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Editorial (Invited):

In this issue of the Journal, Kero et al. report results

of quantitative measurements of myocardial blood flow

(MBF) obtained with 3 T, PET/MR (CMR; with Gd-

DOTA) compared with simultaneously acquired 15O-

water-quantitative MBF.1 The study was performed in a

small (n = 12) group of subjects with known or sus-

pected CAD. CMR MBF [global, regional and

myocardial perfusion reserve) was compared to PET

measurements, which were considered the gold stan-

dard. The authors note that prior studies comparing

CMR MBF with PET measurements typically were done

on separate instruments at separate times2 and thus

susceptible to physiological variation, which was nulli-

fied in the current study by simultaneous data

acquisitions with the hybrid PET/MR scanner. What was

to all intents and purposes an identical study, save with
13N-ammonia as the PET tracer, and larger sample size

(n = 29), has been previously reported.3 The CMR

pulse sequences employed as well as other specifics (e.g.

native T1 signal and hematocrit corrections, signal

deconvolution algorithms) have varied between studies

in efforts to optimize transformation of CMR signal into

true blood and tissue Gd concentrations required for

purposes of tracer kinetic modeling. Thus, CMR esti-

mates of MBF are heavily dependent on the accuracy of

these transforms and as noted by others may produce

very different estimate of MBF depending on which one

is chosen.3 Further, as noted by the authors of the pre-

sent study,1 CMR methodology typically permits

sampling of only 4 LV slices in contrast with PET which

samples the entire LV. Accordingly, the issue of image

registration as well as incomplete LV sampling may

further confound efforts to compared CMR and PET

estimates of absolute MBF, both global and regional.

That said, a particular strength of the present study is the

nullification of physiological variation as a source of

differences between methods and so offers a more

straightforward comparison of the CMR methodology

with that of the 15O-water PET gold standard.

Given that CMR methodology will affect the com-

parison of MBF measurements with that of PET, what

can be learned from results of the present study? As

noted above small sample size limits any conclusion(s)

drawn. Absence of invasive or CCTA anatomical, and

more importantly, invasive, coronary physiological data

also is another limitation since such information could

shed light on the issue of when the measurements are

most likely to agree and when they may diverge with

respect to an independent physiological gold standard

(e.g. FFR,4 IFR,5 IMR6). The authors data indicate CMR

and PET differences are most pronounced at MBF levels

C * 1.8 mL�min-1�g-1 (Figures 3A, 4A); an observa-

tion which has important implications both for use of the

CMR stress MBF measurement for assessment of

hemodynamic severity of focal (Ref. # 1, 48-51) and

diffuse CAD,7 as well as MFR (see below).

Indeed, the data of the present study are best

understood with reference to Figures 3A, B; 4A, B and

6A, B, which, respectively, demonstrate correlations and

Bland–Altman (BA) plots for global (Figure 3) and

regional (Figure 4) rest and stress MBF taken together

and global MFR (Figure 6). It should be noted dynamic

data for both CMR and PET were fit to a one tissue
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compartment model with standard corrections applied

for PET 15O-water (Ref. #36). CMR data, however, were

fit to a model which incorporated an empirically derived

permeability surface area product (PS) based on Renkin-

Crone model8 to correct K19 but did not use the com-

plete extraction fraction (EF) since MBF values obtained

‘‘…correlated poorly with PET MBF at high values.’’

The EF of Gd-DOTA rolls off markedly beginning at

MBF * 1.25 mL�min-1�g-1 (Figure 2A). Although the

correlations for global (R2 = 0.74) and regional

(R2 = 0.56) MBF both are at least moderate, the data

exhibit considerable scatter around the regression line at

higher flow. The BA plots and the authors’ own analysis

bear this out in recognizing the ‘‘wide limits of agree-

ment’’ between CMR and PET rest and stress MBF

measurements. The limits of agreement (95%) for global

MBF ranged from - 1.24 to ? 1.25 and for regional

values - 2.17 to ? 2.17. Noteworthy, too, is the fact

that CMR global rest MBF failed to correlate with PET

(Figure 5A) though stress (global, Figure 5C) did

(R2 = 0.48). Thus, there was no correlation between

MFR determined by CMR and PET (Figures 6A, B).

Similar data concerning poor agreement between 3T

PET/CMR and PET 13N-ammonia determined global

MFR has been reported by others.3 In that study, sys-

tematically higher CMR rest MBF (vs PET) resulted in

consistently lower MFR,3 whereas in the present study,

the differences were random in nature (Figures 6A, B).

In light of these findings, it is clear currently employed

PET-based stress MBF as well as MFR (commonly

referred to as coronary flow reserve CFR, even though

strictly speaking it is not) cut points both for diagnosis

and prognosis in a variety of cardiovascular disease

states7,10 do not necessarily apply to CMR based mea-

surements of these parameters.

A word about statistical bias in BA plots is in order

here. In brief, the mean of differences for each mea-

surement of methods being compared (i.e., CMR vs

PET) is equal to bias while ± 1.96 * SD of the mean

defines the limits of agreement, also known as 95%

coefficient of reproducibility.11,12 The authors note bias

for CMR vs PET global and regional MBF measure-

ments is ‘‘negligible’’ (i.e. near or equal to zero).

However, it is readily apparent CMR may provide an

unbiased estimate of PET MBF either because relatively

large negative and positive differences cancel and so the

average approaches zero, the case in the present study or

because the one provides almost identical measurements

as the other and so individual differences are near or at

zero, hence the mean of difference also approaches zero,

certainly not the case in the study under consideration.

Accordingly, as the authors correctly note it is the limits

of agreement which matter. Characterization of bias as

‘‘negligible’’, while mathematically correct, is

uninformative without calling attention to the associated

limits of agreement (quite wide), as the authors, to their

credit, do. Thus, ‘‘negligible’’ bias in the present study

should not be construed as supportive of CMR vs PET

measurements of MBF.

Since PET/MR scanners are limited in availability,

it is worth considering what results may be obtained

with current standalone 1.5 T MR and PET/CT instru-

ments. In a recent study of 21 patients, with known or

suspected CAD, rest and stress (adenosine) MBF mea-

surements were made on the same day; once with the

1.5 T MR instrument (Gd-DOTA contrast) and then

again with the PET/CT scanner (13N-ammonia, refer-

ence method).2 The correlation between global MBF by

CMR and PET was strong (R2 = 0.85, with

slope = 0.94 and intercept = 0.14). Bias was small

* - 0.1 and 95% CR * ± 0.8. However, there was

greater scatter at global MBF C 2 mL�min-1�g-1.

Regional CMR MBF demonstrated even wider scatter.

Thus, R2 = 0.69, with small bias (* - 0.1) but larger

CR (* ± 1.1) and many MBF C 2 at or beyond the

95% CR limits. Finally, CMR MFR on a global and

regional basis correlated only modestly with PET

(R2 = 0.48 and 0.32, respectively). Thus, while the

overall results of the study indicate closer agreement

between CMR and PET measurements of MBF on both

global and regional basis than that of current report, both

demonstrate (1) closer agreement for global in com-

parison with that of regional MBF measurements (2)

considerably greater divergence of CMR vs PET

regional stress MBF at levels C 2 mL�min-1�g-1 and

(3) weakest correlations between CMR and PET

assessment of both global and regional MFR (nil in the

present study and 0.48 and 0.32, respectively, in that of

the other2).

Earlier work in which CMR estimates of endocar-

dial (endo) and epicardial (epi) MBF was compared to

that of fluorescent microspheres understandably has

been more encouraging and demonstrated what is pos-

sible in human studies as well.13 Thus, pixel wise

(32 lL/voxel resolution) CMR images (2-3 slices, 7-mm

thick) were obtained which permitted detailed trans-

mural resolution of MBF distribution. After correction

for misregistration, CMR MBF correlated quite closely

with that of microspheres for transmural, epi and endo

layers (all R2 = 0.94) with little bias (* 0 to - 0.1)

though CR was more substantial (*±1.0 mL�min-1�g-1

for transmural and endo but (* ± 1.5 for epi with bias

* - 0.12).13

There were, however, important disparities between

CMR and microspheres measurements of endo and epi

MBF at baseline and with adenosine induced hyper-

emia.13 Thus, per Table 1,13 ‘‘remote’’ CMR rest endo/

epi was 0.99 ± 0.19 vs expected[ 114–16 and observed

1268 Gewirtz Journal of Nuclear Cardiology�
CMR quantitative measurements of myocardial blood flow July/August 2021



PET MBF ratio 1.16 ± 0.17.13 However, with local

hyperemia (ado) CMR endo/epi ratio was essentially

unchanged (1.05 ± 0.15) compared with baseline,

whereas microspheres demonstrated expected greater

epi vs endo dilator capacity such that the ratio inverted

(0.88 ± 0.14).13 Both layers it should be noted exhibit-

ing substantial increases in MBF in comparison with that

of the unstimulated remote region. Nonetheless, CMR

examples provided of patients with known IHD (n = 5)

demonstrated excellent correlations with invasive coro-

nary angiography. Expected stress-induced transmural

gradients in endo epi MBF were demonstrated as well as

transmural MBF deficits relative to baseline. Compar-

ison with an external gold standard (possibly CCTA)

was not available. Nevertheless, the methodology

clearly holds promise particularly if quantitative MBF

data are employed.

Indeed, current practice guidelines consider CMR a

class I/II indication for evaluation of stable IHD in

patients unable to exercise.17,18 Validation studies typi-

cally have been against invasive coronary angiography

(anatomical stenosis generally at 50% diameter reduc-

tion cut point19) though at least one study used FFR at

0.75 cut point.20 CMR images were evaluated qualita-

tively or semi-quantitatively for comparison of stress vs

rest defect(s) and presence or absence of scar (late Gd

enhancement).21,22 Qualitative assessment of rest, stress

endo/epi contrast distribution also has been reported to

enhance CAD detection particularly with multi-vessel

CAD.20,21 Quantitative MBF data, however, generally

has not been employed for clinical use. This is unfor-

tunate since the practice considerably degrades the

capabilities of the methodology and subjects it to many

of the limitations of SPECT MPI in terms of relative

imaging comparisons. Though much higher spatial res-

olution and technically superior images are available

with CMR, they are proportionately more difficult and

time consuming to obtain and analyze; a problem, along

with other administrative and financial issues which

together have worked to preclude high capacity, high

throughput clinical service in comparison with that of

PET, which the current study and others23 recognizes as

the gold standard for quantitative MBF determination in

patients.

In conclusion, the data obtained in the current small

study1 suggest CMR methods for quantitative MBF

measurements require considerably more development

before their full potential is realized and they can offer

accurate, reproducible data suitable for high throughput,

routine, clinical use. Until then, quantitative PET mea-

surements of MBF will remain the gold standard for

clinical practice.
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