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Meta-analysis is a statistical method for pooling and

analyzing the results from multiple studies.1 A typical

meta-analysis will focus on a single outcome measure,

such as a treatment effect or rate of an adverse event.

However, applying meta-analysis to studies of diag-

nostic test’s accuracy is not straightforward. The

accuracy of a diagnostic test is most often summarized

with two outcomes, sensitivity and specificity, which

cannot be expected to be independent and therefore must

be analyzed together.2 Thus, meta-analytic methods

specific to diagnostic tests are needed. The paper by Lee

et al., which reports the results of a meta-analysis of F-

18 FDG PET for detection of disease activity, published

in this issue demonstrates the use of some of these

methods.3

We consider here the setting of a diagnostic test that

yields a qualitative result (for example, a test designed

to indicate the presence or absence of a disease). Let a

positive test result indicate a patient probably has a

disease, and let a negative test indicate a patient prob-

ably does not have disease. The sensitivity of a test

describes the probability that the test predicts the dis-

ease, given the presence of the disease in the patient.

Alternately, a sensitive test is one which detects the

disease, when the patient has the disease. The specificity
of a test describes the probability that the test does not

detect the disease, given the patient does not have the

disease. Alternately, a specific test is one which pro-

duces positive results for a small number of patients,

when they do not actually have the disease. An ideal test

would have both high sensitivity and high specificity.4,5

In addition to sensitivity and specificity, there are

several measures that are used to describe the accuracy

of a diagnostic test. The formulas for several of these

measures are summarized in Table 1. Calculation of

these measures requires consideration of a patient’s

actual disease status relative to the test result. A true
positive is the situation when a patient has the disease,

and the test is positive for it; a true negative is when a

patient does not have the disease and the test result is

negative. A false positive is when the patient does not

have the disease, but has a positive test result; a false
negative is when a patient has the disease, but has a

negative test result.4,5 A useful way to compare patients

for a particular test result is via likelihood ratios (LR),

which are ratios of the sensitivity and specificity. LRs

describe how likely a diseased patient is to have a

(positive or negative) result, compared to disease-free

patients. Values greater than 1.0 provide evidence that

the positive/negative test result is related disease pres-

ence; values less than 1.0 demonstrate the rest result is

related to disease absence. A positive LR (LR?) rep-

resents the ratio of patients with the disease who test

positive, to those who test positive but are disease free.

A negative LR (LR-) represents the ratio of patients with

the disease who test negative, compared to those who

test negative and are disease free.6 LR values ranging

from 0.1 to 10 are considered substantial evidence to

support a diagnosis as positive or negative, respec-

tively.6 The diagnostic odds ratio (DOR) is a ratio of the

LR? to the LR-. It is the odds that the test produces

positive results compared to the odds of negative results.

Values are all greater than 0; larger values indicate a

better-performing screening test.7

We demonstrate these calculations with a simple

example. Figure 1 displays the results of six hypotheti-

cal studies of a diagnostic test’s accuracy. For one of

these studies (Study 1), we summarize the results of

disease status vs test results in Table 2. In this study, 350

subjects were assessed. Two hundred and fourteen

subjects had the disease, with 94 testing positive (i.e.,

true positive) and 120 testing negative (false negative).

Therefore, the estimate of the sensitivity of the test is
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0.44. Out of the remaining 136 subjects who did not

have the disease, 3 tested positive (false positive) and

133 tested negative (true negative). Thus, the specificity

of the test is estimated to be 0.98.

Once summary statistics for each of the studies to

be included in the meta-analysis have been calculated, a

forest plot can be used to display the estimates for each

study (see Figure 1 for an example). A bivariate

Table 2. Descriptive statistics for diagnostic tests

Test result

True disease status

TotalDisease present Disease absent

Positive 94 3 97

Negative 120 133 253

Total 214 136 350

Table 1. Descriptive statistics for diagnostic tests

Test result

True disease status

Disease present Disease absent

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

True positive rate (TPR) = Sensitivity = TP
TPþFN

False negative rate (FNR) = 1 - TPR = FN
TPþFN

False positive rate (FPR) = FP
FPþTN

True negative rate (TNR) = 1 - FPR = Specificity = TN
FPþTN

Positive likelihood ratio (LR?) = Sensitivity
1�Specificity

¼ TPR
FPR

Negative likelihood ratio (LR-) = 1�Sensitivity
Specificity

¼ FNR
TNR

Diagnostic odds ratio = LRþ
LR�

Figure 1. Forest plots of sensitivity and specificity for six hypothetical studies.
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random-effects model (such as the one employed by Lee

et al.3) can then be used to produce a summary point

estimate of sensitivity and specificity.8 Note that a

bivariate model is necessary in order to take into account

the likely correlation between sensitivity and specificity

across studies.9 Furthermore, while a common approach

for meta-analysis of non-diagnostic studies is to consider

both fixed-effect and random-effect models,1 diagnostic

studies should be expected to be heterogeneous, making

a fixed-effect model inappropriate.10

A notable source of heterogeneity for diagnostic

studies is the result of what is known as the ‘‘threshold

effect’’.9 Many diagnostic tests compare a result or

measurement to a pre-specified threshold, or reference

standard. The choice of threshold will affect both the

sensitivity and specificity of the test. For example,

consider a simple diagnostic test that measures the

amount of an antibody in a blood sample, with high

levels of the antibody resulting in a positive test result. If

the threshold for a positive result is lowered (meaning a

smaller amount of the antibody is required to be present

in the sample in order to diagnose illness), we would

expect the test to return more false positives (and

therefore have lower specificity) and fewer false nega-

tives (greater sensitivity). If the threshold were raised,

we would observer fewer false positives (greater speci-

ficity) and more false negatives (lower sensitivity). A

receiver operating characteristic (ROC) curve plots the

true positive rate (or sensitivity) against the false posi-

tive rate (1-specificity) for a diagnostic test under

varying thresholds. The area under the ROC curve

provides an overall summary of diagnostic test’s accu-

racy, independent of the threshold effect.4,5

For meta-analysis of diagnostic tests, the studies

being pooled may use varying thresholds, leading to

heterogeneity in the estimates of sensitivity and speci-

ficity. In order to examine such heterogeneity, the

estimated sensitivities and specificities can be plotted

against each other, a summary ROC (sROC) curve can

be estimated and the area under the sROC curve cal-

culated.11 Figure 2 provides an illustration of this

approach. The sensitivities and specificities for the six

hypothetical studies are represented as black circles, and

the summary estimate of sensitivity and specificity is

denoted with a blue square; the shaded oval represents a

95% confidence region for the summary estimate. The

dotted line indicates the estimated sROC curve. For this

particular example, the pooled estimate of sensitivity is

0.65, and the pooled estimate of specificity is 0.91. The

area under the sROC curve is 0.86.

Screening or diagnostic tests are useful when

needing to determine the presence or potential devel-

opment of a disease in question; they are particularly

valuable when the confirmatory procedure is invasive,

cost-prohibitive, time-intensive, or only available upon

autopsy.5 When synthesizing evidence from different

studies of a diagnostic test’s accuracy is of interest,

meta-analysis may be used. However, meta-analytic

methods specific to diagnostic tests must be used in

order to properly summarize the study results.
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