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Background. Machine Learning (ML) allows integration of the numerous variables
delivered by cardiac PET/CT, while traditional survival analysis can provide explainable
prognostic estimates from a restricted number of input variables. We implemented a hybrid
ML-and-survival analysis of multimodal PET/CT data to identify patients who developed
myocardial infarction (MI) or death in long-term follow up.

Methods. Data from 739 intermediate risk patients who underwent coronary CT and
selectively stress 15O-water-PET perfusion were analyzed for the occurrence of MI and all-
cause mortality. Images were evaluated segmentally for atherosclerosis and absolute myocar-
dial perfusion through 75 variables that were integrated through ML into an ML-CCTA and an
ML-PET score. These scores were then modeled along with clinical variables through Cox
regression. This hybridized model was compared against an expert interpretation-based and a
calcium score-based model.

Results. Compared with expert- and calcium score-based models, the hybridized ML-
survival model showed the highest performance (CI .81 vs .71 and .64). The strongest predictor
for outcomes was the ML-CCTA score.

Conclusion. Prognostic modeling of PET/CT data for the long-term occurrence of adverse
events may be improved through ML imaging score integration and subsequent traditional
survival analysis with clinical variables. This hybridization of methods offers an alternative to
traditional survival modeling of conventional expert image scoring and interpretation. (J Nucl
Cardiol 2023;30:2750–9.)
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Abbreviations
AUROC Area under the receiver operating char-

acteristic curve

CAD Coronary artery disease

CABG Coronary artery bypass graft

CCTA Coronary computed tomography

angiography

GBM Gradient boosting machine

HR Hazard ratio

MBF Myocardial blood flow

MI Myocardial infarction

ML Machine learning

PCI Percutaneous coronary intervention

PET/CT Positron emission tomography/com-

puted tomography

INTRODUCTION

Worldwide, coronary artery disease (CAD) remains

the most common cause of death, but our ability to

accurately diagnose significant CAD through advanced

non-invasive modalities has greatly improved in the last

decades. However, there is a pressing necessity to

optimize prognostic estimations at the individual-level

for the risk of developing adverse cardiovascular out-

comes.1–3 Performance of clinical risk scores and single

imaging variables (such as coronary Calcium Score) has

been modest in this challenging task, and it is hypoth-

esized that large imaging datasets might contain insights

that can improve the identification of patients at risk.

Coronary computed tomography angiography

(CCTA) and positron emission tomography (PET) rep-

resent state-of-the-art techniques that allow accurate

evaluation of coronary anatomy and absolute quantita-

tive myocardial perfusion, respectively. CCTA provides

luminal spatial visualization of the coronary arteries

through contrast images that are segmentally analyzed

for the presence of atherosclerotic plaque, luminal

narrowing, and calcification as recommended in the

SCCT guidelines.4 On the other hand, PET imaging

allows the quantitative evaluation of myocardial blood

flow (in mL�min-1�g-1 of tissue) throughout 17 left

ventricular segments (as recommended by the American

Heart Association) in order to objectify myocardial

ischemia. As such, advanced cardiac imaging with PET/

CCTA delivers a large number of variables describing

the anatomic-functional state of the heart that carry

intrinsic complex interrelations that may not be fully

characterized by traditional statistical modeling and will

vary between individuals.

Nowadays, machine learning (ML) has rapidly

stoked a revolution in medical data analysis. ML

algorithms are able to explore and integrate large

numbers of variables (through complex non-linear

dependencies) in order to boost performance in classi-

fication and prediction tasks.5 The implementation of

ML in cardiovascular imaging has already delivered

exciting proofs of concept in the evaluation of a number

of pathological conditions including CAD.6–10

Notably, the utility of ML in predicting clinical

outcomes such as mortality, revascularization, heart

failure and myocardial infarction (MI) has been recently

explored in both CCTA6 and PET11 data independently.

However, there is a paucity of imaging studies regarding

the implementation of ML for prognostic analysis of

cardiovascular outcomes considering the influence of

individual time-to-event12,13 (e.g., through survival

modeling through Cox proportional hazards).

Hence, given that advanced PET/CCTA imaging

delivers a large number of interrelated variables suit-

able for ML integration and that survival analysis could
be utilized on the output from ML methods in cardio-

vascular imaging, the present study sought to develop

and evaluate the performance of a hybridized ML-and-

survival analysis workflow for cardiac PET/CCTA and

clinical data in the long-term prediction of MI and death

at the individual level.14,15 We additionally compared

this workflow’s performance to that of prior published

statistical models and of Calcium Score as a powerful

imaging-derived predictor of adverse outcomes.

METHODS

Study population

We retrospectively evaluated 951 consecutive

symptomatic patients with intermediate pre-test proba-

bility of CAD (based on the pre-test probability

categorization in line with the 2019 ESC CCS guideli-

nes) who had been referred to CCTA in the PET Centre

of the Turku University Hospital in Finland. According

to the local sequential imaging protocol, patients with

suspected obstructive stenosis on CCTA underwent

downstream stress PET perfusion imaging to evaluate

the hemodynamic significance of stenosis.3 Patients with

documented CAD, prior MI, or prior revascularization

(PCI or CABG) were not included in the present study.

After exclusion of patients with non-diagnostic imaging

results or failure to adhere to the local sequential

imaging protocol, data from 739 subjects were analyzed.

A report of CCTA and PET findings by cardiovascular

imaging specialist, as recommended by SCCT guideli-

nes, was provided to the treating physician to guide

patient management. The study was performed in

accordance with the Declaration of Helsinki. The Ethics

Committee of the Hospital District of Southwest Finland
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waived the need for written informed consent owing to

retrospective observational study design.

Clinical variables

Demographic (sex and age) and clinical data (hy-

pertension, dyslipidemia, smoking status, type 2

diabetes mellitus, family history of cardiovascular dis-

ease, chest complaints, and dyspnea) were extracted

from the electronic medical records system and are

summarized in Table 1.

Follow-up and clinical outcomes

The analyzed endpoints were recorded in binary

form for the occurrence of MI or all-cause death using

the registries of the Finnish National Institute for Health

and Welfare and the Centre for Clinical Informatics of

the Turku University Hospital. Identified events were

manually confirmed by the investigators through the

electronic medical records system following the

European Society of Cardiology recommendations.

There were no missing data in this regard for our

sample.

Imaging acquisition

Patients underwent sequential imaging protocol

with CCTA and selective 15O-water stress PET perfu-

sion imaging. The corresponding acquisition protocols

have been described previously.1 CCTA scans were

performed in a 64-row PET/CT scanner (GE Discovery

VCT or GE D690, General Electric Medical Systems,

Waukesha, Wisconsin). Prior to acquisition, 0-30 mg of

metoprolol were administered intravenously to achieve a

target heart rate of\60 bpm and 1.25 mg of isosorbide

dinitrate aerosol, or alternatively 800 mg of sublingual

nitrate, were also administered. CCTA utilized intra-

venously administered low-osmolal iodine contrast

agent (48-155 mL at 320-400 mg iodine�mL-1) and

prospective ECG-triggered acquisition.

Dynamic quantitative PET myocardial perfusion

imaging during pharmacological stress (using adenosine

Figure 1. Machine learning and survival workflow. CCS, chronic coronary syndromes; CCTA,
coronary computed tomography angiography; ML, machine learning; PET, positron emission
tomography.

2752 Juarez-Orozco et al Journal of Nuclear Cardiology�
Hybridizing ML in survival analysis of cardiac PET/CT imaging November/December 2023



infusion of 140 lg�kg-1�min-1 as vasodilator) was

performed as previously described.1 The mean injected

activity of 15O-water was 1042 ± 117 MBq. All patients

were instructed to refrain from methyl-xanthine-con-

taining food, beverages, and medications (e.g., coffee,

chocolate, tea) for 24 hours before the PET study.

Image analysis

CCTA data was analyzed according to the segmen-

tation system recommended in the SCCT guidelines.4 In

detail, the coronary artery tree was described by: (1) its

system dominance [right, left or co-dominance], (2) the

anatomical presence or absence of each theoretical

coronary segment, (3) the presence or absence of

atherosclerotic plaque per segment, (4) the visually

estimated percentage of luminal narrowing [0%,\ 50%,

50-69%, 70-99% or 100%], and (5) the complete, partial

or absent calcification of an atherosclerotic plaque when

present. The database was coded in such a way that it

allowed for the distinction between normal coronary

segments and anatomically absent ones (0 and 1 values,

respectively).

From these recorded variables, we implemented the

statistical CCTA score proposed by De Graaf et al.,

which is generated by calculating plaque-, stenosis- and

segment weight factors for each coronary segment and

summing individual segment scores together as

described previously.16 The de Graaf score is based on

linear integration of these variables as an example

comparator of a non-ML based approach to CCTA

scoring.

Coronary Calcium Score17 by the Agatston method

was globally quantified and stored as a unique contin-

uous variable.

PET data were quantitatively analyzed using Cari-

mas software (Turku PET Centre, Finland) using a one-

tissue (two-compartment) kinetic model to estimate

absolute stress myocardial blood flow (MBF) through

the standardized 17-segment AHA model (where seg-

ments 2 and 3 being negated due to correspondence to

the membranous interventricular septum).2 The finding

of at least one segment with a stress MBF of \ 2.4

mL�g-1�min-1 was considered abnormal and indicative

of myocardial ischemia.3 Missing values were consid-

ered as null parameters and input accordingly.

In total, this segmental anatomo-functional descrip-

tion delivered 58 CCTA anatomically descriptive

variables, a single continuous Calcium Score variable,

and 15 PET variables. All image interpretations were

performed by an experienced cardiovascular imaging

Table 1. Characteristics of baseline risk factors and imaging expert interpretations

Variables
Training set
n 5 493

Independent test set
n 5 246 p value

Demographics

Male sex (%) 219 (44.4) 103 (41.9) .562

Age (years) 61.6 (9.5) 60.1 (9.1) .691

Risk factors

Smoking status .875

No 331 (67.1) 170 (69.1)

Previously 103 (20.9) 38 (15.4)

Currently 59 (12.0) 38 (15.4)

Type 2 Diabetes .340

No 336 (68.2) 177 (72.0)

Pre-diabetes 85 (17.2) 35 (14.2)

Yes 72 (14.6) 34 (13.8)

Hypertension 261 (52.9) 135 (54.9) .675

Dyslipidemia 307 (62.2) 144 (58.5) .368

Imaging findings

Obstructive CAD in CCTA (%) 235 (47.7) 125 (42.4) .304

Abnormal myocardial perfusion (%) 123 (24.9) 71 (24.1) .112

Family history (%) 216 (43.8) 112 (45.5) .510

Chest complaints (%) 352 (71.4) 200 (81.3) .004
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physician and recorded in a standardized reporting

system.

Machine learning

Our machine learning workflow (Figure 1) was

generated in accordance with current state-of-the-art

recommendations and the Proposed Requirements for

Cardiovascular Imaging-Related Machine Learning

Evaluation (PRIME) Checklist,18 which can be con-

sulted in the supplement.

Data pre-processing and re-sam-
pling Missing values in in clinical data were imputed

with negative value for smoking (N = 91 in training and

N = 28 in test dataset), diabetes (N = 116 in training

and N = 47 in test dataset), hypertension (N = 80 in

training and N = 43 in test dataset), and dyslipidemia

(N = 85 in training and N = 40 in test dataset). The

variables gender and age did not have missing values.

Imaging variables did not have missing values except in

the case the subject did not proceed to PET scan. In

these cases, all PET variables (N = 259 in training and

N = 126 in test dataset) were assigned to zero. ML

analytics utilized gradient boosting machine (GBM)5

algorithm for the analysis based on robustness and

Table 2. Survival models through Cox
proportional hazards utilizing clinical variables,
ML-derived scores and comparator predictors
(CCTA statistical score by De Graaf and Calcium
Score)

Predictors HR 95% CI
P

value

Hybridized ML model

Age 1.02 .97–1.06 .360

Smoking .95 .41–2.18 .897

Diabetes 1.06 .69–1.62 .772

Hypertension 1.03 .48–2.18 .934

Dyslipidemia .71 .33–1.50 .376

ML-CCTA 15.26 5.38–

43.25

\ .0001

ML-PET 4.23 1.99–8.98 .0002

Expert-based model

Age 1.03 .99–1.08 .129

Smoking 1.48 .69–3.16 .311

Diabetes 1.33 .86–2.06 .195

HTN 1.12 .51–2.40 .775

DLP .71 .33–1.53 .388

Statistical CCTA

score

1.10 1.04–1.15 .0006

Clinical PET 1.02 .58–1.77 .947

Calcium score-based model

Calcium score 1.16 1.03–1.30 .0012

CI, confidence interval; HR, hazard ratio

Figure 2. Kaplan–Meier curves of the hybridized ML model
and two reference models. Blue curve corresponds to low
probability of outcome and orange to high probability of
outcome.
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stability. The 739 subjects were randomly assigned to a

training or testing dataset (with a 2:1 split ratio to

achieve datasets with N = 493 and N = 246).19,20 A 10-

fold cross-validation policy was applied to tune model

parameters through the ML training and validation

process for the training dataset (N = 493). Model

building and optimization were exclusively performed

in the training dataset, while final comparative perfor-

mance evaluations were conducted in the test dataset.

Feature selection considering the most informative

CCTA and PET variables was performed in model

building as a recommended measure to promote dimen-

sionality reduction.

ML-integrated scores ML modeling was per-

formed as aforementioned separately in CCTA (58) and

PET (17) variables. The outcome for both ML models

was MI or all-cause death. The resulting continuous

output (a pseudo-probability expressed in a range from 0

to 1) integrated the extensive imaging information into a

single ML-CCTA score and a single ML-PET score.

These ML-integrated imaging scores were further uti-

lized in the subsequent survival analysis (see below).

(Hybridized) survival analysis

Continuous variables are presented as mean and

standard deviation (SD). Categorical variables were

expressed as counts and corresponding percentages.

Significant statistical differences in baseline character-

istics between the training and testing datasets were

compared using the Wilcoxon rank sum test for contin-

uous variables and the chi-squared test for categorical

ones.

The isolated performance of the integrated ML

scores (ML-CCTA and ML-PET) was evaluated through

the area under the curve (AUC) obtained from receiver

operating characteristic (ROC) analyses.

The prognostic analyses were performed through

Cox regression modeling21 for the occurrence of the

previously described composite endpoint (i.e., MI or all-

cause death). Predictive performance in test data was

illustrated using Kaplan-Meier curves accompanied with

log-rank test P values. The resulting hazard ratios were
expressed along with their 95% confidence intervals.

The independent and comparative significance of

the ML-integrated scores was evaluated through the

following three predictive models, namely: (1) Hybri-
dized ML Model: considering clinical variables, ML-

CCTA score and ML-PET score, (2) Expert-based
Model: considering clinical variables, CCTA expert

interpretation and PET expert interpretation, and (3)

Calcium score-based Model: considering global Cal-

cium Score. Performance was evaluated through the

concordance index (CI) by binary transformation of its

predictions to a binary Youden’s J statistic applied to

training dataset.22 Concordance indexes were compared

using Student’s t test.23,24 A two-tailed P value\ .05

was considered statistically significant.

Statistical and Machine Learning analytics were

implemented using R (version 3.5.3) with complemen-

tary sub-packages survival (version 2.44-1.1), survcomp
(version 1.36.1) and gbm (version 2.1.5) for GBM.

RESULTS

Study population and imaging findings

Baseline characteristics of the study population are

described in Table 1. There were no statistically signif-

icant differences between the training and test datasets.

The population consisted 55.6% and 58.9% of females,

and the mean age was 61.6 ± 9.5 and 60.1 ± 9.1 in the

training and test samples, respectively. In general, a

majority of patients were not smokers, while a substan-

tial proportion had arterial hypertension and

dyslipidemia. In training data 48% (n = 235) of the

patients that underwent CCTA were shown to have

anatomically suspected obstructive CAD, and subse-

quently, underwent stress PET perfusion imaging. In test

data this proportion was 42% (n = 125). Approximately

half of those who underwent downstream PET imaging

had abnormal myocardial perfusion with a median of 7

affected myocardial segments (IQR 2-12) in the training

data. Median was 5 for the test data (IQR 2-12).

Table 3. Concordance index (C-index) and area under receiver operating characteristic curve (AUROC)
for the hybridized ML model and reference models, confidence interval inside paranthesis

Hybridized ML model Expert-based model Calcium score-based model

Training Testing Training Testing Training Testing

C-index .85 (.75–.95) .81 (.67–.95) .72 (.61–.84) .71 (.55–.87) .65 (.54–.77) .64 (.49–.79)

AUROC .89 (.81–.97) .76 (.63–.93) .76 (.66–.86) .67 (.50–.84) .68 (.59–.78) .64 (.49–.79)
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Outcomes

Median follow-up was 6.1 years (IQR 5.4-7.4) for

the training data and 6.0 years (IQR 5.3-7.5) for the test

data. Endpoint (all cause death or MI) cases (46 events)

were distributed as follows: 33/493 (6.7%) in the

training data and 13/246 (5.3%) in the test data.

Machine learning scores integration

The generated ML-CCTA score integrated 28 vari-

ables of the 58 initial variables selected through GBM

feature selection, which is shown in Table S1. This score

showed a univariable concordance index of .70 and an

AUROC of .72 in the test data. More details about

CCTA variable characteristics are presented in Table S3.

The generated ML-PET score integrated all seg-

mental perfusion variables (15) and documented a

concordance index of .58 and an AUROC of .63. More

details about PET variable characteristics are presented

in Table S4 and relative variable influence to ML-PET

score are presented in Table S2.

Survival analyses

Both concordance index and AUROC values for the

final hybridized ML model were higher than the

reference methods. Based on the Kaplan-Meier curves

our hybridized ML model was able to significantly

discriminate the occurrence of event between low- and

high-risk patient groups (as depicted in Figure 2),

beyond the performance of the alternative models

namely, the expert-based model and the calcium score-
based model (Figure 2).

Cox regression analysis for Hybridized ML Model

showed only ML-CCTA score (Hazard ratio 15.26; 95%

CI 5.38-43.25; P value, \ .0001) and ML-PET score

(Hazard ratio 4.23; 95% CI 1.99-8.98; P value, .0002)

were significant endpoint predictors. Only significant

predictive variable for Expert-based Model was the

statistical CCTA score (Hazard ratio 1.10; 95% CI 1.04-

1.15; P value, .0006). Calcium score-based Model

consisted of only one variable, Calcium Score (Hazard

ratio, 1.16; 95% CI 1.03-1.30; P value, .0012), which

was significantly associated with endpoints. Overall

CCTA derived variables (ML-CCTA score, statistical

score, and Calcium Score) were independently associ-

ated with endpoints throughout the three models. The

results of Cox regression analysis are presented in

Table 2.

Adjusted Cox regression analyses demonstrated that

the Hybridized ML Model (i.e., that including clinical

variables, the ML-CCTA and ML-PET scores) had the

best predictive performance for the occurrence of the

studied outcomes with a concordance index of .85 for

training and .81 for the test data, while the correspond-

ing AUROC values were .89 and .76, respectively.

Alternatively, the Expert Based Model (i.e., utilizing

clinical variables and the expert interpretations of CCTA

[through the statistical score by DeGraaf et al.] and of

PET) documented an intermediate performance with a

concordance index of .72 for training and .71 for the test

dataset, and AUROC values of .76 and .67, respectively.

Finally, the Calcium score-based Model showed discrete

performance with a concordance index of .65 for

training and .64 for the test dataset and AUROC values

of .68 and .64, respectively. These results along with

95% CIs are shown in Table 3. Although the specified

significance threshold was not reached, there was a clear

trend toward an improved predictive discrimination of

the hybridized ML model with respect to the expert-
based model in the test data (Concordance index, P
value = .076; AUROC, P value = .731), while a

significant difference was patent between the hybridized
ML model and the calcium score-based model (Concor-
dance index, P value = .014; AUROC, P value = .025).

DISCUSSION

The present study describes the implementation of

ML in the integration of CCTA and PET myocardial

perfusion variables into single scores (ML-CCTA and

ML-PET, respectively), which subsequently showed to

be significant survival predictors (in an adjusted Cox

proportional hazards analysis) for the occurrence of MI

and all-cause mortality considering a long-term follow-

up registry of patients at intermediate risk of CAD. It

proposes method hybridization involving ML (gradient

boosting machine) and traditional statistical methods

(Cox regression) for the analysis of cardiac imaging

data. This workflow proposes the value of harnessing

complementary ML and traditional analyses in prog-

nostic studies in cardiovascular imaging research.

Currently, advanced cardiovascular imaging deliv-

ers a myriad of variables that characterize the

(patho)physiological profile of the heart both anatomi-

cally and functionally. This complementary nature is a

known advantage of hybrid imaging with SPECT/CT or

PET/CT in coronary artery disease.25 However, the

amount of data even from a single imaging modality

represents a challenge for traditional statistical analytics

commonly employed in clinical research studies as they

tend to not converge given to many input variables and

few relevant outcomes. Nowadays, evaluation of these

data is performed by an expert clinician who consoli-

dates the information into a categorical summary

(interpretation) of the extent or severity of the disease

(through what may be called natural intelligence).
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Alternative approaches developed are the generation of

statistical scores that combine variables through linear

dependencies and the extraction of single biomarkers

with population-based prognostic value (such as coro-

nary Calcium Score).26 The effective operators of these

premises are embodied in the present study, firstly in the

resulting 58 variables from CCTA (based on dominance,

segmental presence of plaque, degree of luminal nar-

rowing and calcification) and the 17 variables from PET

imaging (segmental absolute myocardial blood flow

during stress), and secondly in the selected comparator

predictors (the reference CCTA score promoted by De

Graaf and colleagues and the global Calcium Score)

analyzed.

ML analytics allow the integration of numerous

interrelated variables6 through the exploration of com-

plex non-linear dependencies between them. This

enhances their value in classification tasks. In this

study, ML facilitated imaging feature integration

through a cross-validated workflow that delivered an

ML-CCTA score and an ML-PET score. These ML-

based single number scores aggregate the value of the

extensive information provided by each imaging tech-

nique, which a demonstrated strength of ML. Then,

these ML-derived scores demonstrated to be strong

univariable and multivariable predictors (in the strongest

of definitions, which considers time-to-event modeling)

of infarction and mortality through traditional Cox

regression modeling (with adjusted HR of 15.3 and 4.2

for the ML-CCTA and ML-PET scores, respectively);

clearly overshadowing the coefficients of the utilized

statistical CCTA score (De Graaf et al.) and the expert

PET interpretation variable in the comparator model.

The prognostic coefficients of such ML-based scores

also were superior to that of the model utilizing coronary

Calcium Score, which in itself represents a valued

prognostic predictor for incident cardiovascular disease

and adverse events in already suspected CAD26 docu-

mented in large populational studies. Our findings

suggest that the generation of scores through ML that

integrate all the resulting variables from advanced

cardiovascular imaging (with PET/CT) may boost its

prognostic utility beyond the current boundaries of

clinical interpretation and single biomarkers. Whether

this possibility may translate into improved cardiovas-

cular outcomes through better patient selection for

treatment individualization remains unknown and will

require tailored prospective studies.

Lately, it is suggested that, in spite of the increasing

reports supporting the improved performance of ML

algorithms in classification tasks over conventional

statistical methods, the value of traditional analytics

should not be disregarded as it may be comparable and

even preferable in some instances.27 We believe a sober

consideration of the potential analytical advantages of

ML and rather conventional statistics is continuously

warranted. Therefore, this study harnessed and engaged

the advantages of traditional survival modeling through

Cox regression such as interpretability (explainability),

time-to-event consideration, and robustness of its well-

known estimates (i.e., hazard ratios), as well as their

familiarity to both clinicians and clinical researchers,

while also engaging the advantage of multiple variable

integration through ML analytics. Recently, this issue

has also been nicely investigated by Pieszko et al.12

suggesting the inherent need for better prognostic

estimates by harnessing the capacities of ML. Here,

our approach was selected after considering that full ML

survival modeling requires larger amounts of data and

that traditional Cox regressions may not easily handle a

large number of predictors in the long term (e.g., all the

imaging variables) for the given amount of events

recorded.

In this report, we could not unequivocally prove the

superiority of the proposed hybridization of methods.

However, we documented how it might render an

optimized approach to explainable data handling

through machine learning for advanced cardiovascular

imaging. A major feature of this vision is that its

implementation is certainly not restrictive to PET/CT

imaging as our proposed methods are expandable to any

sort of non-invasive or invasive imaging as well as to

any realm where large amounts of complex interrelated

prospective data is readily available.

Presently, risk prediction based on a prognostic

workflow involving ML-based scores may be both

useful when considering negative and positive cases

although the risk of misclassification should be differ-

ently weighted. In this sense, we envision an initial

implementation in which negatively predicted cases may

be ruled-out so that clinical attention can be focused on

positively predicted cases in which a more nuanced

clinical evaluation may be required. This initial

approach may promote (human) resource economization

while minimizing the potential risk of depositing direct

responsibility of positive case identification on a tailored

experimental model. Currently, optimal assessment of

event risk prediction in patients with CAD is a clear gap

in knowledge as stated in the recent 2019 ESC CCS

guidelines.

NEW KNOWLEDGE GAINED

The generation of ML-based imaging scores from

coronary CT and PET perfusion data is feasible and

delivers significant prognostic predictors for the devel-

opment of myocardial infarction and death. Traditional

survival analysis of ML-based scores offers an
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interpretable approach that may better exploit the

potential of wide imaging data.

LIMITATIONS

The present study naturally carries all the intrinsic

disadvantages of an observational study even if longi-

tudinal. Unfortunately, this evaluation was not extended

to an external (validation) cohort yet as the nature of the

present registry is unique among advanced imaging

centers (selective PET/CT with 15O-water and long-term

follow-up). Nevertheless, our objective was mainly to

explore for the first time the feasibility of hybridizing a

ML and Cox regression approach in order to perform a

prognostic evaluation of advanced cardiac imaging data.

Further evaluation of external generalizability will

follow in due course. Another limitation may be the

low number of outcomes (6.2%) which may have

reduced the predictive power of the models. Yet, such

rate was comparable to other long-term observational

studies dealing with hard cardiovascular outcomes and

results therefore representative. Of note, the setup of this

long-term registry implies the selective performance of

PET scanning on patients with possibly obstructive

CAD in the initial CT imaging. As such, roughly half of

the patients analyzed only had CT data as PET imaging

was not performed. This might negatively influence the

obtained c-index. Hence, performance might have been

underestimated.

We also recognize that determining the clinical

value of such approach in a clinical scenario is

warranted and not yet performed.

CONCLUSION

Prognostic modeling of cardiac PET/CT data for the

long-term occurrence of MI and all-cause mortality may

be improved through integration of imaging data into

ML-based scores and subsequent survival analysis along

with clinical variables. This hybridization of methods

engages novel ML analytics in a more familiar way for

clinicians, while offering an alternative to traditional

survival modeling of conventional image interpretation.

The combination of ML and conventional statistics may

boost the prognostic value of cardiac imaging at the

individual level and warrants further research.
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