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INTRODUCTION

The two-left ventricular (LV) papillary muscles

(anterolateral and posteromedial) are small structures

that are vital to mitral valve competence and LV

function. Partial or complete papillary muscle rupture,

complicating acute myocardial infarction, causes severe

or even catastrophic mitral regurgitation, and is associ-

ated with increased morbidity and mortality.1 However,

despite the clinical significance of papillary muscle

(PM) ischemia, the assessment of papillary muscle

perfusion has been challenging with cardiac single

photon emission computed tomography myocardial

perfusion imaging (SPECT MPI) or Magnetic Reso-

nance Imaging. Conventional nuclear imaging

techniques like SPECT or gated radionuclide ventricu-

lography lack the depth of spatial resolution in

comparison to positron emission tomography (PET)

for visualization of different patterns of papillary muscle

ischemia.2,3 PM visualization not only helps to diagnose

PM ischemia but also differentiate between the various

stages of ischemia, ranging from hibernation to infarc-

tion, which allows for better management of patients.

Nakao et al. from Tokyo, Japan, in this issue of the

Journal of Nuclear Cardiology (4) describe the role of

N13-ammonia PET Myocardial Perfusion Imaging

(MPI) in (1) detection of papillary muscle (PM)

ischemia and (2) association of PM ischemia with

global myocardial flow reserve (MFR) and its prognostic

value in coronary artery disease (CAD).

The causes of coronary circulatory dysfunction in

patients with risk factors for CAD are multifactorial,

with a reduction in the bioavailability of endothelium-

derived nitric oxide through various mechanisms, the

probable common final pathway.5 Endothelial activation

plays a pivotal role in the pathogenesis of acute coronary

syndromes. It is characterized by coronary plaque

vulnerability, and paradoxical vasoconstriction, which

likely contributes to plaque rupture.6 Impairment of

coronary circulatory function is expected to reflect in

part the vulnerability of plaque, which in turn may

explain the independent predictive value of coronary

circulatory dysfunction for future cardiovascular

events.7 It may be concluded that functional alterations

of the coronary circulatory function appear to reflect on-

going processes that modify the arterial wall’s functional

status. Thus, functional alterations of the coronary

circulation appear to be more reliable in the assessment

of CAD-related structural changes in predicting future

cardiovascular clinical outcomes.8–10

The role of SPECT in myocardial perfusion assess-

ment has been well-validated and established.11

However, over the years, the use of PET for the

evaluation of myocardial perfusion has emerged as a

robust modality for the diagnosis, risk stratification, and

management of patients with established or suspected

CAD.12 Cardiac PET MPI has critical advantages over

SPECT, including (1) better diagnostic accuracy with
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fewer false positives, in turn, improving the specificity

of diagnosing CAD (2) better spatial resolution allowing

detection of smaller perfusion defects, in turn, improv-

ing sensitivity (3) reduced radiation exposure due to use

of radiotracers with a shorter half-life (e.g., 13 N-

Ammonia and 82 Rubidium) in comparison to SPECT

tracers like thallium – 201 and technetium-99m agents

(sestamibi or tetrofosmin) and (4) the ability to nonin-

vasively quantify absolute myocardial blood flow

(MBF) in ml per minute per gram of tissue and

myocardial flow reserve (MFR).13,14

Although various other imaging modalities are

being studied, PET remains the most robust noninvasive

technology for MBF evaluation and to which other

imaging modalities are compared.15 It’s validity and

reproducibility has been well tested in both animals and

humans.16–18 MFR is the ratio of MBF during maximal

coronary vasodilation to resting MBF. MFR signifies the

relative reserve of the coronary circulation. The optimal

value separating normal from abnormal MFR value is

somewhat empirical considering different tracers and

software used to derive the value and various studies

with different cut-points.15 However, in general, MFR

[2.3 signifies a favorable outcome with\1.5 suggesting

poor flow reserve and outcome. Since the landmark

studies by Gould et al. in the late 70s. MFR has been

advocated as the functional tool to assess the severity of

CAD.19,20 Studies have shown a good correlation

between coronary artery stenosis on angiography and

MFR obtained by PET using 15O-water and 13NH3

tracers.21,22 Di Carli et al. showed similar correlations

between the MFR and the severity of coronary steno-

sis.23 Olivotto et al. suggested that diminished MBF

commonly seen with microvascular dysfunction is a

long term predictor of systolic dysfunction, whereas a

preserved MBF has a protective effect.24 The quantita-

tive assessment of MBF and MFR can assist with the

diagnosis of multivessel CAD and assess response to

interventions, including lifestyle modifications or ther-

apeutics. 15 PET tracers for measurement of MBF,

which are well-validated, include 82Rb and 13N-am-

monia. The evaluation of MBF and MFR using PET has

revolutionized the assessment and management of

patients with CAD and shifted the dependence from

coronary angiogram for anatomical evaluation of blood

flow in the epicardial coronaries to a functional one

provided by PET, which provides a comprehensive

assessment of the entire vascular bed.15 The evaluation

spectrum may range from endothelial dysfunction to

early atherosclerosis to advanced diffuse atherosclerosis

disease and noncoronary disease.

There have been extensive studies suggesting an

incremental prognostic value of PET derived MBF and

MFR in patients with CAD and other cardiac

comorbidities.24–26 14PET derived MFR can be done

with the standard protocols currently utilized without

requiring any extra time, radiation exposure, or addi-

tional cost, complementing the already improved

assessment of relative myocardial perfusion. Over recent

years, several observational studies have shown the

potential value of MFR in clinical practice in patients

with known or suspected CAD with ASNC PET

guidelines too endorsing PET’s potential clinical

application.27

In the current issue of the Journal of Nuclear

Cardiology, Nakao et al. study papillary muscle perfu-

sion, its relationship to MFR and cardiac outcomes. The

investigators identify PM ischemia in 31 out of 263

patients who underwent adenosine-stress N13-ammonia

PET for known or suspected CAD. The left circumflex

artery territory was the most frequently observed

ischemic area, followed by the left anterior descending

artery territory in cases with PM ischemia. A total of 22

patients (8.4%) were diagnosed with absent PM (defined

as anterolateral or posteromedial nonvisualization in

both stress and rest images), which could be related to

the small size of PM’s or infarction or severe ischemia.

False-negative PM ischemia was thought to occur when

PM perfusion is only mildly reduced. Interestingly

global MFR was significantly lower in patients with

either PM ischemia or absent PM than those with normal

PM. Patients with PM ischemia had a statistically

significant higher rate of major adverse cardiac events

(MACE).

PET derived MFR is a powerful tool that provides a

comprehensive picture of the health of the coronary

vasculature ranging from the functional assessment of

hemodynamically significant epicardial disease to

microvascular dysfunction. High-spatial resolution

N13- ammonia PET MPI also allows for detection of

PM ischemia, which is associated with reduced global

MFR and higher rates of MACE. Presence of PM

ischemia complements MFR and many other known

MPI variables in the risk stratification of CAD.
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