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Background. This study aimed to assess the feasibility of estimating the pulmonary blood
volume noninvasively using standard Rubidium-82 myocardial perfusion imaging (MPI) and
characterize the changes during adenosine-induced hyperemia.

Methods. This study comprised 33 healthy volunteers (15 female, median age = 23 years),
of which 25 underwent serial rest/adenosine stress Rubidium-82 MPI sessions. Mean bolus
transit times (MBTT) were obtained by calculating the time delay from the Rubidium-82 bolus
arrival in the pulmonary trunk to the arrival in the left myocardial atrium. Using the MBTT, in
combination with stroke volume (SV) and heart rate (HR), we estimated pulmonary blood
volume (PBV = (SV 3 HR) 3 MBTT). We report the empirically measured MBTT, HR, SV,
and PBV, all stratified by sex [male (M) vs female (F)] as mean (SD). In addition, we report
grouped repeatability measures using the within-subject repeatability coefficient.
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Results. Mean bolus transit times was shortened during adenosine stressing with sex-
specific differences [(seconds); Rest: Female (F) = 12.4 (1.5), Male (M) = 14.8 (2.8); stress: F =
8.8 (1.7), M = 11.2 (3.0), all P £ 0.01]. HR and SV increased during stress MPI, with a
concomitant increase in the PBV [mL]; Rest: F = 544 (98), M = 926 (105); Stress: F = 914 (182),
M = 1458 (338), all P < 0.001. The following test–retest repeatability measures were observed
for MBTT (Rest = 17.2%, Stress = 17.9%), HR (Rest = 9.1%, Stress = 7.5%), SV (Rest = 8.9%,
Stress = 5.6%), and for PBV measures (Rest = 20.7%, Stress = 19.5%)

Conclusion. Pulmonary blood volume can be extracted by cardiac rubidium-82 MPI with
excellent test–retest reliability, both at rest and during adenosine-induced hyperemia. (J Nucl
Cardiol 2023;30:2504–13.)

Key Words: Transit times Æ adenosine Æ pulmonary blood volume Æ positron emission
tomography

Abbreviations
82Rb Rubidium-82

CO Cardiac output

EDV End-diastolic volume

ESV End-systolic volume

HR Heart rate

MBTT Mean bolus transit time

MPI Myocardial perfusion imaging

PET/CT Positron emission tomography/com-

puted tomography

PBV Pulmonary blood volume

SV Stroke volume

INTRODUCTION

Myocardial positron emission tomography (PET)

imaging procedures have grown in numbers in the past

decade, driven by technological advances and the more

widespread installation of PET systems.1 Of myocardial

PET examinations, myocardial perfusion imaging (MPI)

with Rubidium-82 (82Rb) is the most commonly per-

formed test.1,2 Routine assessments of 82Rb-PET MPI

focus on myocardial perfusion and viability and ven-

tricular volumes in resting and during pharmacological

stress conditions. Pharmacological stressing triggers

coronary vasodilation and is key to unveiling whether

reversible myocardial ischemia is present.3,4 Apart from

these well-established clinical metrics, 82Rb-PET may

also, in principle, be used to measure the pulmonary

blood volume (PBV), that is, the blood volume in the

pulmonary circulation.

Physiologically, PBV depends on both cardiac and

pulmonary vascular function and is continuously mon-

itored by the cardiopulmonary baroreceptor system.

PBV is further critically involved in regulating cardiac

output, arterial blood pressure, breathing, and natriure-

sis.5,6 An elevated PBV (central hypervolemia) is

considered important for disease presentation and pro-

gression both in essential hypertension7 and chronic

heart failure,8,9 while central hypovolaemia may con-

tribute to impaired systemic hemodynamic and blood

volume regulation in diseases such as diabetes melli-

tus,10 orthostatic hypotension, neurocardiogenic

syncope,11 cirrhosis,12,13 and chronic obstructive pul-

monary disease.14 While quantitative PBV estimates

may have both diagnostic and prognostic implications in

such conditions, PBV has classically been measured by

the indicator dilution technique that requires extensive

invasive catheterization, as well as repeated blood

sampling,15 which has halted its wide clinical use. At

present, the diagnostic and prognostic value of central

hyper- or hypovolaemia thus remain to be established.

In the present study, we evaluated the feasibility of

measuring PBV through routine, non-invasive 82Rb-PET

MPI, an approach that potentially has wide clinical

applicability. We provide quantitative PBV estimates, as

well as test–retest repeatability assessments in healthy

volunteers undergoing 82Rb-PET MPI, both at rest and

during pharmacological stress with adenosine. Further,

this study aimed to evaluate if any sex-specific differ-

ences in the PBV exist and if the hemodynamic response

affects males and females differently.

MATERIALS AND METHODS

Study population

This study comprised 33 young, healthy volunteers

(15 female) (median age = 23 years, interquartile range

(IQR) = [22; 25]) recruited between September 2016 and

March 2017. Inclusion criteria were age[ 18 years, no

regular consumption of medicine, no known medical

condition, and no use of tobacco and euphoric sub-

stances (except alcohol) within three months prior to

study participation. Exclusion criteria were pregnancy,

allergy or intolerance to theophylline or adenosine, any

prior medical history of asthma, or inability to adhere to

the study protocol. The Scientific Ethics Committee of

the Capital Region of Denmark [protocol number H-

15009293] and the Danish Data Protection Agency
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approved this study, and all volunteers provided

informed oral and written consent.

Imaging protocol

PET acquisition The 33 healthy volunteers

underwent repeated 82Rb rest/ adenosine stress PET/

CT MPI as previously described.16 A subset consisting

of 25 volunteers had successful test–retest assessments,

while the remaining eight volunteers had one MPI

session discarded because of elevated plasma caffeine

concentrations (C 1 lg�L-1).16,17 In brief, the volunteers

had injection doses targeting 1100 MBq (30 mCi) 82Rb

for all MPI sessions obtained on a 128-slice Siemens

Biograph mCT PET/CT system. In addition, immedi-

ately before the rest scans, the volunteers had a low-dose

CT performed for attenuation correction purposes (120

kVp; effective tube current, 26 mA [11 mAs quality

reference]) acquired using a free-breathing protocol.18

Pharmacological stressing was obtained using adenosine

infused at 140 lg�kg-1�min-1 for 6 minutes, with PET

emission acquisition starting 2.5 minutes into the infu-

sion. The volunteers were instructed to abstain from

caffeine at least 24 hours before each imaging session.

PET reconstruction protocol and data
processing The 6-minute-long PET acquisitions were

reconstructed into two image series; one dynamic image

series comprised 40 frames (40 9 1 seconds) starting at

the beginning of the PET acquisition. The use of 1-s

frames was chosen to compromise the image quality in

the resulting images (i.e., suppressing image artifacts in

the reconstructions) while providing a temporal resolu-

tion higher than the usual reconstructions used for

myocardial blood flow assessments. An 8-ECG-gated

image series were reconstructed as a secondary image

series to assess myocardial contractility during optimally

adenosine-induced hyperemia employing data from the
82Rb bolus arrival to the heart plus 90 seconds until 210

seconds into the PET acquisition.19 Both image series

were reconstructed using the vendor iterative Ordered

Subset Expectation Maximization 3D reconstruction

method (2 iterations, 21 subsets), with corrections for

time-of-flight and point-spread function. In addition, all

data were smoothened using 5-mm Gaussian post-

filtering.

Assessment of mean bolus transit time
and PBV The mean bolus transit time (MBTT) was

determined by inserting cubic volumes of interest into

the base of the pulmonary trunk (10 9 10 9 10 mm3)

and in the left atrium (15 9 15 9 15 mm3) (Figure 1).

Of note, the discrepancy in the sizes of the volumes of

interest was chosen to compensate for the generally

reduced size of the pulmonary trunk, which elevates the

partial-volume effects in this area compared to the

generally homogeneous activity distribution in the left

atrium. MBTT was defined as a time delay (seconds) in

which the median activity in the volumes of interest

exceeded 100 kBq�mL-1, thus, defining the arrival of

the 82Rb bolus. Alternatively, in cases of delayed 82Rb

dose delivery to the heart (e.g., obstruction of the venous

system), the MBTT was defined as the delay of constant

activity rise over the course of 5 s in volumes of interest.

Of note, the choice of 100-kBq threshold instead for an

ordinary peak-to-peak analysis20 or area-under-curve

analysis was decided upon for two reasons: 1: to

compensate for the heterogeneous bolus delivery times

provided by the 82Rb dose cart used in our center

(Bracco diagnostics), which increases throughout the

generator lifespan21 and 2: to minimize the influence of

potential PET system saturation on the assessment of the

MBTT; of note PET system saturation is common and

may affect as many as 20% of the 82Rb MPI studies.22

Utilizing the MBTT and the cardiac output (CO)

[stroke volume (SV) 9 heart rate (HR)], the pulmonary

blood volume was calculated as (CO 9 MBTT), such as

PBV = MBTT 9 CO. Of note, the HR was determined

as the average value obtained from the listfile (PET raw

data) during the first 40 seconds of the acquisition,

corresponding to the time period in which the MBTT

was determined.

In addition to MBTT and PBV, we report the end-

diastolic and end-systolic volumes (EDV and ESV,

respectively), the stroke volume (SV), and the HR for all

studies. We report all values and their reserves (stress -

rest measures) stratified by sex. Of note, the volumetric

analyses were extracted from Cedars QPS/QGS (Cedars-

Sinai). To compensate for variations in the body mass

index in the volunteers, we report both the empirical and

body surface area (BSA) normalized PBV values for all

volunteers normalized to a standard body surface of

1.73m2. The BSA was calculated using the DuBois

equation23:

BSA ¼ 0:007184�Weight0:425 � Height0:725: ð1Þ

With Weight being the body weight in kg and the

Height in cm.

Of note, for participants with repeat scans, the

reported values used in figures and statistical assess-

ments are based on the average of both scans.

Statistical analysis

Data were quantified in R v. 4.1.2 (The GNU

project). For descriptive analyses, we used mean (Stan-

dard deviation), range or median, and interquartile range

for continuous values. Differences in the metrics were

evaluated using one-way analyses of variance
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(ANOVA). Two-tailed P-values\ 0.05 were considered

statistically significant.

We report the grouped test–retest repeatability

coefficient (RC) for eight evaluated metrics (HR, SV,

EDV, ESV, CO, MBTT, PBV, and the PBV reserve)

using the within-subject coefficient of variation assess-

ment.24 In addition, we also provide the smallest real

difference (SRD) measures in the respective empirical

units.25

RESULTS

Of the 66 MPI sessions (33 subjects with test–retest

assessments), eight were excluded owing to elevated

plasma caffeine concentrations (C 1 lg�L-1), as

described in a previous study.17 The demographics of

the cohort are shown in Table 1. The adenosine-induced

hyperemic response increased HR in both males and

females, with no sex-specific differences in the HR and

its reserve (defined as stress-rest HR) (Figure 2).

Image-derived markers (MBTT, SV, EDV,
and ESV)

Stroke volume was observed to elevate significantly

during adenosine stressing, with sex-specific differences

reported for both rest and stress MPI, as well as the

reserve (stress-rest SV) (Figure 3, Table 2). The changes

in the SV were driven by slightly elevated end-diastolic

volumes observed during stress MPI (Supplementary

Figure 1) and slightly reduced end-systolic volumes

observed during stress MPI (Supplementary Figure 2),

although non-significant. In addition, MBTT shortened

during adenosine stress for both sexes, with an average

MBTT (combined for both sexes) of 13.7 (2.9) seconds

during rest MPI and 10.1 (2.7) seconds (P \ 0.001)

during stress MPI (Figure 4, Table 2). Of note, the males

had significantly prolonged MBTT (P B 0.01) (Figure 4,

Table 2).

Hybrid values (CO and PBV)

The increases in the HR and SV elevated the CO

during adenosine stress MPI (Supplementary Figure 3).

Adenosine-induced hyperemia elevated the PBV com-

pared to resting condition (grouped PBV measures [mL]:

Rest = 752 (217), Stress = 1211 (388), PBVReserve = 459

(250), all P\ 0.001, Table 2). Sex-specific differences

were reported for rest and stress PBV and its reserve

(stress-rest PBV) (Figure 5). Normalizing the data to a

standard body surface area (BSA correction) reduced the

bias in the PBV reserve between the sexes [grouped BSA

normalized PBV (mL/1.73 m2): Rest = 683 (147) Stress =

1117 (280), P\0.001; BSA normalized PBV reserve =

434 (218)] (Figure 5, Table 2).

Repeatability

Grouped (males and females combined) test–retest

repeatability measures for all ten empirically measured

Figure 1. Identification of MBTT. Two volumes of interest were inserted in the base of the
pulmonary trunk (10 9 10 9 10 mm3, blue box) and left atrium (15 9 15 9 15 mm3, green box),
respectively. The bolus arrival to either area of interest was defined as a median activity of C
100 kBq or continuous increases in the median activity for five consecutive seconds if the activity
did not reach the threshold. MBTT, mean bolus transit time; PT, pulmonary trunk; LA left atrium;
Threshold, 100-kBq threshold.
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metrics were acceptable (RC within the range [4.1: 20.7

%]), while the reported reserve values generally per-

formed poorer (RC within the range [22.4: 67.5 %])

(Table 3).

DISCUSSION

The main finding of the present study was that PBV

might be extracted from routine 82Rb MPI studies, with

excellent repeatability both at rest and during pharma-

cological stress with adenosine. We found that

adenosine-induced hyperemia significantly elevates

PBV, with sex-specific differences in the reported

volumes. However, BSA normalization harmonizes the

PBV reserve across the two sexes.

Our PBV estimates, including sex differences,

agree well with those obtained by the indicator dilution

technique in healthy supine individuals. In this study,

we report grouped rest PBV volumes of 748 (234) mL

before BSA normalization, findings which are slightly

elevated compared to previous reporting for cardiac

MR studies (607 (112) mL).20 The observed bias in the

PBV values may be expected to be caused by age

differences in the cohorts evaluated in our study and

the study by Nelsson et al. (median age = 23 years and

61 (8) years, respectively). Further, some of the bias

may be attributed to the difference in the definition of

MBTT. In our study, we defined the MBTT using a

100-kBq threshold assessment, compared to the other

non-standardized MBBT definitions used in in previous

studies.20,26 Further, the MBTT obtained for 82Rb may

be affected by first-pass retention in the lungs, which

likely will contribute to an extended transit time. In a

study by Senthamizhchelvan et al, they report compa-

rable full-width at half maximum for time-activity

curves obtained in the myocardial cavities and the

Table 1. Demographics of the volunteers

Repeat scans Full cohort

Number of participants 25 33

Days between test/retest assessmenta 14 [6; 35] N/A

Age (years)a 22 [22; 23] 22 [22; 23]

Sex, Females, N (%) 11 (44%) 15 (44%)

BMI (kg�m-2)a 22 [21; 24] 22 [20; 23]

Current smoking, N (%) 9 (36%) 14 (40%)

aMedian and interquartile range

Figure 2. HR and its reserve observed during rest and adenosine stress MPI, stratified by sex.
Similar HR and HR reserves were observed for both males and females during both rest and stress
MPI. Significant increases in the HR were observed during adenosine stress for both sexes, denoted
by *. HR, heart rate; MPI, myocardial perfusion imaging; F, female; M, male.
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lungs, however, with significantly elevated activities

observed in the lungs.27 The discrepancies in the AUC

of the two organs may indicate a first-pass retention of

approximately 25%, thus, suggesting an approximately

overestimated MBTT of 25% in this study. While

being a limitation of 82Rb MBTT assessment, it is

inherent to the radiotracer; thus, we did not correct this

in the current study. Finally, the observed sex differ-

ences in PBV are in concordance with the general

findings in nuclear cardiology studies, where the rest

myocardial blood flow has been reported to be higher

in females.16

In the present study, adenosine infusion caused a

remarkable increase in PBV of approximately 384 mL

(in females) and 566 mL (in males), respectively. This

has not previously been reported in humans but agrees

well with previous findings in dogs undergoing a similar

adenosine infusion protocol.28 This PBV increase con-

ceivably reflects the combined effects of adenosine on

cardiac output and pulmonary vascular tone, as it is

known to be a pulmonary vasodilator.29 Therefore, the

estimation of PBV by 82Rb MPI may also help reveal

whether sufficient hyperemic response is achieved under

pharmacological stressing. The insufficient hyperemic

Figure 3. SV observed during rest and adenosine stress MPI, respectively. Significantly elevated
SV and SV reserves are reported for males compared to females (marked by a). *marks significant
differences between rest and stress MPI. SV, stroke volume; MPI, myocardial perfusion imaging; F,
female; M, male.

Table 2. Empirical measurements of EDV, ESV, SV, HR, CO, MBTT, and PBV

Rest Stress Reserve

EDV (mL) (F/M) 75 ± 16/126 ± 22a 93 ± 19*/153 ± 26*,a 19 ± 6/27 ± 11a

ESV (mL) (F/M) 27 ± 8/58 ± 15a 21 ± 7/52 ± 14a - 6 ± 3/- 6 ± 7

SV (mL) (F/M) 47 ± 9/69 ± 11a 72 ± 13/101 ± 15a 25 ± 6/32 ± 12a

HR (min-1) (F/M) 58 ± 10/57 ± 12 92 ± 16*/84 ± 19* 34 ± 13/26 ± 11

CO (L*min-1) (F/M) 2.7 ± 0.6/3.9 ± 0.8a 6.6 ± 1.6*/8.4 ± 2.1*,a 3.9 ± 1.2/4.5 ± 1.7

MBTT (seconds) (F/M) 12 ± 2/15 ± 3a 9 ± 2*/11 ± 3*,a - 4 ± 2/- 4 ± 2

PBV (Empirical) (mL)

(F/M)

544 ± 98/

926 ± 105a
914 ± 182*/

1458 ± 338*,a
370 ± 137/

532 ± 299a

PBV (BSA harmonized) (mL) (F/M) 555 ± 79/790 ± 94a 946 ± 185*/

1259 ± 269*,a
391 ± 147/470 ± 262

EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; HR, Heart rate; CO, cardiac output; MBTT, mean bolus
transit time; PBV, pulmonary blood volume; BSA, body surface area; F, female, M, male
*Significant changes between rest and stress, while a denotes sex-specific differences (both shown at stress for the respective
sexes). Of note, the measures for participants with repeat scans are reported using the mean of the two scans.
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response has been reported to occur frequently in the

clinical routine, either through elevated plasma caffeine

levels in the blood or poor response to the pharmaco-

logical stressing agent.16 Of consequence, the

inadequate hyperemic response during pharmacological

stress may cause false-negative findings and, thus,

adversely affect patient care.30 A previous study from

our center has shown that a selection of physiological,

image-derived, and hybrid markers only provide accept-

able identification of the adequate hyperemic response.17

While not being evaluated in this study, the increase in

PBV during adenosine stress may help identify whether

sufficient hyperemic response is achieved during stress

MPI in patients without heart failure, which may have

disease-induced changes in the PBV.

High test–retest repeatability is a critical prerequi-

site for any new measure to be translated into clinical

use. In this study, we evaluated the test–retest repeata-

bility measures of all components included in the PBV

assessments. Common for the test–retest repeatability

measures was excellent repeatability for most values,

with interscan variations\ 20% (Table 1). The poorest

repeatability measures were observed for the MBTT and

PBV measures, with test–retest variations of up to 19%

for the empirical measures, while the repeatability

measures for the reserves not unexpectedly varied more

and up to 67%. While elevated test–retest variation was

reported for the MBTT and PBV values, the variations

were comparable to test–retest variations observed for

assessments of myocardial blood flow and their

reserves.31,32 Therefore, both MBTT and PBV are of

clinical standard and, thus, permittable to be tested in

cohorts evaluating patients in future studies.

Although this study focused on assessing the PBV

using 82Rb MPI, this technique is not limited to nuclear

cardiology but may be applicable to other imaging

modalities where the MBTT can be estimated. Such

studies may include cardiac magnetic resonance imag-

ing, cardiac computed tomography, and ultrasound, as

well as other dynamic studies of the heart in nuclear

medicine with tracer injection during the acquisition

while the heart is in the field of view.

Study limitations

This study has several notable limitations. First, this

study focused on volunteers without any pre-existing

conditions and comprised only 33 subjects (of which 25

had repeated measures). Despite the few participants, we

report increases in PBV during adenosine stressing of

the volunteers with intermediate to high test–retest

variability measures. While the cohort of healthy vol-

unteers may be a limitation, we consider this a strength

for this study as it permits reliable assessments of the

patients without any co-morbidities affecting the

changes in PBV during hyperemic response or the

test–retest repeatability measures. Several studies eval-

uating various systemic diseases and their impact on

PBV have been initiated to evaluate whether systemic

diseases affect PBV. Another limitation of the study is

PBV’s reliance on a ‘‘geometric’’ estimation of cardiac

output as SV 9 HR since it could potentially

Figure 4. MBTT and its reserve observed for rest and adenosine stress MPI stratified by sex. The
MBTT was significantly shortened during adenosine stress MPI (marked by *), with females having
shortened MBTT compared to men for both rest and stress MPI (marked by a). No differences were
reported MBTT reserve for the males and females. MBTT, mean bolus transit time; F, female; M,
male.
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overestimate cardiac output in older patients at greater

risk of valvular disease. Further, the bias between the

PBV reported in the current study and previous studies

may be attributed to bias in the SV assessments obtained

in various imaging modalities with different inherent

imaging influences (partial-volume effects, positron

range, filtering, etc.). Unfortunately, it was not possible

to validate the SV against other imaging modalities in

this study, and thus, it is a limitation of the validation of

the proposed technique. Relating to the method, it is a

limitation that the proposed method is more prone to

noise artifacts in the MBTT assessment given the

threshold-based assessment. Ideally, more reliable

MBTT assessments may be obtained from area-under-

curve assessments, known from the injection dye tech-

nique. Unfortunately, the variable 82Rb injection

volumes and times render this technique infeasible in

routinely acquired studies. Further, the potential first-

pass retention of 82Rb in the lungs may delay the bolus

transit, thus, increasing the MBTT. The retention of the

radiotracer is subject to follow up studies evaluating the

limitations of the proposed technique. Finally, the study

also has the limitation that no invasive measured

reference value for the cohort exists and that PBV

values can only be compared to other non-invasive

methods, such as MRI studies where other

Figure 5. PBV and PBV reserve obtained for rest/adenosine stress MPI, stratified by sex. Upper
row shows the empirical measured PBV, while the lower row shows body surface area harmonized
PBV measures. PBV and PBV reserve values were significantly elevated for males when data were
not harmonized for body surface. Following DuBois correction (body surface area correction),
significant differences in the PBV were reported for the two sexes; however, PBV reserve was
reported as comparable. Common for both datasets and sexes was a significant increase in the PBV
during adenosine stress. * denotes significant differences between rest and adenosine stress MPI, a
denotes sex differences. Of note, all PBV values for the respective sexes are given in mL or mL/
1.73 m2). PBV, pulmonary blood volume; MPI, myocardial perfusion imaging.
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methodologies for assessing the bolus transit time are

employed. Unfortunately, we did not have ethical

permission to evaluate the PBV invasively in this cohort

of young, healthy volunteers.

NEW KNOWLEDGE GAINED

In this study, it has been demonstrated that both the

pulmonary blood volumes may be estimated from

routinely acquired 82Rb MPI acquisitions and that

adenosine-induced hyperemia increases PBV in a cohort

of healthy volunteers. Further, the PBV obtained from
82Rb scans in this study is comparable to previous

reports evaluating cardiac MRI studies. Finally, it has

been shown that PBV is a reproducible measure, with

test–retest variations comparable to those reported from
82Rb myocardial blood flow and flow reserve

assessments.

CONCLUSION

In this proof-of-concept study, we have shown that

non-invasive measurements of PBV are feasible using

routine MPI PET, with repeatability comparable to other

measures used in nuclear cardiology routine. Further-

more, we report that adenosine-induced hyperemia

increases PBV in a cohort of healthy volunteers, which

has not previously been reported in humans. Finally, we

report that some sex-specific differences do exist.

However, PBV elevate harmoniously in males and

females when the data are normalized for differences in

the body surface area.
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