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Starting over 70 years ago,1 clinicians began

quantifying myocardial blood flow to diagnose and

guide treatment. During the past seven decades, a large

number of tools has been developed, both invasive and

non-invasive. The ongoing utility of myocardial blood

flow assessment testifies the underlying clinical need.

Why does this patient have chest pain or dyspnea?

Should I perform coronary angiography or how should I

interpret its anatomy? Will the patient benefit from

revascularization? And, if yes, which vessels require a

procedure?

The ideal tool for studying myocardial blood flow

possesses the following features. First, it should be non-

invasive to avoid the small, but non-zero, risk of com-

plications inherent to any catheterization and therefore

facilitate serial assessment and require small or no

radiation exposure. Second, minimal contraindications

allow its application to the broadest range of patients

regardless of body habitus, heart rate and rhythm,

implanted devices, coagulopathy, and renal function.

Third, the entire left ventricle must be evaluated inde-

pendent of the complexity of coronary anatomy,

including total occlusions, bypass grafts, and tortuous or

calcified vessels. Fourth, since absolute flow depends on

the amount of supplied muscle, only normalizing to

myocardial mass (= perfusion) permits comparisons

among patients, although serial exams in the same

patient generally do not require this adjustment. Fifth,

the technique should be repeatable with a known and

acceptable test/retest variation under stable conditions.

Finally, the resolution of the tool must permit distinction

among the ‘‘revascularizable’’ vessels (generally at least

2 to 2.5 mm in reference diameter) and quantify their

distribution territory as a fraction of the total left

ventricle.

Since its initial description in animals2 and humans3

roughly 40 years ago for myocardial imaging, cardiac

positron emission tomography (PET) has matured into

the reference standard since it uniquely fulfills all of

these ideal features. However, several software packages

exist in current practice and, as admitted by a recent

national statement on PET blood flow quantification,

‘‘significant variation remains among some vendor

programs.’’4 The current manuscript by Nesterov et al in

this issue5 therefore provides a timely opportunity to

consider how to judge existing PET flow software.

SCORECARD FOR FLOW MODELS

Table 1 summarizes our criteria for a scientifically

valid and clinically practical flow model. First, the

model should have been experimentally validated in

animals using a reference standard such as an external

flow probe6 or microspheres. Second, the model must be

tested along the entire spectrum of flow that exists in

nature, from the high levels in normal volunteers7

(distinct from clinical patients with mild risk factors that

reduce average flows) to the low levels during ischemia8

(stress-induced perfusion defect with severe angina and/

or significant electrocardiographic changes). Note that

flow levels for ischemia must be quantified on a regional

basis - not globally - given its generally circumscribed

pathophysiology. Obviously a flow model should work

with all the major pharmacologic stress agents, includ-

ing dipyridamole,9 adenosine,10 and regadenoson.11

Essentially every test in medicine displays some

imprecision due to a combination of the physical limits

of the technology plus biology itself. The net effect for

myocardial imaging implies test/retest variation, even if
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done twice on the same day or a week or two apart under

clinically stable circumstances. Short-term variation, as

on the same day, largely reflects stochastic effects of the

radiotracer and imaging chain amplified by the flow

model, whereas long-term variation over a week or two

also includes biologic fluctuations. We have demon-

strated a 10% coefficient of variation in the short term

that grows to 21% in the long term for rubidium-82 and

a retention model.9

The arterial input represents a vital yet often

underappreciated component of flow quantification.

While radiotracer concentration in the arterial circula-

tion does not vary much spatially due to mixing during

transit, both cardiac PET12 and magnetic resonance13

perfusion imaging display heterogeneity among poten-

tial sampling sites (left atrium, left ventricular cavity,

ascending aorta, descending aorta). Reasons for this

variation in PET include partial volume effects, spillover

from adjacent structures, and motion of intrathoracic

anatomy during cardiac and respiratory cycles as well as

from gravity during supine positioning, imaging aniso-

tropy, and co-registration of emission and transmission

images that focuses on aligning the left ventricular

myocardium but not on other regions. Generally these

effects reduce the imaged arterial activity and vary

greatly among patients, indicating the need for individ-

ualized anatomic selection instead of using a fixed,

‘‘one-size-fits-none’’ region of interest. Recovering less

than the full arterial input leads to overestimated and

hence biased flow.

Results from a flow model must associate with

clinical outcomes (as modified by medical treatment

versus revascularization) in a large cohort followed for

years, displaying a risk continuum with both size and

severity.14 Incorporating flow quantification into clinical

care and imaging reports should become the daily

routine, as it has been at our center since April 2007 -

now over 14 years and exceeding 9,200 sequential PET

scans. Its application in practice should be demonstrated

to be cost-effective15 and validated through randomized

clinical trials.16

We have systematically examined each of these

items (animal validation, flow spectrum from normal to

ischemia, several pharmacologic stress medications,

Table 1. Scorecard for judging a PET flow package

Feature Description Citation N

Animal

validation

Comparison of PET against flow meter or microspheres Yoshida (1996)6 24

Flow spectrum

Normal

volunteers

Rest and stress flow in young, healthy people (not patients) Sdringola (2011)7 125

Ischemia Stress-induced perfusion defect with severe angina or ECG

changes

Johnson (2011)8 1674

Stress agents Interplay of vasodilator pharmacodynamics and radiotracer

timing

Dipyridamole Kitkungvan

(2017)9
120

Adenosine Kitkungvan

(2017)10
127

Regadenoson Johnson (2015)11 176

Test/retest Separate biologic variation from stochastic effects of imaging Kitkungvan

(2017)9
708

Arterial input Scan-specific customization of arterial input to avoid

underestimation

Vasquez (2013)12 288

Clinical

outcomes

Size/severity association with outcomes as modified by

treatment

Gould (2021)14 5274

Cost

effectiveness

Cost simulation ideally based on data from a randomized trial Delgado (2014)15 N/A

Randomized trial Impact of PET-guided management on clinical outcomes Kitkungvan

(2021)16
1028
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test/retest variability, arterial input customization, clin-

ical outcomes, economic analysis, and randomized trial)

in a series of publications mainly over the past

decade,6–12,14–16 indicating that judging a PET flow

model requires an edifice that cannot be built overnight

and does not rest solely on any single aspect. Rather,

multifaceted and interwoven evidence supports cus-

tomized decisions for each patient based on the sound

integration of PET flow physiology with unique clinical

circumstances.

SAME DATA, DIFFERENT RESULTS?

With this background we can place the new results

in context.5 In almost 50 patients with hypertrophic

cardiomyopathy, dipyridamole stress N-13 ammonia

PET images were obtained on a single scanner at one

center in Italy. Reconstructed images were anonymized

and shared among three centers (Italy, Finland, and

Switzerland), each using a different software package

(PMOD, Carimas, and FlowQuant, respectively) but the

same one-tissue compartment model. After blinded

analysis, global, territory, and segmental stress perfusion

were compared among the three tools. Segmental values

could vary by as much as 36% as quantified by the

maximum/minimum ratio, and pairwise comparison of

segments showed several outside of the their ‘‘accept-

able agreement’’ range encompassing ± 20% in median

value and C 0.75 intraclass correlation coefficient.

Because the reconstructed PET data and time-

activity curve model remained constant, the observed

variation in the results can only have arisen due to model

implementation or to differences in the input to the

model (time-activity curves for the arterial input and

myocardium uptake) or to a combination of both factors.

The authors did not analyze the same time-activity curve

in all three software packages, which would have

uncovered any variations in implementation. Therefore,

their results remain somewhat ambiguous regarding the

mechanism(s) for the observed heterogeneity.

Nevertheless, that such frequent and sizable varia-

tions in calculated flow could arise from the same

underlying data emphasizes the lack of portability

among software packages. Consequently, in our opinion

each vendor must be judged according to the integrative

framework of Table 1. As described earlier, we believe

that differences in the arterial input location12 likely

account for a sizable portion of the variation in the flows

observed in the current study.5 Additionally, many

algorithms average over a region of interest in the

myocardium to determine its uptake, which neglects

basic physical principles of the point spread function

and partial volume effects.17 To our knowledge, the

partial volume factor remains ‘‘hidden in the black box’’

for almost all software vendors, providing a fudge factor

never displayed to the user and hence not comparable

among results.

Unexpectedly, the current analysis found the largest

variation in quantification of stress perfusion in the

lateral territory and segments.5 In normal volunteers the

lateral wall has been shown by PET7 and invasive

assessment18 to have equivalent perfusion to the other

regions. The discrepant results in this new manuscript

did not arise due to a perfusion defect, since the lateral

territory and segments had the highest average stress

perfusion.5 Because each software package started with

the same input image, this finding suggests spatial

heterogeneity when generating time-activity curves for

the left ventricle.

FLOW PACKAGE, NOT FLOW MODEL

In our view, the current manuscript by Nesterov

et al5 offers a profound yet unexpected insight: flow

software must be judged by more than its underlying

physiologic model. Indeed, we should instead speak of a

PET flow ‘‘package’’ that explicitly acknowledges

many design choices that affect the numeric values:

time-activity curve versus retention flow model, peak

versus average myocardial uptake, fixed and known

versus variable and hidden partial volume correction,

and customized versus static arterial input location.

Additionally, each flow package should be rated using

the report card in Table 1. We do not think of people as

interchangeable, although we are all based on the same

‘‘model’’ - the same holds true for PET flow software.
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