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Purpose. We developed a method of standardizing the heart-to-mediastinal ratio in 123I-
labeled meta-iodobenzylguanidine (MIBG) images using a conversion coefficient derived from a
dedicated phantom. This study aimed to create a machine-learning (ML) model to estimate
conversion coefficients without using a phantom.

Methods. 210 Monte Carlo (MC) simulations of 123I-MIBG images to obtain conversion
coefficients using collimators that differed in terms of hole diameter, septal thickness, and
length. Simulated conversion coefficients and collimator parameters were prepared as training
datasets, then a gradient-boosting ML was trained to estimate conversion coefficients from
collimator parameters. Conversion coefficients derived by ML were compared with those that
were MC simulated and experimentally derived from 613 phantom images.

Results. Conversion coefficients were superior when estimated by ML compared with the
classical multiple linear regression model (root mean square deviations: 0.021 and 0.059,
respectively). The experimental, MC simulated, and ML-estimated conversion coefficients
agreed, being, respectively, 0.54, 0.55, and 0.55 for the low-; 0.74, 0.70, and 0.72 for the low-
middle; and 0.88, 0.88, and 0.88 for the medium-energy collimators.

Conclusions. The ML model estimated conversion coefficients without the need for
phantom experiments. This means that conversion coefficients were comparable when esti-
mated based on collimator parameters and on experiments. (J Nucl Cardiol 2023;30:1630–41.)
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Abbreviations
123I-MIBG 123I-labeled meta-iodobenzylguanidine

HMR Heart-to-mediastinum count ratio

LE Low energy

MC Monte Carlo

ME Medium energy

ML Machine learning

BACKGROUND

Cardiac scintigraphy with the noradrenaline analog
123I-labeled meta-iodobenzylguanidine (MIBG) is now

an established means of evaluating heart failure1-6 and

neurodegenerative diseases.7-13 The heart-to-medi-

astinum ratio (HMR) is calculated as the average

count ratio of 123I-MIBG-derived activity in a cardiac

region of interest (ROI) and that in the mediastinal

ROI,14,15 can quantify cardiac sympathetic nerve activ-

ity in 123I-MIBG images.

The HMR considerably varies due to differences in

the characteristics of gamma cameras and low-energy

(LE), low-middle-energy (LME), and middle-energy

(ME) collimators, that are used for 123I-MIBG imaging.

High-energy photons emitted by 123I radionuclides can

easily penetrate the thin septa of collimators. To

overcome HMR variations due to collimator character-

istics in gamma camera imaging systems, we developed

an acrylic chest phantom that mimics the 123I-MIBG

distribution in organs on planar images, then calibrated

the HMR based on conversion coefficients.16-22 This

method allowed for HMR values derived from various

collimators and gamma camera combinations to be

adjusted and unified to a standard gamma camera with a

standard collimator. The method has been validated by

phantom imaging at several medical centres in Europe

and Japan.17,23-26 We then fit the conversion coefficients

to the characteristics of collimators in 123I-MIBG

imaging based on those results. However, the combina-

tions of commercially available collimators and gamma

cameras are numerous in current camera systems and as

new cameras or collimators become available, further

phantom imaging will be needed.

We, therefore, propose a new standardization

method that does not require phantom experiments.

We aimed to simulate images of 123I-MIBG phantoms

using the Monte Carlo (MC) method with various

collimator parameters, to calculate conversion coeffi-

cients from simulated phantom images, and to generate a

machine learning (ML) model that could estimate

conversion coefficients from collimator parameters.

METHODS

Calibration phantom for planar 123I-MIBG
imaging

A flat, polymethyl methacrylate phantom (width 9

depth 9 height: 380 9 380 9 50 mm3, Taisei Medi-

cal, Co. Ltd, Osaka, Japan) was developed to simulate
123I-MIBG distribution in the heart, mediastinum, liver,

lungs, and thyroid gland (Figure 1a). A digital version of

the phantom was created from an X-ray CT scan with

different segmented compartments (Figure 1b) to obtain

a three-layer map of activity. Background activity was

represented in the basal layer. Cardiac, pulmonary,

hepatic, and thyroid activities were represented in layers

1 and 2. Details of the phantom design have been

published elsewhere.16,22

Monte Carlo simulation for 123I-MIBG
imaging

We simulated 123I-MIBG planar imaging using the

Simulated Imaging Nuclear Detectors (SIMIND) MC

code.27 Since many simulation parameters for the

gamma cameras were not available, we applied a

standard gamma camera in all MC simulations that

had a crystal thickness, width, and length, 9.5 (3/8 inch),

269.5, and 250 mm, respectively; backscatter material

and cover thickness, 76 and 1.0 mm, respectively;

energy resolution, 9.8% (FWHM at 140 keV); intrinsic

resolution, 3.8 mm; energy window,159 keV ± 10.0%;

matrix and pixel sizes, 256 9 256 and 2.21 mm,

respectively. All MC simulations generated 123I-MIBG

planar images using a total of 1.78 9 109 photons.

Simulation 1: Eighteen collimators were simulated

for the following gamma camera systems: Infinia,

Millennium MG, and Millennium VG (GE Healthcare,

Waukesha, WI, USA); PRISM-AXIS and IRIX (Picker

Corporation, Cleveland, OH, USA); Brightview (Philips

Medical Systems, Milpitas, CA, USA); Symbia and

E.CAM (Siemens Healthineers, Erlangen, Germany).

Table 1 shows details of the collimator parameters. All

MC simulations were repeated three times per

collimator.

Simulation 2: We simulated 283 collimators with

hole diameters of 1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, and

3.5 mm; septal thickness of 0.15, 0.2, 0.25, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.2, and 1.5 mm; and lengths of 20, 25,

30, 35, 40, 45, 50, 55, and 60 mm.

Simulation 3: Three collimators were simulated for

the Discovery NM series (GE Healthcare) with respec-

tive to hole diameters, septal thicknesses, and collimator

lengths of 1.5, 0.2, and 35.0 mm, for the low-energy

high-resolution (LEHR) type; 2.5, 0.4, and 40.0 mm for
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the extended low-energy general-purpose (ELEGP)

type; 3.0, 1.05, and 58.0 mm for the medium-energy

general-purpose (MEGP) type. All MC simulations were

repeated five times per collimator.

123I-MIBG phantom image database
for validating results of MC simulation

We generated a multicenter database of 123I-MIBG

experimental phantom images accumulated in Japan

over a period of 15 years.16 Two image datasets were

selected from the database to validate the results of MC

simulations 1 and 3 as follows.

Validation dataset for MC simulation 1: Seven

gamma cameras and collimators were selected from the

database along with 153, 33, 40, 36, 73, 39, and 60

phantom images acquired using Infinia, Millennium

MG, Millennium VG, BrightView, AXIS/IRIX, Symbia,

and E.CAM systems, respectively.

Validation dataset for MC simulation 3: We

selected phantom images from the database using the

gamma camera of Discovery NM 630, 640, 670, 830,

and 850 systems (GE Healthcare). Among these, 26,

107, and 46 were acquired using LEHR, ELEGP, and

MEGP collimators.

Planar images in both datasets were acquired from a

phantom containing 111 MBq of 123I-MIBG. Planar

Figure 1. Monte Carlo (MC) simulation using 123I-MIBG phantom. a Acrylic 123I-MIBG phantom
(left) and scintigraphic planar image (right). b Digital phantom for MC simulation. Density (white)
and activity (red) maps of X-ray CT images acquired from acrylic phantom. (c) Simulation and
experimental images with LEHR and MEGP collimators.
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imaging proceeded with 256 9 256 or 512 9 512

matrices. The photopeak window of 123I was centered

at 159 keV with a 20% energy window. The maximum,

minimum, and median acquisition durations were 600,

180, and 300 s, respectively.

Monte Carlo simulation using standard
and original detector conditions

We confirmed the conversion coefficients derived

from standard detector conditions with those from

original detector conditions in six commercially avail-

able gamma cameras. Table 2 shows the crystal

thickness, intrinsic resolution, and energy resolution in

the original detector conditions. The other detector

parameters for backscatter material and cover thickness

were set as 76 mm and 1.0 mm, respectively. Regarding

the imaging condition, the energy window, matrix size,

and pixel sizes were set as 159 keV ± 10.0%,

256 9 256, and 2.21 mm, respectively. All MC simu-

lations generated 123I-MIBG planar images using a total

of 1.78 9 109 photons. All MC simulations were

repeated five times in the standard and original detector

conditions.

Image analysis

A calibration factor was calculated from two HMR

values derived from anterior (HMRAnt) and posterior

(HMRPost) planar 123I-MIBG phantom images as a

conversion coefficient:

Conversion coefficient ¼ HMRAnt þ HMRPostð Þ=f
2 � 1g= 2:6 þ 3:5ð Þ=2 � 1f g;

where 2.6 and 3.5 are the respective designated HMRs in

the anterior and posterior views of the calibration

phantom.22 We developed ROI setting software for

phantom image analysis. Standardized circular and

rectangular ROIs were automatically delineated on the

heart and mediastinum. These ROI sizes and positioning

were determined based on the smartMIBG software

program.28

Table 1. Collimator parameters in gamma camera systems

Gamma camera Collimator Hole diameter (mm) Septum thickness (mm) Length (mm)

GE

Infinia LEHR 1.50 0.20 35.00

ELEGP 2.50 0.40 40.00

MEGP 3.00 1.05 58.00

Millennium VG LEHR 1.50 0.20 35.00

LEGP 1.90 0.20 35.00

MEGP 3.00 1.05 58.00

Millennium MG LEHR 1.80 0.18 41.00

LEGP 2.50 0.25 43.00

MEGP 3.00 1.20 42.00

Philips

Brightview CHR 2.03 0.152 48.00

MEGP 3.40 0.86 58.40

SIEMENS

E.CAM LEHR 1.11 0.16 24.05

MELP 2.94 1.14 40.64

Symbia LEHR 1.11 0.16 24.05

MELP 2.94 1.14 40.64

Picker

AXIS/IRIX LEHR 1.22 0.20 27.00

LEGP 1.40 0.25 25.40

MEGP 3.40 0.86 58.40

CHR, cardiac high-resolution; ELEGP, extended low-energy general-purpose; LEAP, low-energy all-purpose; LEGP, low-energy
general-purpose; LEHR, low-energy high-resolution; LMEGP, low-medium-energy general-purpose; MEGP, medium-energy
general-purpose; MELP, medium-energy low-penetration
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Machine learning (ML) model

We estimated conversion coefficients using an ML

algorithm for regression analysis. We applied a gradient-

boosting regression algorithm using scikit-learn29 to

estimate conversion coefficients by building seven

models with hole diameter, septal thickness, and colli-

mator length. The conversion coefficients and related

collimator parameters were randomly divided into

training and validation datasets in a ratio of 3:2. We

performed cross-validation for the machine learning

prediction models using a fourfold model. The optimal

ranges of hyperparameter values for the ML algorithm

of 0.01-0.5 for the learning rate, 1-100 for the number of

estimators, and 1-8 for the maximum depth of the

individual regression estimators were determined using

a grid search. Default values were applied to the

remaining hyperparameters. Feature importances of the

hole diameter, septal thickness, and collimator length

were evaluated using the permutation feature impor-

tance provided by the scikit-learn.30

Table 2. Conversion coefficients derived with original and standard detector conditions

Gamma
camera

Intrinsic
resolution

(mm)

Energy
resolution

(%) Collimator

Conversion coefficients

p
value

Original
detector
condition

Standard
detector
condition

GE

Infinia 3.8 9.8 LEHR 0.554 ± 0.013 0.549 ± 0.011 n.s

(3/8-inch

crystal)

MEGP 0.893 ± 0.012 0.889 ± 0.012 n.s

Millennium

MG

3.7 9.7 LEHR 0.536 ± 0.004 0.533 ± 0.016 n.s

(3/8-inch

crystal)

MEGP 0.874 ± 0.006 0.866 ± 0.013 n.s

NMCT 3.7 9.5 LEHR 0.547 ± 0.015 0.544 ± 0.011 n.s

(3/8-inch

crystal)

MEGP 0.878 ± 0.013 0.881 ± 0.010 n.s

NMCT 4.5 9.5 LEHR 0.588 ± 0.009 0.589 ± 0.016 n.s

(5/8-inch

crystal)

MEGP 0.906 ± 0.007 0.905 ± 0.010 n.s

Philips

Brightview 3.3 9.6 CHR 0.489 ± 0.004 0.489 ± 0.005 n.s

(3/8-inch

crystal)

MEGP 0.853 ± 0.009 0.853 ± 0.019 n.s

SIEMENS

E.CAM 3.8 9.9 LEHR 0. 555 ± 0.004 0.552 ± 0.006 n.s

(3/8-inch

crystal)

MEGP 0.860 ± 0.016 0.869 ± 0.006 n.s

E.CAM 4.5 9.9 LEHR 0.606 ± 0.014 0.611 ± 0.007 n.s

(5/8-inch

crystal)

MEGP 0.883 ± 0.010 0.872 ± 0.008 n.s

Picker

AXIS/IRIX 3.3 9.5 LEHR 0.558 ± 0.009 0.565 ± 0.010 n.s

(3/8-inch

crystal)

MEGP 0.865 ± 0.011 0.863 ± 0.008 n.s

The intrinsic resolution of 3.8 mm and energy resolution of 9.8% (FWHM at 140 keV) were used in the standard detector
condition. CHR, cardiac high-resolution; LEHR, low-energy high-resolution; MEGP, medium-energy general-purpose

1634 Okuda et al Journal of Nuclear Cardiology�
Machine learning-based prediction of conversion coefficients July/August 2023



Conventional multiple linear regression
model

We estimated conversion coefficients using a con-

ventional multiple linear regression model. Collimator

parameters of the hole diameter, septal thickness, and

collimator length were used to build the model. The

conversion coefficients and related collimator parame-

ters were randomly divided into training and validation

datasets in a ratio of 3:2. The software machine learning

library, scikit-learn,29 was used.

Statistical analysis

All continuous parametric variables are expressed

as means ± standard deviation (SD), and non-parametric

data are presented as medians. Differences in continuous

variables were analyzed using Student t-tests and Wil-

coxon signed-rank tests. Multiple comparisons of

continuous variables were assessed using Tukey–Kra-

mer tests. Differences in paired continuous data were

analyzed using paired t-tests. A root mean square error

(RMSE) is used to measure the error of a model in

predicting conversion coefficients. All statistical tests

were two-tailed, and values with p\ 0.05 were consid-

ered significant. All data were statistically analyzed

using JMP version 11.2.1 (SAS Institute Inc., Cary, NC,

USA).

RESULTS

The quality of the simulated and experimental

phantom images was equivalent in terms of LEHR and

MEGP collimator conditions (Figure 1c). A comparison

of the average of simulation and experimental conver-

sion coefficients among seven camera systems revealed

that higher mean values were in the experimental than

the simulated images for 10 collimators (Figure 2a). The

regression line of averaged experimental conversion

coefficients (Y) as a function of simulated values (X)

was Y = 1.27X-0.15 (R2 = 0.96; Figure 2b). The simu-

lated conversion coefficients were compensated using

this equation in subsequent analyses. Hole diameter and

septal thickness closely correlated with conversion

coefficients (Figure 2c).

When the original detector parameters: the intrinsic

resolutions were 3.3-3.8 mm for the 3/8-inch crystal and

4.5 mm for the 5/8-inch crystal; and the energy resolu-

tion were 9.5-9.9%, were used in MC simulation, the

conversion coefficients derived from the original and

standard detector conditions were comparable in LE and

ME collimators (Table 2). The influence of the differ-

ences between original and standard detector parameters

on conversion coefficients was small. A lookup table of

conversion coefficients is available in Table 2. The

conversion coefficients of LE collimators were within

the ranges of 0.49-0.56 for the 3/8-inch crystal and of

0.59-0.61 for the 5/8-inch crystal. The conversion

coefficients of ME collimators were 0.85-0.89 and

0.88-0.91 in the 3/8-inch and 5/8-inch crystals,

respectively.

The HMR and related conversion coefficients were

calculated using 283 collimator parameters (Supplemen-

tary Figure 1). We excluded 73 from the following

analyses due to high septal penetration ([ 1.0%).

Conversion coefficients calculated from the remaining

210 collimator parameters were all within the range of

0.44-0.94 (Figure 3a). Although correlations between

conversion coefficients and collimator parameters were

positive, the range of R2 values was 0.2-0.75 (Fig-

ure 3b). Agreements between actual and predicted

conversion coefficients were evaluated using scatter

plots (Figure 3c). Analysis of the seven ML models

using combinations of collimator diameter, septal thick-

ness, and collimator length, revealed that the smallest

RMSE was 0.0207 when these collimator parameters

were incorporated (Figure 3d). Tuned hyperparameters

for this ML condition were as follows: learning rate,

0.33; the number of estimators, 25; maximum depth of

individual regression estimators, two. Conventional

multiple linear regression analysis using the three

parameters provided an RMSE of 0.0588. The higher

score of feature importance was 1.5 ± 0.15 for septal

thickness and the lower scores were 0.057 ± 0.0088 for

hole diameter and 0.0080 ± 0.0017 for collimator

length.

The experimentally derived, MC simulation, and

ML-estimated conversion coefficients in 123I-MIBG

phantom images (Figure 4a) were, respectively,

0.54 ± 0.023, 0.55 ± 0.0082, and 0.55 for LEHR,

0.74 ± 0.025, 0.70 ± 0.0066, and 0.72 for ELEGP, and

0.88 ± 0.030, 0.88 ± 0.014, and 0.88 for MEGP

(Figure 4b).

DISCUSSION

The main findings of the present study were that

conversion coefficients were slightly underestimated

when simulated compared with experimental results,

and were corrected with the regression line of experi-

mental conversion coefficients on simulated results.

Simulated conversion coefficients closely were corre-

lated with collimator parameters. The ML models

revealed that conversion coefficients could be precisely

estimated from collimator parameters. The experimen-

tally derived and ML-estimated conversion coefficients

closely agreed in the validation study.
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We have promoted a phantom-based methodology

to standardize the HMR in 123I-MIBG imaging. Many

cardiological and neurological studies have determined

HMRs without standardization1-3,7,10,31,32 and this has

led to wide variations in clinical normal values and

HMR thresholds. Clinical criteria to determine the

prognosis of heart failure would change by these HMR

values as the optimal threshold of the HMR for

diagnosing neurological disorders would be influenced

by non-standardized conditions. Moreover, regardless of

whether diagnostic models were generated using statis-

tical or ML approaches based on non-standardized

HMRs, variations in these values cannot be excluded

from estimations. Therefore, a standard HMR should be

mandatory in 123I-MIBG imaging.

The simulated conversion coefficients were under-

estimated compared with those determined under actual

MEGP collimator conditions. Assessment of the

Figure 2. Conversion coefficients derived from Monte Carlo simulated 123I-MIBG phantom
images. a Averaged experimental (blue) and simulated (orange) conversion coefficients in seven
gamma camera systems. *p\ 0.05, �p\ 0.01, �p\ 0.001. b Regression line of experimental vs.
simulated conversion coefficients. c Correlations between conversion coefficients and hole diameter
(left), septal thickness (center), and length (right).
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penetration fraction of the ME collimator in published

simulation studies revealed that Rault et al. found a 3%

penetration fraction using a point source.33 Moreover,

Konik et al. found * 4% penetration fraction using a

point source and the 4D extended cardiac-torso (XCAT)

digital phantom.34 The geometry and tracking 4

(GEANT4) application for tomographic emission

(GATE) package35 was used in these studies. The mean

penetration fraction was 7.2% in our simulation. Slight

differences in the penetration fraction could have

influenced the simulated conversion coefficients.

Numerous parameters for gamma cameras and

collimators should be fixed to reproduce actual phantom

experiments in MC simulations. When the densities of

the collimator material were fixed at 11.34 (Pb,100%);

11.25 (Pb 98%, Sb2%); 11.20 (Pb 97%, Sb 3%); 11.15

(Pb 96%, Sb 4%); and 11.06 (Pb 94%, Sb 6%) g/cm3,

the conversion coefficients changed from 0.80 to 0.83

even with the ME collimator. The contribution of high-

energy photon backscatter from the photomultiplier tube

was also fixed. When the backscatter material thickness

was 3.8, 7.6 (default), and 11.4 cm, the conversion

coefficients slightly changed from 0.79 to 0.81. In

summary, the effects of collimator material densities and

backscatter material thickness on the conversion factor

were limited under the conditions of MC simulation.

Some factors influence the conversion coefficients

except collimators and cameras. We exhibited that the

primary energy window setting for the image acquisition

condition affected the conversion coefficients.16 The

conversion coefficients showed higher values when

images were acquired with the energy windows of

159 keV ± 7.5% than 159 keV ± 10%. However, the

energy window of 159 keV ± 7.5% was not popular as
123I-MIBG acquisition condition. Conversely, equiva-

lent conversion coefficients were observed in imaging

bFigure 3. Machine learning (ML) estimation of conversion
coefficients using collimator parameters. a Conversion coef-
ficients were calculated using 210 collimator parameters. b
Relationships between conversion coefficients and collimator
parameters: hole diameter (left), septal thickness (center), and
length (right). c Agreement between actual and predicted
conversion coefficients in seven ML and conventional multiple
linear regression models. d RMSE values between actual and
predicted conversion coefficients in ML and conventional
models.

Figure 4. Comparisons of experimental, MC simulated, and ML-estimated conversion coefficients.
a Experimental, simulated, and estimated conversion coefficients were calculated for LEHR,
ELEGP, and MEGP collimators. b Average of experimental (blue), MC simulated (orange), and
ML-estimated (yellow) conversion coefficients for three collimators. *p\ 0.05, �p\ 0.01.
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matrices of 256 and 512.16 When we evaluated the

variations of conversion coefficients in two dual-head

gamma camera positioning: parallel-mode and L-mode

configurations, the conversion coefficients did not differ

significantly between the two configurations. In addi-

tion, even when the distances between phantom and the

opposite gamma camera that did not acquire planar data

were changed, the conversion coefficients were stable at

any distance. The effects of the gamma camera config-

urations on the variation of conversion coefficients may

be therefore negligible.

The ML model provided reasonable conversion

coefficients using only the specifications of collimator

designs. Since the collimator parameters were nonlin-

early associated with conversion coefficients, ML would

be suitable for these data compared with simple statis-

tical and multiple linear regression models. Considering

the selection of parameters in collimator design, septal

thickness was pivotal to estimate conversion coeffi-

cients. Moreover, the combination of septal thickness,

hole diameter, and collimator length generated excellent

estimates of conversion coefficients.

The interpretation of the ML model is important for

applying the ML to simulation data. We have prelim-

inary compared gradient-boosting regression with kNN,

linear regression, and support vector machine using the

orange data mining toolbox in python36 (Supplementary

Figure 2). A total of 210 conversion coefficients with

three collimator parameters were used as test data. A

cross-validation using a fivefold model was applied to

calculate RMSE values. The gradient-boosting regres-

sion showed the smallest RMSE of 0.016. The gradient-

boosting regression model was suitable for our dataset.

Although MC simulation can directly estimate

conversion coefficients based on collimator designs,

MC simulations of 123I-MIBG phantom imaging are

very laborious. Consequently, we estimated conversion

coefficients using the ML algorithm instead of MC

simulation. However, we suggest that actual phantom

experiences at each institution are still needed to obtain

conversion coefficients, particularly as new gamma

cameras and collimators are developed. The vendors of

the cameras may sometimes update and modify colli-

mator designs. When the collimators will be modified or

newly created, we need to perform MIBG phantom

experiments to calculate conversion coefficients fitted

for the new specifications. Our results are, however,

utilized for Anger-type gamma cameras with lead

collimators. When a new collimator is available with

its specifications, our ML model might be able to

estimate appropriate conversion coefficients for the

modified collimator even without phantom experiments.

In addition, the applicability of current cadmium-zinc-

telluride detectors awaits validation. When calculated

conversion coefficients are out of range in institutional

phantom images, the ML model can provide a standard

conversion coefficient based on combinations of colli-

mator and gamma camera parameters.

Our study has several limitations. MC simulations

cannot reproduce all the physical phenomena involved

in 123I-MIBG imaging. Further, MC simulations with

numerous collimator parameters are needed to improve

the performance of the ML model. The clinical impact

on patient diagnosis was not evaluated using the ML-

estimated conversion coefficients in this study. We

evaluated the clinical impact on patient diagnosis using

conversion coefficients derived from real phantom

images in our previous study.16 The net reclassification

improvement in 21 normal subjects and 12 patients with

heart failure showed 14.3% when the HMR values were

corrected using the conversion coefficients. Therefore, if

we can assume that the conversion coefficients by the

simulation and the phantom experiment were equivalent,

comparable clinical impacts would be provided by the

simulations and experiments.

NEW KNOWLEDGE GAINED

The MC simulations were very helpful for estimat-

ing the results of basic phantom experiments in 123I-

MIBG images. These results could serve as training and

validation materials for the ML algorithm. In addition to

actual 123I-MIBG phantom experiments, combined ML

and MC simulations would aid HMR standardization.

CONCLUSIONS

We aimed to estimate conversion coefficients for

the HMR ratio in 123I-MIBG images using ML models.

We found that the ML model could reasonably estimate

conversion coefficients based on the fundamental colli-

mator parameters of septal thickness, hole length, and

diameter. Conversion coefficients in the validation study

were equivalent between the ML model and the exper-

imental results. Our proposed methodology will

contribute to the HMR standardization of 123I-MIBG

scintigraphy.
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