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Deep learning (DL) methods are increasingly used

in both research and practice of medicine for acquisition,

segmentation, analysis, and interpretation of medical

imaging studies, including nuclear cardiology.1–3 A very

large study from our group3 recently reported the

development and initial validation of a DL model which

applies ‘‘virtual’’ attenuation correction to SPECT

myocardial perfusion imaging (MPI) data and improves

detection of coronary artery disease (CAD). One com-

mon question in response to hearing those findings was

to pose the question of how a computer could ‘‘see’’

attenuation artifacts which may have been difficult to

identify for human readers or standard quantification

approaches. The study by Yeung and colleagues in the

current issue of the Journal of Nuclear Cardiology may

offer some insights into a related question. Specifically,

this study expands the literature showing that DL algo-

rithms can identify patient characteristics and predict

clinical risk factors beyond what physicians could con-

ventionally extract from images alone. For example, DL

has been applied to other medical imaging tasks to

predict mortality risk from fundoscopy images4 and for

quantifying bloo�d flow from optical images.5

Yeung et al. employ a two-step transfer learning

approach to train their DL algorithm using polar maps as

inputs, rest perfusion, stress perfusion, and myocardial

flow reserve (MFR), to predict 19 outputs in each model:

mean MFR in 17 segments, impaired MFR (\ 2.0), and

cardiovascular risk factors (sex, positive smoking status,

hypertension, dyslipidemia, and diabetes mellitus). The

first step was to use a publicly available pre-trained DL

model, ResNet-50,6 previously trained by others using

ImageNet data which include photographic images and

associated object classes.7 Example images from Ima-

geNet are shown in Figure 1. The pre-trained ResNet-50

model was fine-tuned on the weights in the later layers

of the model and its associated hyperparameters to

identify impaired regional MFR. This type of transfer

learning approach has been useful, enabling training

with only a fraction of the data required by traditional

approaches. The second step of their training method

was to further tune the model to classify individual

cardiovascular factors. With a relatively small dataset

(N = 851 for training and tuning the model and a test

set of N = 93), transfer learning facilitated training

while avoiding overfitting. Training against MFR seems

circular but may have been a necessary step to further

train the model to detect risk factors, which was the goal

of this study.

In validating DL, it is often difficult to determine

which results are uniquely enabled by the DL approach

and which might have been feasible with more con-

ventional approaches. This study compared DL results

to conventional statistical methods (logistic regression

models) for identifying cardiovascular risk factors. Both

conventional models and DL were able to determine sex

with the high accuracy using the rest polar map alone:

the area under the curve (AUC) = 0.81 for DL and 0.85

for the logistic regression model. Both methods were

also able to identify diabetes status, although margin-

ally, with AUC of 0.65 for DL and 0.61 for logistic

model using the reserve polar map as input. Interest-

ingly, DL was also able to identify smoking status,

whereas conventional logistic model was not able to;
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using rest polar map as the input, DL yielded AUC of

0.71 with the accuracy of 86%. Although the study was

only validated on small population, the paper demon-

strated the feasibility of DL application in MPI and

showed valuable insight into how DL may enhance our

ability to identify complex attributes from MPI images

that have difficult to discern morphological features.

Nonetheless, it is important to be cautious in our

interpretation of DL results. Like many other recent DL

studies in nuclear cardiology,8–10 this study was devel-

oped and validated using only small populations from a

single center. Further evaluation with much larger pop-

ulations from multiple centers is likely to show lower

real-world performance in larger, more heterogeneous

applications. Further, broader testing may identify pat-

terns and patients more likely to systematically

experience pitfalls with DL. Importantly, training and/or

evaluating DL algorithms with diverse populations and

with images acquired with a variety of protocols, scan-

ners, and settings are necessary as it has been well

established that DL algorithms may suffer from poor or

unpredictable performance on unfamiliar datasets.11–13

Even when trained with large amounts of data, DL may

not be generalizable across different institutions as

shown in Ref. [14] in which a DL algorithm for chest

radiography performed significantly worse on external

data compared to internal data (data from the same

institution as training data). Furthermore, differences in

disease prevalence in the training and test data may

affect DL performance. A recent systematic review and

meta-analysis compared DL performance to health-care

professionals in detecting diseases from medical imag-

ing.15 Although equivalent diagnostic performance was

shown overall, few studies presented externally vali-

dated results. Consequently, although many of DL

results in the medical imaging literature may demon-

strate a high diagnostic accuracy in initial studies, DL

performance may have been biased and overestimated.16

Training DL can also be challenging even with

large datasets if the gold standard is ill-defined. Finding

high-quality, unbiased gold standards are often difficult.

Although human readers are often used as the truth

standard in many studies, e.g., disease diagnosis and

image segmentation, this approach is expensive and time

consuming. With the increased number of images used

in developing and validating DL algorithms, this may

not always be feasible. Further, individual human

readers are also imperfect and there is considerable

variability between readers. As such, DL approaches in

other cardiac imaging modalities were able to exceed the

Figure 1. Example images from ImageNet.7.
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performance of individual readers when trained against

multiple readers.17 However, having multiple readers’

score each study can be prohibitive for large datasets.

Fortunately, in this study, the gold standards were

straightforward, albeit perhaps more interesting for our

understanding of DL’s strengths and weaknesses than

for direct clinical application.

For PET/SPECT MPI, detection of CAD using

invasive coronary angiography (ICA) is often used as

the ground truth. While this is appealing in many ways,

it raises many potential problems as well. First, angio-

graphic findings will not identify many etiologies for

hypoperfusion, including microvascular disease.18 Per-

haps even more problematic, very few patients are

referred to angiography after stress testing—8.8% in one

large study.19 Further, there are major biases in referral

for angiography in which women and minorities may be

less likely to be referred.20 The present study immedi-

ately demonstrates why this is a problem as DL can

clearly be influenced by sex and likely also by race.21

Consequently, DL algorithms trained to interpret MPI

using angiography as a gold standard may be unfair to

women and minorities and risk recapitulating existing

disparities in care of these groups.

Overall, while it is not entirely clear that the results

of this study by Yeung et al. are directly translatable to

clinical practice, they do offer critical insights into the

potential strengths and weaknesses of DL approaches in

nuclear cardiology. While these algorithms offer great

potential for improving accuracy of nuclear cardiology

examinations, it will be essential to approach these in a

manner which does not incorporate and perpetuate sex

and race biases and subsequent health disparities. In

other words, if DL algorithms potentially represent a

third eye for interpretation of nuclear cardiology studies,

we must ensure they are not blind to existing biases in

care.
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