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Abstract  We address in this paper a multi-compartment vehicle routing prob-
lem (MCVRP) that aims to plan the delivery of different products to a set of geo-
graphically dispatched customers. The MCVRP is encountered in many industries, 
our research has been motivated by petrol station replenishment problem. The 
main objective of the delivery process is to minimize the total driving distance by 
the used trucks. The problem configuration is described through a prefixed set of 
trucks with several compartments and a set of customers with demands and pre-
fixed delivery. Given such inputs, the minimization of the total traveled distance is 
subject to assignment and routing constraints that express the capacity limitations 
of each truck’s compartment in terms of the pathways’ restrictions. For the NP-
hardness of the problem, we propose in this paper two algorithms mainly for large 
problem instances: an adaptive variable neighborhood search (AVNS) and a Par-
tially Matched Crossover PMX-based Genetic Algorithm to solve this problem with 
the goal of ensuring a better solution quality. We compare the ability of the pro-
posed AVNS with the exact solution using CPLEX and a set of benchmark problem 
instances is used to analyze the performance of the both proposed meta-heuristics.
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1  Introduction

The multi-compartment vehicle routing problem (MCVRP) is an extension of the 
capacitated vehicle routing problem (CVRP), where the MCVRP consists of design-
ing a set of minimal cost routes to serve demands for different types products of a 
set of customers. The MCVRP arises frequently in petrol distribution systems. Our 
focus in this paper will be devoted to procedures in the petroleum company’s opera-
tions. (a) Different types of petroleum products have to be delivered by the company 
to a set of geographically dispersed stations by a fleet of identical tank-trucks depart-
ing from a single depot. (b) Each station orders known quantities of one or more 
products. (c) However, these products are incompatible, they must be transported 
together in separate compartments of the same truck. (d) Trucks are partitioned into 
a constant number of compartments with fixed capacities. Each compartment is 
reserved for only one product. Moreover, all products ordered by each station must 
be delivered by only one truck. (e) Note that each truck is equipped with a flow 
metres. This means that the total stations’ demand assigned to any route for each 
product does not exceed the capacity of the reserved compartment for this product. 
The company’s goal is to determine a set of routes satisfying all the demanded prod-
ucts at minimal routing cost and number of trucks (fleet size).

Further applications of MCVRP in the context of petrol station replenishment 
were presented in the literature, Avella et  al. (2004) developed a heuristic and 
branch-and-price algorithm based on a set partitioning formulation to solve a real-
word petrol replenishment problem with several tank-trucks of different types. Ng 
et al. (2008) studied two small petrol distribution networks in Hong Kong. They pre-
sented a model for simultaneously assigning trips to trucks and stations.

The collection of papers by Cornillier et al. (2008a, b, 2009, 2012) have several 
presented approaches for different versions of the petrol station replenishment prob-
lem. In Cornillier et al. (2008a), an exact algorithm was proposed to solve the petro-
leum distribution problem. Later, heuristics and the exact method of Cornillier et al. 
(2008a) was used for the multi-period case of the problem were proposed in Cornil-
lier et al. (2008b) Two heuristics based on the mixed linear programming formula-
tion were presented for the problem with time windows in Cornillier et al. (2009). In 
Cornillier et al. (2012), a heuristic was developed for the multi-depot version of the 
problem. Popović et al. (2012) addressed the fuel delivery problem characterized as 
multi-period multi-product inventory routing problem (IRP) with homogenous tank-
trucks and deterministic consumption that varies with each station and each product 
and to solve this problem The authors proposed a variable neighbourhood search 
(VNS) heuristic, in which the stochastic VNS heuristic showed better results than 
the deterministic “compartment transfer” (CT) heuristic. More recently, Coelho and 
Laporte (2015) proposed classification and mathematical models for the different 
MCVRPs that arises in the distribution of petroleum products. They developed also 
a branch-and-cut algorithm that is applicable to all of these problems. In the above 
papers concern the petrol station replenishment problem, which is the control appli-
cation of our problem, trucks often are not equipped with a flow metre, that’s why 
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each compartment that fully contains one product should be delivered and emptied 
completely during the visit of one station.

Among other real-life applications of the MCVRP are the collection of milk from 
farms located on the country side, where trucks with multi-compartment prevent dif-
ferent milk types from mixing (see for example Paredes-Belmar et al. 2016). Oppen 
and Løkketangen (2008) solved the livestock collection problem where different ani-
mal categories are transported from ranches to abattoirs on separate compartments. 
Chajakis and Guignard (2003) targeted the delivery of groceries problem where 
refrigerated and non-refrigerated grocery items are stored in separate compartments 
in the same truck. The memetic algorithm and a tabu search were applied to trans-
portation of animal foods to farms in Fallahi et  al. (2008). There have been also 
various approaches to the waste collection problem in (Reed et al. 2014; Abdulkader 
et al. 2015; Elbek and Wøhlk 2016). Lahyani et al. (2015) proposed a mathematical 
formulation and branch-and-cut algorithm to solve the multi-period MCVRP in the 
olive oil collection process in Tunisia.

To the best of our knowledge, few other contributions have considered the vari-
ant defined above of the MCVRP and have solved the problem without taking into 
account its periodicity aspect (Avella et al. 2004; Coelho and Laporte 2015; Lahyani 
et al. 2015), stochastic demands (Elbek and Wøhlk 2016), time windows (Cornillier 
et al. 2009), free assignment of products to compartments (Oppen and Løkketangen 
2008; Cornillier et al. 2009; Coelho and Laporte 2015). Both these works fall under 
the category of inventory-routing problems. The different modeling features, opti-
mization models and solution approaches developed for this variant of the MCVRP 
have been described below.

Fallahi et  al. (2008) applied the MCVRP in which the different animal foods 
is supplied to the farms separately. They proposed three algorithms a constructed 
heuristic, a memetic algorithm combined with a path relinking method used as post 
optimization, and a tabu search to solve this problem. These algorithms have been 
tested using a set of instances obtained by adapting benchmark instances for the 
classical VRP. Each algorithm is compared with a version in which the orders of 
customers cannot be split and the multi-compartment version. The multi-compart-
ment version improved the results on average. By comparing two algorithms, the 
tabu search generated better solutions than memetic algorithm but it required more 
running time. In addition, the results of the algorithms found very close to the best-
known classical VRP solution.

Muyldermans and Pang (2010) proposed a guided local search for the MCVRP 
and demonstrate the benefits of co-collection of sorted waste from different loca-
tions to central location by multi-compartment vehicles over separate collection by 
vehicles. They compared the results with Fallahi et al. (2008). They assumed that 
more than one vehicle can visit the customer to fulfill demands of different products.

Dirac (1953) investigated the vehicle routing problem with compartments 
(VRPC), which generalizes the MCVRP to flexible compartments, and the alloca-
tion of several products to a compartment, subject to constraints on the products 
and compartments incompatibilities. They proposed a heuristic approaches includ-
ing constructive methods, local searches, solution modification by destruction 
and reconstruction, and meta-heuristics. The best metaheuristic from the highest 
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performing was the record-to-record-travel accepting solutions with a relative devia-
tion of up to 3%.

Reed et al. (2014) proposed an ant colony system (ACS) with 2-opt local search 
improvement for the classical CVRP. They extended their approach to solve the 
MCVRP. They evaluated their algorithm on five sets of instances. Abdulkader et al. 
(2015) was inspired from the work of Reed et al. (2014) algorithm extension for the 
MCVRP. They proposed a hybridized ant colony algorithm (HAC) algorithm com-
bined with local search procedures for the MCVRP. They generated new benchmark 
instances to test the performance of their algorithm. The numerical experiments 
indicated on average, that the proposed algorithm improved the solutions of Reed 
et al. (2014) by about 5% using less computational time.

As we are addressing an NP-hard optimization problem, since it is a generaliza-
tion of the vehicle routing problem (Battarra et al. 2014), we were only able to solve 
problem instances with a limited size to optimality by application of a mathemati-
cal model-based exact solution approach. Therefore, an adaptive variable neighbour-
hood search (AVNS) and a PMX-based genetic algorithm are designed to solve the 
large scale instances. To evaluate the performance of the proposed algorithms, its 
results are compared with the results of exact method, existing meta-heuristic algo-
rithms. This paper also contributed on developing a mathematical formulation of the 
one compartment VRP and used CPLEX and our AVNS to point out the economic 
benefits of introducing multiple compartments on the vehicles.

The remainder of this paper is organized as follows: The MCVRP is formally 
defined and modeled as a linear program in Sect. 2. Section 3 presents a description 
of the AVNS heuristic. The description of the PMX-based genetic algorithm is given 
in Sect. 4. Computational results are presented in Sect. 5, followed by the conclu-
sions in Sect. 6.

2 � The MCVRP: description and problem modelling

The MCVRP can be modeled as an undirected graph G = (V ,E) , where 
V = {0} ∪ Vc is the vertex set that includes the depot and the set of customers Vc . 
The edge set E = {{i, j}|i, j ∈ V , i ≠ j} expresses the distance between each pair of 
geographical points: a distance dij is associated to each edge {i, j} ∈ E.

Customers can receive a set of P products using available fleet of K homogene-
ous trucks with capacities Qmax . Each truck starts its tour from the depot, visit its 
designated customers, and then turns back to the depot. Trucks are equipped with 
multiple compartments with a limited capacity, dedicated to different types of prod-
ucts. All trucks have the same number of compartments. Moreover, the number of 
compartments is equal to the total number of products. This means that all trucks are 
equipped with |P| compartments with respective capacities Qp ( p = 1,… , |P| ). Each 
customer i ∈ Vc has a known demand qip ≤ Qp , for each product p. Indeed, each cus-
tomer i is visited exactly once by only one truck. The objective of the MCVRP is to 
minimize the total travel distance for all routes using a minimum number of trucks 
from an available fleet of K trucks, while satisfying the demands and compartments 
capacity constraints of the used truck.
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The proposed formulation is based on the following assumptions:

•	 The fleet is homogeneous.
•	 Trucks have multiple compartments.
•	 Each truck starts its tour and the end returns to the depot.
•	 Each compartment is dedicated to one type of product.
•	 The number of compartments is equal to the number of products.
•	 Demands of all customers are constant and known in advance and must be fully 

met.
•	 Each customer is received different products exactly once by single truck.

The MCVRP formulation requires the following data entries and decision variables:

Inputs Outputs

P Set of products
xijk =

{
1 if truck ktravels from customeri to j

0 elsewhere

K Set of trucks
zjkp =

{
1 if customer jrecieved product p from truck k

0 elsewhere

V Set of all graph vertices

 
yik =

{
1 if truck k delivers customer i

0 elsewhere

Vc Set of customers  uikp : Continuous variables that represent the remain-
ing quantity of product p by truck k after leaving 
customer i

dij Distance between i and j
Qmax Capacity of each truck
qip Customer i’s demand for product p
Qp Capacity of truck compartment 

dedicated to product p

The following mathematical model (1)–(12) accounts for the MCVRP is available in 
Kaabachi et al. (2016)

(1)Minz(x) =
∑

i∈V

∑

j∈V ,j≠i

∑

k∈K

dij xijk

(2)
S.t.
∑

k∈K

yik = 1 i ∈ Vc

(3)
∑

k∈K

y0k ≤ |K|
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•	 The objective function (1) minimizes the travel distance for all routes performed by 
the used trucks.

•	 Constraints (2) and (3) impose that exactly one truck services each customer and a 
subset of trucks leave the depot.

•	 Constraints (4) and (5) force each truck to arrive and leave from customer i only if it 
serves that customer.

•	 Constraint (6) imposes that the total demand delivered by each truck is less than its 
capacity.

•	 Inequalities (7) and (8) are subtour elimination constraints imposing both the capac-
ity and connectivity of the feasible routes.

•	 Constraint (9) states that each customer’s demand for each product must be deliv-
ered by only one truck.

(4)
∑

i∈V ,i≠j

xijk = yjk j ∈ Vc, k ∈ K

(5)
∑

j∈V ,i≠j

xijk = yik i ∈ Vc, k ∈ K

(6)
∑

i∈V ,p∈P

qip yik ≤ Qmax k ∈ K

(7)uikp − ujkp + Qp xijk ≤ Qp − qip i, j ∈ Vc, i ≠ j, k ∈ K, p ∈ P

(8)qip ≤ uikp ≤ Qp i ∈ Vc, k ∈ K, p ∈ P

(9)zjkp ≤
∑

i∈V

xijk j ∈ Vc, k ∈ K, p ∈ P

(10)
∑

k∈K

zjkp = 1 j ∈ Vc, p ∈ P

(11)
∑

j∈Vc

zjkp qjp ≤ Qp k ∈ K, p ∈ P

(12)
xijk, zjkp, yik ∈ {0, 1} i, j ∈ V , k ∈ K

j ∈ Vc, p ∈ P
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•	 Constraint (10) means that each product ordered by a customer is delivered by 
exactly one truck.

•	 Constraints (11) checks the compartment capacity constraint for each truck.
•	 Constraints (12) state the binary nature of the decision variables.

3 � An adaptive variable neighborhood search for the MCVRP

3.1 � The variable neighborhood search

The Variable neighborhood search (VNS) is an effective metaheuristic for combi-
natorial optimization problems proposed by Mladenović and Hansen (1997) (for 
surveys of VNS, see Hansen et al. 2008a, b). The VNS uses two or more neighbor-
hoods and systematically changes the neighborhood within a local search algorithm.

It explores the different neighborhood structures in both deterministic and sto-
chastic ways. In fact, it chooses a point from the kth neighborhood stochasti-
cally, then, it performs a deterministic local search. A deep study of the literature 
reveals that the VNS is efficient in solving optimization problems (Brimberg et al. 
2017; Wang et al. 2017; Rahimian et al. 2017; Wang et al. 2017). Moreover, sev-
eral VNS variants are proposed for solving large problem instances for routing 
problems (Bula et al. 2017; Breunig et al. 2016; Li and Tian 2016). For instance, 
in the local search step of the VNS we can use more than one neighborhood, such 
variant called the general VNS (GVNS). Besides to that, the proposed approach, 
called AVNS, disposes a learning stage to enhance its performance. It can provide 

Fig. 1   The Adaptive variable neighborhood search scheme
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a better investigation by obtaining knowledge acquired after interaction with the 
search space, which lead to a better framework that can generate improved solutions. 
The main steps of the AVNS are stated in Fig. 1 as follows:

The algorithm starts with a random feasible solution, then it applies a local search 
procedure that alternates between six neighborhoods. The next step of the AVNS con-
sists on a perturbation operator that aims to diversify the solution. These process is iter-
ates until a termination criterion is met.

3.2 � Self‑learning local search

In the local search procedure we used a variable neighborhood descent with self learn-
ing selection applying a set of neighborhoods to explore promising solutions. Further-
more, in order to design an adaptive control mechanism for the neighborhood selec-
tion and combining, we assign a weight wj

i
 to each one. The weights are designed and 

updated, so that they reflect the relative performance of each neighborhood during the 
search, two metrics are proposed:

(1) improve is used to enlarge the search space using alternative neighborhood in 
terms of solution quality. It is denoted �f j

i
 and calculated as follows: let an incumbent 

solution sj at iteration j and s′ be the solution obtained by neighborhood Ni , f denotes 
the fitness value of the solution:

(2) time: is applied to evaluate the computation time required to improve the current 
solution called �tj

i
 . It measures the time difference between the starting operation 

and finding the obtained solution s′ performed by neighborhood Ni.
We then calculate the weight ratio as follows: rj

i
=

�f
j

i

�t
j

i

 . At each iteration j, AVNS 

chooses (among neighborhoods where some improvement can still be obtained), the 
one having the highest weight.

The used neighborhoods are based on five well-known edge-exchange and customer-
exchange operators:

Swap Two successive customers are swapped, we allowed customers from different 
vehicles.

Exchange Two customers are exchanged. Then the solution is updated regarding the 
structural constraints.

Insert Customer is removed from its current position in a tour and reinserted in the 
solution.

2-opt Two edges are deleted then added in order to obtain lower cost tour, it removes 
the ”crossings” of edges.

3-opt Three edges are deleted then three edges are added to restore the tour. some 
3-opt moves are equivalent to apply 2-opt move two times.

Double-bridge Four edges are deleted then Four edges are added, but while keeps 
the orientation of the tour, so it is a special case of the 4-opt neighborhood.

�f
j

i
= f (sj) − f (s�).
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4 � A PMX‑based genetic algorithm for the MCVRP

4.1 � The genetic algorithm

We develop a partially matched crossover PMX-based GA termed GAPMX that 
operates as follows:

The initial population generation applies the greedy randomized adaptive 
search procedure (GRASP). Then we apply the genetic operators until a stopping 
criterion is reached. The GAPMX steps are described in Algorithm 1.

Algorithm 1 GRASP Genetic algorithm (GRASP −GA) for the WSRP
Input:
1: Generate the initial population P0: [random + GRASP ]
2: while terminate criterion t do
3: for i < psize do
4: Select ai as a father and bi as a mother of pi
5: Crossover PMX(xi, xj) ← ai and bi
6: if feasible and improves(x1, x2) then
7: x′ ← x
8: end if
9: end for
10: Mutate x′

11: end while
Output:

4.2 � The GRASP algorithm

The greedy randomized adaptive search procedure (GRASP) is a heuristic 
algorithm that progressively builds from scratch. It consists of successive con-
structions of a greedy randomized solution until a complete feasible solution is 
obtained. The applied greedy randomized procedure introduced in Haddadene 
et  al. (2016) operates as follows: for each available vehicle we assign an initial 
path. Then, by considering a sorted list of potential customers, these routes are 
constructed from the list while respecting time windows constraints. For the con-
struction of the candidate list, we used the same procedure as Haddadene et al. 
(2016). Once all customers are visited, the algorithm stops. This procedure can 
lead to non feasible solution, that’s why additional nodes are inserted. The selec-
tion of the next element is determined by the fitness of all candidate solution 
according to the value of the objective function.
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4.3 � Solution encoding

The encoding of a chromosome is reported in Fig. 2 as a (n + m + 1)-sized vector 
that displays the n customers served by m vehicles.

4.3.1 � Partially matched crossover (PMX)

Many attempts have been suggested to discover an appropriate crossover operator 
for the routing problems, hence Goldberg and Lingle (1985) proposed the Par-
tially Matched Crossover (PMX) crossover. In fact, it outperformed other opera-
tors in the work of Kumar and Karambir (2012). The mechanism of the PMX 
crossover, as presented in Fig. 3, builds two offspring as flows. It selects one par-
ent randomly, then it chooses a sub-sequence from the gene strings. A matching 
selection is provided while preserving the order and position as possible from the 
other parent.

4.3.2 � Mutation

To maintain the genetic diversity from one generation of a population to the next, 
we use the mutation operator. As reported in Fig.  4, it consists on altering one 
gene values in a chromosome from its original state.

Truck1 Truck2 Truck3

0 1 2 3 0 4 5 6 0 7 8 9 0

Fig. 2   Example of chromosome: permutation encoding

Truck1 Truck2 Truck3

P1 0 1 2 3 0 4 5 6 0 7 8 9 0

P2 0 3 5 8 0 1 2 6 0 7 4 9 0






4 ↔ 1
5 ↔ 2
6 ↔ 6

⇓
O1 0 4 5 3 0 1 2 6 0 7 8 9 0

O2 0 3 2 8 0 4 5 6 0 7 1 9 0

Fig. 3   Partially matched crossover (PMX)
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5 � Computational experiments

The MCVRP mathematical model (1)–(12) is coded in IBM ILOG CPLEX 12.6 
in order to output optimal or lower bound solutions. To explore further the solu-
tion space, we also coded the AVNS and GAPMX. All experiments were per-
formed under a personal computer with Intel‸ CoreTM i5-5200U CPU @ 2.20 
GHz 6,00 GO RAM and Windows 8.1 pro, 64-bit operating system, x64-based 
processor. Four sets of numerical experiments were performed, using the afore-
mentioned four configurations in Table 1, in order to evaluate the performance 
of the AVNS. The problem size split into two classes:

•	 Small, randomly-generated instances Up to 15 customers, randomly gen-
erated according to the four configurations G1,… ,G4 . We generated 18 
instances for each configuration, giving rise to 72 small-sized problems.

•	 Large instances. Ranged between 50 and 200 customers. We used the 28 
benchmark problems of Abdulkader et al. (2015).

5.1 � Results for the small, randomly‑generated instances

The design of the experimental strategy for small instances can be described in 
the following steps (see Fig. 5):

•	 Step 1: Solve the problem using CPLEX.
•	 Step 2: Perform the AVNS to get an optimal/ near optimal solution.
•	 Step 3: Evaluate AVNS solutions using the gap measurement.
•	 Step 4: Repeat the following until having a feasible gap.

Based on the four configurations displayed in Table 1, we drive an experimental 
investigation of the MCVRP with a number of customers n ∈ {5, 10, 15} . To do 

Fig. 4   Mutation operator Truck1 Truck2 Truck3

0 1 2 3 0 4 5 6 0 7 8 9 0

↓ ↓
0 1 2 3 0 8 5 6 0 7 4 9 0

Table 1   Problem calibration for small MCVRP instances

Inputs G1 G2 G3 G4

Customer i(i=1,…,|Vc|) qip [200, 600] ]200, 600] [600, 1000] ]600, 1000]
Truck k(k=1,…,|K|) Qmax [3000, 3600] [3600, 4200] ]3000, 3600] ]3600, 4200]
Rate L(%) [17, 123] [21, 143] [8, 64] [10, 75]
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so, 18 MCVRP instances for each configuration Gs(s=1,…,4) were randomly gen-
erated and used to assess the quality of the solutions produced by the proposed 
AVNS. We report in Table 1 the following problem parameters:

•	 Each customer i disposes of its demand qip for each product p.
•	 Each truck k is characterized by:

•	 Qmax : its capacity limit
•	 Qp : its capacity limit of each compartment
•	 |P|: number of products (which is equal to the number of compartments)
•	 dij : driving distance between customers i and j

•	 L =
Qmax∑

i∈Vc

∑
p∈P qip

× 100 . It informs about the average quantity to be loaded in 

each truck for the delivery process. It is inversely proportional to the number 
of trucks.

•	 ARPD (Average Relative Percentage Deviation): the percentage between the 
best solution z(x∗) obtained using CPLEX solver and the best found solution 
z(x) obtained by the AVNS. 

As the problem calibration is expressed in terms of customers and trucks data, 
Table 1 outputs four configurations of the problem inputs as follows:

Configurations We used the CPLEX to find the optimal solutions for the small 
instances which can be used to evaluate the accuracy of the proposed AVNS.

(13)ARPD =
z(x) − z(x∗)

z(x∗)
× 100

Fig. 5   Main steps of the 
experimental strategy for small 
instances
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Tables 2, 3, 4 and 5 report the numerical results related to the MCVRP tested 
regarding each problem configuration and display the ARPD between z(x∗) the 
CPLEX solution and z(x) the best value obtained by the AVNS.

Configuration G1 Table  2 shows that CPLEX generates optimal solutions for 
all instances in set 1 ( C01 − C06 ) within an average runtime of 1.43 seconds and 
all instances in set 2 ( C07 − C12 ) in an average of 2.11 seconds.

However, half of the instances in set 3 ( C13 − C18 ) are solved optimally, and the 
require mean CPU of 313.35 seconds.

Configuration G2 In Table  3, CPLEX is able to solve instances ( C19 − C24 ) of 
set 1 and ( C25 − C30 ) of set 2 to optimality in the average of 1.30 and 1.87 seconds, 
respectively, and five out of six instances in the last set of the instances ( C31 − C36 ) 
in average of approximately 1 hour. For the unsolved instance C34 , CPLEX ran for 3 
hours and didn’t converge.

Configurations G3 and G4 When observing Tables 4 and 5, all instances in these 
tables are solved optimally by CPLEX. The average runtime for the instances in 
Table 4 is 2.17 seconds and 2.26 seconds for the instances in Table 5.

It can be noticed that instances look harder to solve when the loading of orders 
level decreases and the number of trips’ trucks increases, the run time of CPLEX 
increases quickly and some instances cannot be solved.

Lower bound method For the instances ( C13 , C16 , C18 and C34 ), CPLEX reports an 
out of memory condition. Therefore, we tried to apply the the Lower Bound (LB) 
obtained from the continuous relaxation of the mathematical model for MCVRP 
to solve these instances using CPLEX. For this purpose, we relaxed the integral-
ity requirement on the decision variable. This implies changing the integrality con-
straint xijk ∈ {0, 1} by its continuous relaxation 0 ≤ xijk ≤ 1.

Regarding the solution quality, results in Tables 2, 3, 4 and 5 indicate that our 
algorithm finds very close to optimal solutions to all instances solved by CPLEX 
with a substantially much shorter computation time. CPLEX cannot provide a fea-
sible solution by applying the LB method to four instances ( C13 , C16 , C18 and C34 ). 
The previous results (optimal solutions) confirm that the solutions obtained by our 
algorithm are much better than those obtained by applying the LB method. Moreo-
ver, the average computation time required by our proposed algorithm to solve all 
problem instances is much less than that required by CPLEX.

Loading level Obviously, an important factor that influences the difficulty of a 
MCVRP instances is the loading level L. In fact, this rate describes the ratio between 
the truck’s capacity and total demand of customers.

L appears to be interesting to evaluate in the context of the study, since it might 
be possible to determine the number of trucks needed for satisfying all custom-
ers’ demands and, thus, the loading level of each truck for delivery of products to 
customers.

In this way, this rate influences the total driving distance z(x∗) required to service 
all customers. When L increases, the total travel distance decreases in the four con-
figurations G1 , ..., G4 (see Figure 6).

We have also observed that this rate is varied from one configuration to another. 
For example, in the first two configurations G1 and G2 the customers’ demands qip 
are the same in the problem C01 and C19 instances however the capacity limit of 
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trucks Qmax = 3600 in C19 greater than Qmax = 3000 in C01 . We can observe that the 
total driving distance z(x∗) decreases when the capacity of trucks Qmax or the rate L 
increases.

Interestingly, it has been found that although the rate L have an impact on the 
travel distance in the different configurations, and thus, it has also an influence on 
the average computing time needed to obtain the best solution.

When L decreases, the problem instances become more difficult and costly in 
term of running time to solve. Therefore, it can be concluded that, the complexity 
of these problems dependent on this rate.

In addition, for the small-instances, the computational time of the CPLEX 
increases nearly linearly when the number of customer is under 15. However, the 
computational time grows factorially when the number of customers increases.

Based on the results presented in Tables 2, 3, 4 and 5, the configuration G3 is 
solved with the shortest run time in an average of 2.18 seconds.

Besides to that, we can notice from Fig.  7 that the AVNS outperforms the 
CPLEX in terms of CPU time for all random generated instances (Table 6).

Table 2   Computational results for small-sized MCVRP with configuration G1

Inst n L (%) Qmax Qp |P| CPLEX AVNS ARPD

z(x∗) Type CPU z(x) CPU

C01 5 100.53 3000 1500 2 1473.651 Opt. 01.29 1473.65 0.001 0.00
C02 77.65 1000 3 3752.928 Opt. 01.40 3752.92 0.001 0.00
C03 98.83 3300 1650 2 1473.651 Opt. 01.23 1473.65 0.001 0.00
C04 81.28 1100 3 377.690 Opt. 01.01 377.69 0.002 0.00
C05 122.07 3600 1800 2 1432.752 Opt. 00.95 1432.75 0.001 0.00
C06 73.57 1200 3 377.690 Opt. 01.29 377.69 0.002 0.00
C7 10 44.05 3000 1500 2 3387.493 Opt. 02.21 3387.49 0.01 0.00
C8 27.31 1000 3 3126.957 Opt. 01.47 3126.95 0.02 0.00
C9 46.49 3300 1650 2 3228.015 Opt. 01.36 3228.01 0.01 0.00
C10 29.44 1100 3 2890.640 Opt. 01.47 2890.64 0.01 0.00
C11 50.43 3600 1800 2 4534.199 Opt. 01.45 4534.19 0.02 0.00
C12 32.32 1200 3 1352.962 Opt. 02.60 1352.96 0.01 0.00
C13 15 25.49 3000 1500 2 1170.375 LB 02.91 5418.63 08.05 362.97
C14 17.72 1000 3 8150.500 Opt. 02.59 8150.51 06.02 0.00
C15 29.24 3300 1650 2 6216.832 Opt. 05.20 6216.81 03.31 0.00
C16 18.74 1100 3 3759.186 LB 25.30 4239.60 04.04 12.77
C17 31.60 3600 1800 2 5124.037 Opt. 932.28 5124.03 05.68 0.00
C18 22.01 1200 3 5100.490 LB 04.36 5833.30 04.54 14.36
Average 51.60 3162.78 55.02 3692.07 01.76 21.67
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5.2 � Comparison with state of the art approaches

The used MCVRP benchmark instances are proposed by Abdulkader et al. (2015). 
They consist in an enrichment of Christofides’ Christofides and Mingozzi (1979) 
benchmark using the strategy of Reed et  al. (2014). The capacity ratio 1/3: the 
capacity of the vehicle is split into two compartments (0.25Q and 0.75Q).

Based on the results reported in Table 7, we conclude that: the GAPMX pro-
vides promising results as it finds the best-known for two instances and it outper-
forms the state-of-the-art approaches for four instances. The underline and bold 
results in Tables  7 and 8 denote the instances where our approach outperforms 
the state-of-the-art results.

We report in Table 7 the solution generated by the AVNS and GAPMX, and 
compared them to the ACS and HAC. The testbed counts 28 instances. Based on 
Table 7, we notice that:

•	 AVNS is the best in 23 instances: It outperforms the ACS and HAC in 11 
instances and finds the best-known (Hits) for 12 instances (blue and red parts 
in Fig. 6).

•	 The average ARPD of all instances is around −0.9%.

Table 3   Computational results for small-sized MCVRP with configuration G2

Inst n L (%) Qmax Qp |P| CPLEX AVNS ARPD

z(x∗) Type CPU z(x) CPU

C19 5 120.64 3600 1800 2 1432.752 Opt. 01.48 1432.75 0.001 0.00
C20 93.19 1200 3 3752.928 Opt. 00.98 3752.92 0.001 0.00
C21 116.80 3900 1950 2 1432.752 Opt. 01.40 1432.75 0.001 0.00
C22 88.66 1300 3 377.690 Opt. 01.38 377.69 0.002 0.00
C23 142.42 4200 2100 2 1432.752 Opt. 01.44 1432.75 0.001 0.00
C24 85.83 1400 3 377.690 Opt. 01.12 377.69 0.002 0.00
C25 10 52.86  3600 1800 2 2899.866 Opt. 01.84 2899.86 0.01 0.00
C26 32.78 1200 3 2890.494 Opt. 02.08 2890.49 0.02 0.00
C27 54.94 3900 1950 2 2899.866 Opt. 01.89 2899.86 0.02 0.00
C28 34.79 1300 3 2729.911 Opt. 01.72 2729.91 0.01 0.00
C29 58.84 4200 2100 2 4148.503 Opt. 01.99 4148.50 0.01 0.00
C30 37.71 1400 3 1352.962 Opt. 01.75 1352.96 0.02 0.00
C31 15 30.59 3600 1800 2 2977.310 Opt. 4538.84 2977.31 02.40 0.00
C32 21.27 1200 3 7756.153 Opt. 531.01 7756.15 02.50 0.00
C33 34.56 3900 1950 2 5555.044 Opt. 120.86 5555.04 03.10 0.00
C34 22.14 1300 3 3018.647 LB 21.72 4124.82 05.20 30.01
C35 36.87 4200 2100 2 4490.106 Opt. 13472.35 4490.10 04.30 0.00
C36 25.68 1400 3 5839.038 Opt. 11596.08 5839.03 03.40 0.00
Average 60.59 3075.80 1683.33 3137.26 01.17 1.67
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•	 For this set of instances (vrpnc1b, vrpnc5a, vrpnc5b, vrpnc6b, vrpnc9a, vrp-
nc9b, vrpnc10a, vrpnc10b, vrpnc12a, vrpnc12b, vrpnc13a, and vrpnc13b) the 
average of improvement is around −2.3%.

•	 For the rest, the average of the gap of the sub-optimal results is 0.16%.
•	 The best improvement is −9.7%.
•	 The worst gap is 0.8%.

In Table 8, we compare the relative deviation of the AVNS against the ITS while 
considering the HAC the best known solutions. We can notice from Table  8 
that AVNS outperforms ITS approach in 6 instances. The radial deviation (RD) 
arranged in interval [ − 9.6, 0.8].

5.3 � Main remarks

Based on the values of the quality indicators which are the ARPD, gap and 
improvement, we observed:

First, for small-size instances, it can clearly be seen that the AVNS finds hits 
for 100% of all instances compared to the optimal solutions obtained through 
CPLEX, with an average ARPD of 0. In addition, CPLEX finds optimally 94.44% 
of instances, whereas 5.55% of these instances solves by using the LB method.

Table 4   Computational results for small-sized MCVRP with configuration G3

Inst n L (%) Qmax Qp |P| CPLEX AVNS ARPD

z(x∗) Type CPU z(x) CPU

C37 5 46.98 3000 1500 2 2687.079 Opt. 01.45 2687.07 0.001 0.00
C38 31.54 1000 3 5167.142 Opt. 01.42 5167.14 0.001 0.00
C39 51.53 3300 1650 2 2417.556 Opt. 01.51 2417.55 0.002 0.00
C40 34.82 1100 3 570.535 Opt. 01.30 570.53 0.002 0.00
C41 63.71 3600 1800 2 1473.651 Opt. 00.93 1473.65 0.001 0.00
C42 39.92 1200 3 570.535 Opt. 01.74 570.53 0.002 0.00
C43 10 21.57 3000 1500 2 4697.014 Opt. 01.31 4697.01 0.01 0.00
C44 13.82 1000 3 5040.698 Opt. 01.38 5040.69 0.01 0.00
C45 22.97 3300 1650 2 4090.928 Opt. 01.39 4090.92 0.02 0.00
C46 15.24 1100 3 5040.698 Opt. 01.33 5040.69 0.02 0.00
C47 25.53 3600 1800 2 5980.166 Opt. 02.24 5980.16 0.02 0.00
C48 16.59 1200 3 2427.651 Opt. 01.65 2427.65 0.02 0.00
C49 15 13.74 3000 1500 2 7229.157 Opt. 02.19 7229.15 03.25 0.00
C50 08.93 1000 3 12890.805 Opt. 01.19 12890.80 04.55 0.00
C51 15.03 3300 1650 2 10095.044 Opt. 03.15 10095.04 03.50 0.00
C52 09.72 1100 3 8554.256 Opt. 01.96 8554.25 04.20 0.00
C53 16.25 3600 1800 2 6822.633 Opt. 11.17 6822.63 04.50 0.00
C54 10.75 1200 3 10028.661 Opt. 01.87 10028.66 03.20 0.00
Average 25.48 5321.34 02.18 5321.34 01.29 0.00
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Second, for large-size instances, the AVNS greatly improves the quality of 
solutions against the state-of-the-art approaches in 12 instances with average 
improvement − 2.6% that is between − 0.06 and − 9.7% . Also, the AVNS finds 
hits for 40% of the benchmark instances. The average gap is about 0.8%, over all 
instances, that is between 0.02 and 1.7%.

It can be noted also that the GAPMX improves the best known results for 4 
instances with an average − 0.3% that is between − 0.2 and − 0.5%.

5.4 � Comparison with the one‑compartment VRP

We conducted in the previous section an empirical investigation of the testbed 
related to 72 small-sized instances and 24 large-sized instances. To further high-
light the strength of the proposed AVNS, we conducted a comparative study of 
the MCVRP with the one-compartment VRP (OCVRP) using the same instances. 
We provided a mathematical formulation and solved it using CPLEX for the 

Table 5   Computational results for small-sized MCVRP with configuration G4

Inst n L (%) Qmax Qp |P| CPLEX AVNS ARPD

z(x∗) Type CPU z(x) CPU

C55 5 56.38 3600 1800 2 1473.651 Opt. 01.63 1473.65 0.001 0.00
C56 37.85 1200 3 5167.142 Opt. 01.26 5167.14 0.001 0.00
C57 60.90 3900 1950 2 1473.651 Opt. 01.57 1473.65 0.001 0.00
C58 41.16 1300 3 570.535 Opt. 01.29 570.53 0.001 0.00
C59 74.33 4200 2100 2 1473.651 Opt. 01.28 1473.65 0.002 0.00
C60 46.58 1400 3 570.535 Opt. 01.74 570.53 0.001 0.00
C61 10 25.88 3600 1800 2 3812.303 Opt. 01.73 3812.30 0.01 0.00
C62 16.59 1200 3 5040.698 Opt. 01.13 5040.69 0.01 0.00
C63 27.14 3900 1950 2 3812.303 Opt. 01.99 3812.30 0.01 0.00
C64 18.01 1300 3 5040.698 Opt. 01.34 5040.69 0.02 0.00
C65 29.79 4200 2100 2 5980.166 Opt. 02.27 5980.16 0.01 0.00
C66 19.36 1400 3 2427.651 Opt. 01.00 2427.65 0.01 0.00
C67 15 16.49 3600 1800 2 4673.294 Opt. 15.90 4673.29 07.02 0.00
C68 10.72 1200 3 2343.023 Opt. 01.54 2343.02 03.35 0.00
C69 17.76 3900 1950 2 2343.023 Opt. 01.34 2343.02 04.05 0.00
C70 11.48 1300 3 8554.256 Opt. 01.44 792.33 03.02 0.00
C71 18.96 4200 2100 2 3257.882 Opt. 01.05 3257.88 04.20 0.00
C72 12.55 1400 3 3257.882 Opt. 01.29 3257.88 03.10 0.00
Average 30.11 2972.80 02.27 2972.80 01.38 0.00
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OCVRP. The mathematical formulation for the OCVRP considered in this paper 
is not available in the literature.

The only difference between the two VRP variants consists in splitting trucks’ 
capacities for the MCVRP while keeping the whole capacity to one product for 
the OCVRP. As we succeeded, in most cases, to solve small instances to optimal-
ity, we propose to evaluate the convergence of OCVRP using the same dataset (see 
Table 6). We applied CPLEX for all the whole dataset. However, we were not able 
to generate the optimal solutions. That is why we displayed LBs, if not, we per-
formed the AVNS (denoted by UB) to get a near optimal solution. We state in what 
follows the mathematical formulation of the OCVRP and used CPLEX and AVNS 
to point out the benefits of considering a multi-compartment version of the VRP. It 
can clearly be seen that the multi-compartment version of the VRP solves optimally 
83.33, whereas 16.66% of instances solve by using the LB method of the four set of 
instances in the four configurations.

For the one-compartment version of the VRP, CPLEX finds 75% of the instances 
by using the LB method and the rest of these instances solve using the proposed 
AVNS.

Therefore, it can be concluded that, the one-compartment version of the VRP is 
more complex than the multi-compartment version of the VRP. The experiments 
show that the multi-compartment version of the VRP converges quickly against the 
one-compartment version.

Fig. 6   The trend of driving distance when the rate L changes
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The one-compartment VRP

 MinS.t. z(x) =
∑

i∈V

∑
j∈V ,j≠i

∑
k∈K dij xijk (1)

∑
k∈K yik = �P� i ∈ Vc (2)

∑
k∈K y0k ≤ �K� (3)

∑
i∈V ,i≠j xijk = yjk j ∈ Vc, k ∈ K (4)

∑
j∈V ,j≠i xijk = yik i ∈ Vc, k ∈ K (5)

uik − ujk + Qmax xijk ≤ Qmax − qip i, j ∈ Vc, i ≠ j, k ∈ K, p ∈ P (6)
qip ≤ uik ≤ Qmax i ∈ Vc, k ∈ K, p ∈ P (7)
zjkp ≤

∑
i∈V ,i≠j xijk j ∈ Vc, k ∈ K, p ∈ P (8)

∑
k∈K zjkp = 1 j ∈ Vc, p ∈ P (9)

∑
j∈Vc

zjkp qjp ≤ Qmax k ∈ K, p ∈ P (10)
∑

p∈P wkp ≤ 1 k ∈ K (11)
zjkp ≤ wkp j ∈ Vc, k ∈ K, p ∈ P (12)
xijk, zjkp, yik ,wkp ∈ {0, 1} i, j ∈ V , k ∈ K , p ∈ P (13)

Objective function: minimize the travel distance
Constraints: Equality between the number of trucks and the number of requested products, subtour elimi-
nation, each ordered product is served by one truck, trucks capacity constraints

Fig. 7   CPLEX versus AVNS in terms of CPU Time



2104	 H. Yahyaoui et al.

1 3

We explained in more details this mathematical model as follows:

•	 The objective function (1) minimizes the total travel distance of all used trucks.
•	 Constraint (2) ensures that the number of trucks service each customer must be 

equal to the number of products.
•	 Constraint (3) imposes that subset of the trucks leave the depot.
•	 Constraints (4) and (5) force each truck to arrive and leave from customer i only 

if it serves that customer.
•	 Constraints (6) and (7) are subtour elimination constraints imposing both the 

capacity and connectivity of the feasible routes.
•	 Constraint (8) couples routing variables xijk to demand variables zjkp.
•	 Constraint (9) means that each product ordered by a customer is delivered by 

exactly one truck.

Table 6   Comparison between MCVRP and OCVRP for the small instances

Inst  MCVRP OCVRP

z(x∗) |K| Type CPU z(x∗∗) |K| Type CPU

C13 1170.375 5 LB 02.91 1633.521 6 LB 08.87
C14 8150.500 6 Opt. 02.59 8051.557 6 LB 03.96
C15 6216.832 4 Opt. 239.31 5370.234 5 LB 06.46
C16 3759.186 6 LB 25.30 2533.781 6 LB 14.55
C17 5124.037 4 Opt. 932.28 6652.395 7 LB 451.10
C18 5100.490 5 LB 04.36 4623.100 7 UB 5.30
C31 2977.310 4 Opt. 4538.84 1615.579 6 LB 10.08
C32 7756.153 5 Opt. 531.01 7881.143 6 LB 09.36
C33 5555.044 4 Opt. 120.86 5216.805 6 LB 16.70
C34 3018.647 5 LB 21.72 2423.790 6 LB 07.70
C35 4490.106 3 Opt. 13472.35 6632.877 6 LB 10.88
C36 5839.038 5 Opt. 11596.08 9950.045 6 LB 08.29
C49 7229.157 8 Opt. 02.19 7684.640 9 UB 06.20
C50 12890.805 12 Opt. 01.19 14025.230 12 UB 07.25
C51 10095.044 7 Opt. 03.15 6554.919 12 LB 4259.68
C52 8554.256 11 Opt. 01.96 9853.360 12 UB 05.30
C53 6822.633 7 Opt. 11.17 6810.719 8 LB 17.23
C54 10028.661 10 Opt. 01.87 10258.220 12 LB 60.92
C67 4673.294 7 Opt. 15.90 1735.323 8 LB 960.81
C68 2343.023 10 Opt. 01.54 3451.340 12 UB 06.70
C69 2343.023 6 Opt. 01.34 6401.053 6 LB 17.12
C70 8554.256 9 Opt. 01.44 9652.370 12 UB 07.20
C71 3257.882 6 Opt. 01.05 6931.546 7 LB 38.38
C72 3257.882 9 Opt. 01.29 10436.593 9 LB 2386.43
Average 5608.170 1432.554 6667.957 377.892



2105

1 3

Two metaheuristic approaches for solving the multi‑compartment…

•	 Constraint (10) checks the demand for each product delivered by each truck to 
customers is less than it capacity.

•	 Constraint (11) imposes that each truck is loaded by exactly one product.
•	 Constraint (12) ensures that each product may only be loaded in a truck if the 

corresponding customer is visited by this truck.
•	 Constraints (13) define the domains of decision variables.

Table 7   Computational results with stat-of-the-art metaheuristics on the MCVRP benchmark instances

Inst n ACS HAC AVNS GAPMX

Reed et al. (2014) Abdulkader et al. 
(2015)

 This paper This paper

Cost CPU (s) Cost CPU (s) Cost CPU (s) Cost CPU (s)

vrpnc1a 50 569.564 16 550.70 5 550.7 4 551 20
vrpnc1b 569.118 17 551.94 5 506,18 4 551 21
vrpnc2a 75 957.525 36 890.68 15 890.68 14 901 30
vrpnc2b 954.856 35 918.96 14 918.96 14 914 31
vrpnc3a 100 964.132 122 874.07 40 880.843 22 894 112
vrpnc3b 959.327 122 895.26 44 900.633 22 914 113
vrpnc4a 150 1253.86 345 1126.12 146 1126.12 104 1243 310
vrpnc4b 1254.51 336 1159.48 151 1159.48 120 1204 340
vrpnc5a 199 1587.02 688 1444.29 257 1408.86 312 1470 690
vrpnc5b 1640.59 676 1525.87 236 1515.25 308 1570 680
vrpnc6a 50 573.274 13 557.49 11 557.49 6 560 12
vrpnc6b 573.378 13 559.37 10 505.56 8 563 11
vrpnc7a 75 997.007 33 928.24 28 928.24 30 980 30
vrpnc7b 969.337 32 932.67 26 932.67 28 960 31
vrpnc8a 100 963.381 97 882.96 93 890.2 90 880 92
vrpnc8b 976.212 97 884.85 95 889.3 105 884 92
vrpnc9a 150 1343.08 273 1228.88 326 1211.32 320 1221 280
vrpnc9b 1346.63 274 1226.58 333 1220.58 340 1226 283
vrpnc10a 199 1645.58 606 1511.65 624 1505.23 602 1680 702
vrpnc10b 1659.94 608 1526.02 620 1517.65 608 1683 680
vrpnc11a 120 1133.88 281 1110.45 75 1110.45 70 1130 210
vrpnc11b 1247.49 280 1221.73 87 1221.73 77 1250 220
vrpnc12a 100 911.861 105 912.64 15 901.36 20 913 80
vrpnc12b 970.833 100 950.79 30 936.25 22 960 90
vrpnc13a 120 1577.45 171 1556.46 117 1550.56 90 1570 180
vrpnc13b 1572.11 168 1550.12 123 1540.37 98 1572 163
vrpnc14a 100 914.857 91 911.35 34 911.35 35 913 80
vrpnc14b 970.933 91 965.84 38 965.84 40 973 83
Average 1109.205 204.5 1048.41 128.5 1041.2 125.4 1102 180
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Initial solution Final solution Convergence of the AVNS

6 � Conclusion

This paper introduced the multi-compartment vehicle routing problem (MCVRP) 
that includes a set of trucks, a set of customers and a set of products. Each truck is 
equipped with multiple compartments, and each compartment is dedicated to a sin-
gle product. The demand of each customer for all products should be fully satisfied. 
The delivery of the products related to a customer should be ensured by a single 
truck. The objective of the MCVRP includes the minimization of the total travel 
distance that incurs a minimization of the fleet size. Considering the NP-Hardness 
of the MCVRP, we proposed an AVNS and a GAPMX as approximate methods. The 
obtained near-optimal solutions are compared to existing metaheuristics. The AVNS 
reached optimal solutions obtained by CPLEX for all small-sized problems. For 
large instances, the numerical results also indicated that the AVNS outperformed 
the state-of-the-art approaches in 12 instances. In addition, the AVNS finds hits for 

Table 8   Computational results with stat-of-the-art metaheuristics on the MCVRP benchmark instances

Inst n HAC ITS AVNS

 Abdulkader et al. (2015) Silv. et al. (2017)  This paper

vrpncXa vrpncXb vrpncXa vrpncXb vrpncXa vrpncXb

1 50 0 0 0 − 0.7 0 − 8.3
2 75 0 0 − 2.1 − 5.2 0 0
3 100 0 0 − 0.6 − 5.2 0.6 0.7
4 150 0 0 − 2.4 − 4.5 0 0
5 199 0 0 − 3.5 − 8.5 − 2.4 − 0.7
6 50 0 0 0 − 0.7 0 − 9.6
7 75 0 0 − 0.2 − 0.1 0 0
8 100 0 0 − 0.7 − 1.1 0.8 0.5
9 150 0 0 − 2.1 − 2.2 − 1.4 − 0.4
10 199 0 0 − 3.8 − 3.4 − 0.4 − 0.3
11 120 0 0 − 0.4 − 2 0 0
12 100 0 0 − 0.6 0.2 − 1.23 − 1.52
13 120 0 0 − 0.7 − 0.3 − 0.4 − 0.6
14 100 0 0 0 0.2 0 0
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40% of the benchmark instances. The GAPMX improved the best known results 
for 4 instances with an average of -0.3. Through a comparative study of the AVNS 
and GAPMX against the state-of-the-art methods, the efficiency of the proposed 
algorithms is proved in terms of solution quality. In fact, our approaches generated 
new best-known solutions for the benchmark instances. A comparative study of the 
MCVRP with the OCVRP showed that the use of trucks with multiple compart-
ments fastens the convergence of the optimizer in finding the optimal/near-optimal 
solution. The assumption that the demands of customers are introduced dynamically 
is an interesting suggestion for future research. The dynamic version of the MCVRP 
can be approached by a metaheuristic specifically designed to handle the online 
launching of demands.
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