
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Fig. 1  (continued)
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Table  1 presents the mean, SD and the minimum and maximum values of the 
inputs and outputs used in the modelling process to describe the production technol-
ogy of the sample for the years 2009 and 2010.

2.2  Methodology

Farm efficiency levels are estimated using a conventional (CNV) and sub-vector 
(SBV) DEA model to discuss the significance of environmental parameters such as 
rainfall and the growing season length in benchmarking farming systems. We esti-
mate the efficiency levels for 2009, 2010 to examine whether changes in ranking of 
farms based on efficiency scores occur between models.

The SBV DEA model allows the researcher to account for both input and output 
variables that are out of the control of the farm manager (non-discretionary vari-
ables). Therefore, the model is consisted by two distinguished types of variables 
a) discretionary (the farm owner/manager has a significant control over the mix of 
production inputs and the planned production output) and b) non-discretionary (the 
farm owner/manager is not able to decide over the proportion of inputs to be used or 
the outputs to produce). Hence, as it is suggested by Lilienfeld and Asmild (2007) 
the integration of non-discretionary variables into the DEA model allows the esti-
mation of the proportional input reduction or expansion of outputs only for those 
variables or production outcomes that are under the direct control of the farm owner/
manager. On the contrary, in a conventional DEA model, failing to account for non-
discretionary variables would lead to an estimate of efficiency for each decision-
making unit which will suggest an equiproportional cutback or increase of all inputs 
and outputs concurrently although some of the variables are out of the control of the 
farmer (e.g. rainfall—non-discretionary input). The sub-vector DEA efficiency anal-
ysis model was introduced by Kopp (1981) and Färe et al. (1983). In the literature of 
agricultural efficiency studies that have used the SBV DEA model are those of Piot-
Lepetit et al. (1997) where land and agricultural workforce were considered as non-
discretionary inputs, Lansink et al. (2002) and Lansink and Silva (2003) where the 
SBV model was used to both obtaining technical efficiency estimates for a group of 
inputs and measuring energy technical efficiency respectively. Asmild and Hougaard 
(2006) employed DEA models based on the SBV variation to compare the economic 
and environmental performance of Danish pig farms. Revenue and environmental 
variables were treated as non-discretionary variables alternately into the two SBV 
models.

2.3  Modelling the discretionary and non‑discretionary variables in DEA

The non-parametric DEA models allow for both input and output orientation while dif-
ferent assumptions are possible to be made regarding the returns to scale. The assump-
tion of variables return to scale (VRS) (Banker et al. 1984) has been made to solve the 
DEA model as an input orientated model. Hence, efficiency estimates derived from the 
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model will identify the total equiproportional reduction for each input variable while 
ensuring that the farm individual levels of outputs will not change.

As a result, both the level of rainfall and the length of the growing season are 
treated as variables in the input side of the DEA model due to their direct impact on 
crop yields. Nonetheless, to consider both rainfall and growing season as non-discre-
tionary variables relevant modifications are carried out to the DEA model constraints 
(see Eqs. 2, 3 and 4). Specifically, these are conducted through an input DEA model as 
most efficient farms are identified as those that are able to maintain the individual lev-
els of output while the minimum amount of inputs is used while considering variations 
in the physical environment. The production frontier is defined by linear and convex 
combinations of best performers. The relative position of the remaining farms to this 
estimated frontier is then used to measure their efficiency score (DEA is a benchmark-
ing technique). Further developments and a detailed discussion over the various DEA 
techniques and models is available in Cooper et al. (2006).

Additionally, to explore whether differences in the ranking of the farms exist 
when variations in the physical environment are considered or not, a CNV DEA and 
a non-discretionary or SBV DEA model are employed with the aim of comparing 
their individual efficiency scores. A non-discretionary variable in a DEA framework 
can be defined as one that cannot be modified or at least held constant in the short 
run.

To put the above into context is assumed that N farms are observed and each 
farm i = {1,… ,N} uses J (j = 1,… , J) inputs, xj to yield S outputs yr(r = 1,… , S). 
Hence, an input oriented DEA model with all inputs variable can be formulated as 
(the conventional CNV model):

where �′

CNV
 is a scalar, depicting the efficiency estimate for each of the n farms in the 

model. The optimal value of �CNV will range between 0 and 1 with the value �i = 1 

(1)min
�,�i�

′

CNV

(1.1)s.t. �x�
ji
≥

n∑

i=1

�
ixji

(1.2)y�
ri
≤

n∑

i=1

�
iyri

(1.3)�
i
≥ 0

(1.4)
n∑

i−1

�
i = 1
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indicating a farm on the frontier (efficient). The value �i cannot exceed unity since 
this represents the ratio of the Euclidean distance from the origin over the produc-
tion frontier.

The above formulation and structure of the DEA LP will need appropriately be 
adjusted when a set of discretionary inputs DI , DI ⊂ {1,… , J} and a set of non-discre-
tionary inputs NDI, NDI = {1,… ,F} , and all elements of NDI are not elements of DI.

Considering both the DI and NDI variables the production technology set PSBV can 
be defined as follows:

We solve the DEA model using Bogetoft and Otto (2010) approach for cases where 
DI and NDI variables exist.

The constraints of the DEA LP are therefore adjusted to allow only for the discre-
tionary inputs to be equiproportionaly reduced. Hence, the input oriented DEA effi-
ciency measure when accounting for rainfall variations for observation x′, �′, is esti-
mated by the following LP model:

According to Bogetoft and Otto (2010) an alteration of the model presented in 
model (4) to enable the solution of the LP is to treat the NDI inputs as negative 
outputs in a input oriented model:

(2)PSBV =
{(

xDIji, xNDIji, yri
)
|xDIji and xNDIji can produce yri

}

(3)�
((
xDIji, xNDIji, yri

)
;PSPV

)
= min

�

{
�|
(
�xDIji, xNDIji, yri

)
∈ PSPV

}

(4)min
�,�i�

′

SBV

(4.1)s.t. �x�
DIji

≥

n∑

i=1

�
ixDIji j ∈ DI

(4.2)
x�
NDIji

≥

n∑

i=1

�
ixNDIji j ∈ NDI

(4.3)y�
ri
≤

n∑

i=1

�
iyri

(4.4)�
i
≥ 0

(4.5)

n∑

i−1

�
i = 1

(5)min
�,�i�

′
SBV

(5.1)s.t. �x�
DIji

≥

n∑

i=1

�
ixDIji j ∈ DI
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In model (5), xDIji is the jth discretionary input for farm i , xNDIji is the 
j th non-discretionary input for farm i and yri is the r th output for farm i, 
i = (1,…N), j = (1,… J) and r = (1,… S) . The optimal value �SBV ranges between 
0 and 1 and represents the SBV efficiency estimate. This optimal value �SBV indi-
cates the equiproportional reduction of the xDIji inputs while the level of outputs 
remain constant with reference farm on the frontier. The constraints expressed 
in equation—5.1 and 5.2 limit the proportional decrease in both DI and NDI, 
when the value �SBV is optimised with respect to the mix of inputs utilised by 
the observed technology of the peer farms on the frontier. The third constraint 
ensures that the output yield by the i th farm is not greater than the frontier yield. 
The constraints in Eqs. 5.1, 5.2 and 5.3 will satisfy the condition of the optimal 
value to belonging to the production possibility set. The convexity constraint pre-
sented in Eq. 5.4, assumes VRS for the model. This implies that an increase in 
inputs does not result in a proportional change in the outputs as it is the case of 
the CRS assumption. This is considered appropriate since the aim is to meas-
ure the impact of physical performance on pure technical efficiency (Banker et al. 
1984) rather than the gross efficiency under the CRS assumption (Charnes et al. 
1978).

2.4  Peer units in DEA models

The right hand sides in DEA programmes of Eqs. (1) and (4), (
∑n

i=1
�
ixji,

∑n

i=1
�
iyri) 

and (
∑n

i=1
�
ixDIji,

∑n

i=1
�
ixNDIji,

∑n

i=1
�
iyri) respectively define the reference decision 

making units (i.e. farms) for the CNV and SBV models against which we compare 
farm x′ . Those farms with positive lambdas (i.e. weights) are identified in the DEA 
literature as the peer units, i.e.

and hence it is concluded that DEA “identifies explicit real peer-units for every eval-
uated unit” (Cooper et  al. 2007). Generally it can be considered that for a given 
farm, peer units are the signal for modelling quality (Bogetoft and Otto 2010).

(5.2)
−x�

NDIji
≥

n∑

i=1

�
i(−xNDIji) j ∈ NDI

(5.3)y�
ri
≤

n∑

i=1

�
iyri

(5.4)�
i
≥ 0

(5.5)
n∑

i−1

�
i = 1

Peer units =
{
i ∈ {1,… , n}|𝜆i > 0

}
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2.5  Bootstrapping in DEA: correct the bias in DEA estimators

Since the efficiency estimation using DEA is based on a production possibility set 
(PPS) derived from definite samples, instead of the real observed production fron-
tier, the measures of efficiency could be affected by sampling variation, suggesting 
that the estimated distance functions to the frontier are potentially miscalculated 
(Balcombe et al. 2008a; Simar and Wilson 1998).

A segment of the DEA literature has concentrated its efforts in the provision 
of a vigorous theoretical framework for the establishment of statistical proper-
ties of DEA estimators (Banker 1993; Kneip et al. 1998; Korostelev et al. 1995). 
According to Simar and Wilson (1998, 2000, 2007) bootstrapping is the most 
suitable method to obtain statistical attributes for the DEA estimators. However, 
care should be taken on the type of bootstrapping used since results could be 
inconsistent in some cases. When the DEA efficiency estimates are close to one, 
resampling from the original data could be the cause of inconsistency in the 
estimation of the confidence intervals (i.e. the upper limit is above unity). The 
method of bootstrapping is based on the idea that is possible to simulate the real 
sampling distribution of the data by being able to imitate the Data Generation 
Process (DGP) (Balcombe et  al. 2008b). Hence, the DGP in the case of DEA 
aims to the generation of a pseudo-data set which will be used to re-estimate 
the DEA distance functions. The higher the number of bootstrapped replicates 
[more than 2000 (Simar and Wilson 1998, 2007)] the better the approximation 
of the real distribution of the sampling. Consequently, the bootstrap Algorithm 
#2 of Simar and Wilson (2007) is used to obtain robust DEA estimators and 
confidence intervals. A detailed presentation of the algorithm used to bootstrap 
DEA estimates is available in Simar and Wilson (1998). In addition, we used the 
bootstrapped efficiency scores (bias corrected efficiency scores) to achieve a full 
ranking of the farms in the sample. Hence, we have accounted in this way for 
the problem of not being able to rank farms on the frontier (efficient farms are 
identified by a unity) since the bias corrected efficiency scores allows also for a 
discrimination between efficient farms (Simar and Wilson 1998).

2.6  The coefficient of separation

A useful summary statistic to express the degree of overlap between confi-
dence intervals was introduced by Latruffe et  al. (2005) and further developed 
by Gocht and Balcombe (2006) is the coefficient of separation “CoS”. This is 
estimated by accounting for every farm in turn those peers that are significantly 
more efficient than it. In other words, we identify those farms that their lower 
bound is strictly greater than the upper bound (for a given significance level) of 
the farm in question.

In particular, let Ñ  be a number of farms “significantly” greater than N̂  other 
farms where N̂ = 1, 2,… ,N − 1 and N  is the total number of farms. Under per-
fect separation, we would observe
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for N̂ = 1, 2,… ,N − 1 . Noting the identity

A “CoS” can be constructed as

If perfect separation is assumed, then based on the identity presented above, 
this will equal to unity.

The statistic provides us with information which enable us to approximately 
estimate the percentage of the sample that is significantly less efficient than a 
given percentage of the sample, following the ranking of the sample. According 
to Gocht and Balcombe (2006) “the smaller the CoS (at a given level of signifi-
cance), the less we can differentiate between farm efficiencies, given the confi-
dence intervals obtained by the bootstrapped”.

3  Results

The mean technical efficiency over the 2009 and 2010 production years for the SBV 
model (rainfall and growing season length are incorporated into the analysis con-
sidered as fixed variables) is 0.82 and 0.80 respectively. Accordingly, for the CNV 
DEA model the average technical efficiency for 2009 is 0.74 and 0.76 for 2010. Fur-
ther information regarding the distribution of the efficiency estimates as well as the 
average efficiency for each year for both the CNV and SBV models are available in 
Table 2. By examining in contrast, the allocation of farms in relation to best per-
forming farms in the sample for both 2009 and 2010 it can be noted that the dis-
tribution of the farms in the SBV model became increasingly skewed towards the 
higher efficiency rankings. This is clear in Fig. 2 where the kernel density estimate 
for the 2 years for all 4 models is plotted. The right-hand side of the panel presents 
the plots derived from the CNV model while the left-hand side plots the bias cor-
rected efficiency scores for 2009 and 2010 respectively. In all cases the SBV model 
is skewed towards unity. This means that incorporating the additional restrictions in 

Ñ =
(
N − N̂

)

2

N2

N−1∑

N̂=1

(
N − N̂

)
+

1

N
= 1

CoS =
2

N2

N−1∑

N̂=1

(
Ñn

)
+

1

N

CoS =
2

N2

N−1∑

N̂=1

(
N − N̂

)
+

1

N
= 1
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the DEA LP to account for the non-discretionary input variables ensures that each 
farm is only compared with other farms in the sample with the same environmental 
conditions. Consequently, the farms efficiency levels obtained from the SBV model 
are not distorted by varying rainfall levels making the benchmark “fairer” and non-
misleading. For instance, when the mean efficiency score for the CNV model in 
2009 (θ = 0.74) would indicate that the proportional input potential saving is 26%, 

Table 2  Distribution of the DEA efficiency estimates for the CNV and the non-discretionary DEA model

Technical efficiency distribution Conventional DEA model Physical environment adjusted 
DEA model

2009
No. of farms

2010
No. of farms

2009
No. of farms

2010
No. of farms

0.3 ≤ eff < 0.6 69 29 29 16
0.6 ≤ eff < 0.7 49 75 35 64
0.7 ≤ eff < 0.8 34 47 40 47
0.8 ≤ eff < 0.9 33 36 40 40
0.9 ≤ eff < 1 18 23 20 22
Efficiency = 1 42 35 77 56
% of farms on the frontier 17 14 31 23
Mean efficiency 0.74 0.76 0.82 0.80
SD efficiency 0.17 0.15 0.16 0.15

Fig. 2  Kernel density estimates of the two DEA models for the 2009 and 2010 production years (Origi-
nal and Bias corrected efficiency scores)
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however, once the environmental characteristics (rainfall and length of growing sea-
son) are accounted, the input potential saving is 18% (Table 2). For the year 2010, a 
year with less variation of rainfall across the sample (i.e. more homogeneous sample 
regarding rainfall), the mean efficiency score for the CNV model (0.76) would indi-
cate that the proportional input potential saving is 24% when the SBV model finds 
such saving to be 20%.

Technical efficiency in 2010 was decreased by 2.4% for the SBV model (physical 
characteristics adjusted model) and increased by 2.7% for the CNV model in rela-
tion to 2009 levels. Technical efficiency is in lower levels in 2009 for both models, 
which might indicate the impact of the increase in input prices for fertilisers and soil 
improvements during that year4 (Table 2).

Figure 2 shows that when accounting for the variability in the environmental con-
ditions (rainfall, growing season length) the efficiency levels across cereal farms in 
the sample are similar to those derived by the CNV model when physical variability 
is not accounted for. Nevertheless, this does not mean that individual farms have 
similar scores under the CNV and the SBV models and or are ranked in the same 
position, which is relevant information for policy making.

We found that when measuring farm efficiency performance, environmental con-
ditions that are not under the control of the farmer (physical characteristics) matter 
in terms of the relative rankings between farms (Areal et al. 2012b; Henderson and 
Kingwell 2005). Differences in the relative ranking of farms between the SBV and 
CNV model indicate a failure to correctly assess the relative performance of each 
farm and account for the effect of the annual variation of rainfall in production effi-
ciency. For that purpose, the DEA bootstrapping efficiency scores are used to rank 
farms in the sample according to outputs of the CNV and SBV model. The results 
of the CNV and SBV bootstrapped models are summarised in Table 3. In addition, 
the bootstrapped DEA model allows the construction of confidence intervals which 
enable us to conclude about the statistical significance of change in ranking between 
the two models.

Considering the change in ranking between the CNV and the SBV model for 
2009 only a 2% of the farms was ranked the same, the remaining of the sample had 
an either positive or negative change in ranking. In particular, 34.32% of these farms 
had an increase in the ranking position, while 63.8% had a decrease in ranking posi-
tion when we compare the CNV and the SBV model (a positive change in ranking 
shows a movement towards the technical efficiency frontier in the SBV model while 
the opposite is indicated in the case of the negative change in ranking). Table  4 
shows the farms, the bias corrected efficiency scores and the change in ranking from 
the CNV to the SBV model. The largest positive change, 218 positions, is for farm 
25 (CNV efficiency score 0.45, SBV efficiency score 0.88). The largest negative 
change in ranking is recorded for farm 226 which drops 66 positions according to 

4 This is recorded from the Indicator A4a Input prices (Index 2010 = 100) based on data from the Agri-
culture Price Index (API) to monitor changes in input prices for agriculture in UK. Available online: 
https ://www.gov.uk/gover nment /uploa ds/syste m/uploa ds/attac hment _data/file/28566 8/agind icato r-a4-
27feb 14.pdf.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/285668/agindicator-a4-27feb14.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/285668/agindicator-a4-27feb14.pdf
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the SBV efficiency scores from ranked 8th to 74th (CNV efficiency score 0.88, SBV 
efficiency score 0.83). These extreme changes in ranking have a significant implica-
tion in the proportional reduction of inputs for the farming systems. In particular, in 
the first case (positive change), the SBV model suggest a 12% proportional reduction 
in inputs compared to a 55% proportional reduction suggested by the CNV model 
while in the second case (negative change) suggests further proportional decrease 
in the use of inputs when compared to the efficiency score of the CNV model (17% 
reduction). Similar results are derived for 2010 (2% of the farms had no change in 
ranking, 29% positive change and 69% negative change in ranking). The farms with 
the five highest changes in ranking are presented in Table  5 and a more detailed 
table is available as online supplementary material.

In Fig. 3 the ranking position of the farms in the sample are plotted based on the 
bias corrected efficiency score for the CNV models for years 2009 and 2010 in a 
descending order (higher to lower efficiency score). Then the ranking position of the 
farms for the SBV model is plotted in relation to the efficiency score derived from 
the CNV model. Hence, in Fig. 3 we observe the change in the ranking position of 
individual farms based on the output of the CNV and SBV models. When there is 
no change in the ranking position of a farm the points overlap, a positive change in 
ranking (the farm has moved towards the SBV frontier) will be observed as a shift 
to the left while respectively, a negative change in ranking will be observed as a 
shift to the right (the farm has moved away from the frontier). As expected we find 
relatively larger changes in ranking under a more heterogeneous scenario regarding 
rainfall (year 2009) than for an scenario with less differences in rainfall across the 
sample (2010) (see Fig. 1). However, in both cases changes in ranking do occur. The 
detailed distribution of change in ranking in respect to the range of efficiency scores 
for the two years is presented in Table 6.

In order to investigate the degree of differentiation between farm efficiencies we 
calculate the CoS, which provides an indication (approximately) of the percentage 
of farms in the sample that are less efficient than a given percentage of the sample, 

Table 3  Distribution of the 
mean of the bias corrected 
technical efficiency estimates for 
the CNV and SBV DEA models

2009 2010

Bootstrapped conventional DEA model
Mean 0.66 0.73
Std. dev 0.14 0.13
Confidence intervals, 5%
Lower bound 0.61 0.66
Upper bound 0.73 0.81
Bootstrapped sub-vector DEA model
Mean 0.69 0.72
Std. dev 0.12 0.12
Confidence intervals, 5%
Lower bound 0.64 0.65
Upper bound 0.76 0.80
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after the sample is ranked (Gocht and Balcombe 2006). Hence, the smaller the CoS 
is (at a given level of significance) then the less we can differentiate between farm 
efficiencies given the confidence intervals derived from the bootstrap. As it is pre-
sented in Table 7, the highest CoS is reached in the case of the conventional DEA 

Fig. 3  Change in the ranking position for the sample in 2009

Table 6  Distribution of change in ranking position of farms between the efficiency scores of the CNV 
and the SBV model

Range of efficiency score model 2009 2010

Negative Positive Zero Negative Positive Zero

0.3 < efficiency < 0.4 1 2 1 0 0 0
0.4 < efficiency < 0.5 15 9 0 4 4 1
0.5 < efficiency < 0.6 36 31 0 37 24 1
0.6 < efficiency < 0.7 23 23 0 48 14 1
0.7 < efficiency < 0.8 37 12 1 36 11 0
0.8 < efficiency < 0.9 41 7 0 42 16 1
0.9 < efficiency < 1 4 0 2 3 2 0
Total number of farms 157 84 4 170 71 4
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model for the 2009 harvest year data (CoS = 0.61) while the lowest is observed for 
the sub-vector model in the sample of year 2009 (CoS = 0.47). This is an important 
finding though not surprising. Not accounting for environmental characteristics that 
influence production (e.g. rainfall) in technical efficiency analysis contributes to dis-
criminating farms regarding their performance level. Once all farms are compares 
in a ‘fairer’ way (i.e. accounting for rainfall) differences between them are not as 
evident. Therefore, the SBV model provides a ‘fairer’ farm efficiency ranking, espe-
cially under heterogeneous physical conditions. Figure 4 shows the confidence inter-
vals and the point estimates of the two models for the 2009 and 2010 respectively 
are presented. 

Table 7  Coefficient of 
Separation for the different 
model assumptions in 2009 and 
2010 harvest years

Year/sample size Model Coefficient of 
separation (%)

2009/245 Conventional 61
2009/245 Sub-vector 47
2010/245 Conventional 56
2010/245 Sub-vector 48

Fig. 4  Confidence intervals and point estimates for the CNV and SBV models in 2009 and 2010



2603

1 3

Accounting for rainfall and the length of growing season in…

4  Discussion: Conclusions

A standard (conventional) and a non-discretionary (sub-vector) DEA models were 
employed to measure farm level technical efficiency for 245 cereal farms in Eng-
land during the production years of 2009 and 2010. The non-discretionary model 
integrated into the constraints of the model measurements of the annual rainfall and 
the length of the growing season for each farm in the sample in order to account for 
variations in the physical environment with direct impact on the production capac-
ity of the farm. These variations in the constraints of the DEA model (SBV) ensures 
the benchmarking of the farms with similar physical environment characteristics 
and consequently, farms are compared within a more homogenous sample. Further, 
considering rainfall and the length of the growing season in the analysis allows to 
control for spatial heterogeneity in the model avoiding issues associated with unob-
served heterogeneity such as model misspecification. Hence, the model accounts for 
spatial heterogeneity (peer comparisons, see Sect. 2.4) by comparing farms with the 
same physical environment conditions relevant to crop establishment and develop-
ment. Spatial heterogeneity has been introduced into stochastic frontier models in 
the most recent works of Schmidt et  al. (2009), Areal et  al. (2012a), Glass et  al. 
(2014), Glass et al. (2016), Gil et al. (2017), Adetutu et al. (2015) and Vidoli et al. 
(2016). Most recently the direct relationship of spatial dependency (Anselin 2002) 
and technical efficiency of farms is also demonstrated in Pede et al. (2018). A differ-
ent approach that accounts for both spatial dependence and spatial heterogeneity is 
presented in the recent works of Andreano et al. (2017), Billé et al. (2017) and Billé 
et al. (2018). In the area of non-parametric efficiency analysis, the recent work by 
Vidoli and Canello (2016) has proposed a framework that is possible to consider the 
concept of spatial dependence into nonparametric efficiency models that is account-
ing the spatial proximity of peers rather than the relationship between inputs, outputs 
and the set of contextual exogenous factors with direct impact to production capac-
ity. However, whereas the literature highlighted above focuses on ways to account 
for unobserved heterogeneity in circumstances where information such as climatic 
conditions is not present we do incorporate this key information into the model (i.e. 
rainfall and the length of the growing season). We argue and show that the physical 
environment (contextual exogenous factors to farm management) has a significant 
impact on technical efficiency and productivity measurements which has important 
policy implications. The relevant information used here is available from national 
meteorological offices and it can be easily combined with other sources of data (e.g. 
farm surveys) as long as it contains some type of geographical information.

As it was observed in the results, the non-discretionary model is adjusting the 
ranking for the farms that were previously benchmarked within an unfavourable 
environment but it maintains the same ranking for the remaining farms in the sample 
as has also been observed by Henderson and Kingwell (2005).

Our results suggest that standard efficiency analyses that do not account for envi-
ronmental conditions such as rainfall levels may lead to farm performance measure-
ment bias and consequently be misleading for policy advice. For instance, if the pol-
icy aim was to achieve high levels of productivity through efficiency improvement 
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throughout the identification of less efficient farms to provide them with the neces-
sary management support the standard approach may not identify the “right” farms 
in need of technical/knowledge support. This is in line with what was concluded 
in Rahman and Hasan (2008) where they suggested that an extended framework 
of analysis is required to evaluate the production performance of farmers in order 
to avoid the upward bias inefficiency which will lead to allocation of resources to 
less than optimal uses. Moreover, the inclusion of rainfall and length of growing 
season in the SBV model accounts for an important parameter in agricultural pro-
duction since it improves soil’s production capacity and enables the use of chemi-
cal fertilisers and other inputs effectively. The aim of considering the variations in 
rainfall intensity within the model is to capture the negative impacts that excessive 
rainfall can cause in the production system (i.e. flooding, nutrient loss) and hence 
lower efficiency (Olayide et  al. 2016). Based on these information policy makers 
could allocate resources to less efficient farmers in order to intervene and prevent 
the negative impacts of agricultural rainfall—runoff and soil nutrient loss. In addi-
tion, such an approach will contribute in the characterisation of regimes that would 
contribute in the detail understanding of the production environment of farming sys-
tems and provide information and guidance to policy design and the development of 
extension services (Billé et al. 2018). Hence, a spatial adjusted DEA model could 
provide further insight to the leading and lagging performances of farming systems 
based in Less Favoured Areas (LFAs) and therefore understand better the physical 
environment and the impact it has on production performance (Hoang 2013). When 
additional characteristics of the physical environment are taken into consideration in 
the model specifications, such as soil conditions, carbon storage capacity and field 
aspects, it is possible to develop policies that target more suitable landscapes for 
agricultural production within the sustainable intensification framework (Gadanakis 
et al. 2015a). In this way policy interventions may simultaneously aim at increasing 
productivity while enhancing biodiversity and the provision of ecosystem services 
(Strohbach et al. 2015). Furthermore, the proposed model considers both the char-
acteristics of the farming system and the spatial heterogeneity associated with the 
physical environment, both determining the farm production capacity. Hence, the 
methodology provided here can be used for designing extension services and/or pol-
icies that support the sustainable development of the farm system. As discussed by 
Gadanakis et al. (2015a, b) a non-discretionary DEA model could be used to design 
policy interventions that will address the increased challenges in water availability 
due to variations in weather patterns and the increased demand for water in agri-
culture derived from the continuously growing population and hence food demand. 
Accounting for variations in the physical environment allows for a better allocation 
of resources helping to isolate the needs for different agricultural systems i.e. rain-
fed, irrigated, supplementary irrigated (cash crops in temperate climates) systems 
and therefore provide guidance for the design of water abstraction regulations in dif-
ferent geographical locations.

Significant changes in farm efficiency ranking were observed in both 2009 and 
2010 production years. In particular, for the two separate periods the ranking has 
positively changed for approximately the 33% of the farms in the sample while a 
negative change in ranking was observed for approximately the 65% of the farms. 
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In addition, in both periods 2% of the farms retain their ranking position. Hence, 
it can be concluded that the consideration of environmental conditions as non-dis-
cretionary inputs in the production function is suggested to account for variations 
in exogenous parameters and ensure the homogeneity of the benchmarking sample 
(Henderson and Kingwell 2005).

The above is also supported by the CoS statistic which showed that the considera-
tion of rainfall as a non-discretionary input increases the number of fully efficient 
farms and the technical efficiency level of the farms below the frontier. Therefore, 
in order to reduce biased estimates of technical efficiency and also to improve man-
agement advice for farming systems, variations in environmental conditions should 
be considered to secure a homogenous benchmarking sample. Failing to account 
for physical parameters that significantly impact crop production (i.e. rainfall and 
length of growing season) in technical efficiency analysis will contribute in an unin-
tentional discrimination of farms regarding their performance level (Rahman and 
Hasan 2008; Sherlund et al. 2002). Once all farms are compared in a ‘fairer’ way 
(i.e. accounting for rainfall) differences between them are not as evident. Future 
work will need to focus towards the isolation of exogenous factors that are linked 
to the physical environment and towards the characteristics of the human capital. 
The level of education, the adoption of innovation technologies and the behaviour 
of farmers are important parameters linked to production efficiency of farming sys-
tems. Hence, accounting for the above variations in efficiency analysis will allow 
further understanding of the specific needs for farmers within the frontier (ineffi-
cient) and what policy interventions are required to fully exploit the production tech-
nologies employed by their peers on the frontier (efficient) (Pede et al. 2018).

Our findings have shown that the estimates of technical efficiency can be improved 
when the DEA model accounts for environmental production conditions. Thus, future 
work should consider extending the approach of Simar and Wilson (2007) to account 
for both physical environment characteristics (production function) and for crop spe-
cific managerial characteristics (education, farm business specialisation, timing of the 
various agricultural operations, scale of operation, agri-environmental payments, etc.) 
in order to explore the determinants of inefficiency. This will enable further policy 
recommendations that will simultaneously account for spatial variations and farm spe-
cific characteristics to improve production performance of farming systems within the 
concept of sustainable intensification and therefore improve both the economic perfor-
mance of farming systems and simultaneously reduce their environmental pressures 
generated. Furthermore, although this is not within the scope of this paper, an analysis 
on returns to scale for the adjusted DEA model (SBV) could be used to provide path-
ways for long term improvements and planning which could be used to strategically 
position a farm in relation to the long-term average cost curve and hence improve eco-
nomic efficiency and productivity.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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