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Following its introduction in 2011, the integrated

positron emission tomography (PET)/MR (magnetic

resonance imaging) systems received significant interest

especially within the neurological societies because of

the ideal combination of the superior soft-tissue contrast

provided by MR and the functional information obtained

from PET.1,2 Although the main application of hybrid

PET/MR imaging to oncology and neurology studies,3

this hybrid modality is of keen interest to cardiology

where its potential applications are considered strong for

studies of cardiac inflammation, ischemic heart disease

and ischemic cardiomyopathies as discussed in the joint

position statement between the European Society of

Cardiovascular Radiology (ESCR) and European Asso-

ciation of Nuclear Medicine (EANM).4

Although PET/MR systems and their applications

are becoming more widespread, the quantitative accu-

racy of these systems are still in question because of the

difficulties related to PET attenuation correction (AC)

maps 5,6 derived from MR images. Unlike the use of

photon transmission-based AC maps obtained for stand-

alone PET and PET/CT systems (rotating rods or CT,

respectively), the attenuation maps for PET/MR are

obtained from dedicated MR imaging acquisitions—

with current products based on the DIXON sequence.2,7

While the DIXON sequence permits segmentation of the

body into fat and soft-tissue types (which can be

expanded into four tissue classifications of water, fat,

lung and air), it does not allow for detection of the dense

bones which account for the most attenuating parts in

the body.2,8

Initial PET/MR studies evaluated the ‘‘missing-

bone’’ effects, which were found to pose significant

problems for neurological studies 9,10 and for lesions in

the proximity of skeletal bones in whole-body applica-

tions.11,12 In cardiac PET/MR studies, the missing-bone

effects have been shown to have little or no effect on the

qualitative and quantitative assessments 13,14; however,

it is not certain that disregarding bone structures in the

AC maps can be ignored for other cardiovascular

applications. The evaluation of atherosclerosis in the

carotid arteries is one such application, where the ves-

sels are in close proximity to bony structures. While the

DIXON AC maps have been proved acceptable for

oncological studies in the neck region,15 the ‘‘missing-

bone effect’’ might introduce significant reductions in

the commonly used target-to-background ratios used for

the assessment of atherosclerosis.16

To compensate for the missing bones in the DIXON

AC maps, the utilization of template-based methods

using bone-inserts obtained from a standard CT scans

have been proposed,17 while the use of dedicated MR

sequences (ultra-short time echo [UTE] or zero-time

echo [ZTE]) have been shown capable of segmenting

the bones in the head/neck region.10

Another potential solution to identify the cortical

bones is by performing 18F-sodium fluoride (18F-NaF)

PET scans.18 Since 2012, this tracer has gained signifi-

cant interest in the assessment of cardiovascular diseases

because of its uptake in areas with active microcalcifi-

cation.16,19–21 This tracer is also used for bone cancer

imaging.22,23 The combined growth in interest for car-

diovascular plaque imaging and the potential use of

bone identification for hybrid PET/MR scans might be

an ideal match in the search of a reliable method to

introduce the bone in the standard DIXON AC maps.8 In
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the current issue of the Journal of Nuclear Cardiology,
Karakatsanis et al. 24 investigate the feasibility of uti-

lizing dynamic 18F-NaF PET scans to identify the bone

structures and combine this information with the stan-

dard four tissue classifications on the standard DIXON

AC maps.

In their study, Karakatsanis et al. evaluated three

different applications of kinetic modeling of the bone

uptake during dynamic acquisitions, using either 18F-

NaF injections as stand-alone applications or combined

with 18F-FDG in a dual-tracer imaging protocol. The

technique proposed to identify the skeletal bones were

tested in two cohorts, one with and one without prior

indication of atherosclerosis to establish the stability of

the technique in patients with known tracer uptake

outside the skeleton. In the analyses, the authors com-

pared the uptake observed in the lesions observed at the

vertebral bones and in the carotid bifurcations for

reconstructions with and without the PET-derived bone

information in the attenuation corrections. As expected,

the missing bone effect resulted in target-to-background

decrease of up to 18%. This decrease was caused by the

underestimation of the linear attenuation coefficients of

the standard DIXON-assigned values (0.1 cm-1) in

comparison to the linear attenuation coefficient of

0.12 cm-1 assigned to the bones in the MR-based AC

maps.25

While this novel technique holds promise to

improve cardiovascular PET/MR studies, it has some

potential shortcomings which might affect its utilization

in the clinical routine. The uptake patterns for certain

applications such as aortic stenosis and valves might

introduce false-positive skeletal bones in the images

which will challenge the accuracy of the bone-inserts in

the AC maps. Another potential problem with the PET-

derived bone-mappings is the technical challenge asso-

ciated with dual-tracer injections, and potential cross-

contamination of uptake patterns for both tracers.

Finally, the use of 18F-NaF as an AC technique is

associated with a considerable radiation dose

(0.024 mSv/MBq26—approximately 4.3 mSv for injec-

tions of 180 MBq as proposed by Karakatsanis24), in

comparison to the low-dose CTAC maps which can be

as low as 0.4 mSv.27

Do the current findings presented by Karakatsanis

et al. mean that AC for whole-body PET/MR applica-

tions has been resolved by 18F-NaF approach? Not

necessarily, as the DIXON AC maps still rely on

assumed attenuation coefficients in segmented classes of

tissues, in comparison to the true linear AC values

obtained for CT images. Nevertheless, the proposed

technique offers an interesting and novel approach that

might reduce the bias observed in absolute quantification

of whole-body PET/MR scans when compared to PET/

CT systems.
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