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In this issue of the Journal of Nuclear Cardiology�,

Miguel H. Pampolini and associates report on non-in-

vasive quantitation of myocardial blood flow (MBF) by

regadenoson positron emission tomography (PET)

imaging for assessing cardiac allograft vasculopathy

(CAV) in orthotopic heart transplantation (OHT)

patients.1 Non-invasive detection of post-transplant

vasculopathy continues to be challenging, and PET

quantitation of MBF may be uniquely positioned to

address this challenge.

World-wide, there remains a large discrepancy

between the need for OHT in patients with end-stage

heart disease and available donors.2 In the United States,

the yearly number of OHT has been stable over the past

2 decades at *2500 cases per year.2 This paucity of

available organs has led to the rise of ventricular assist

devices implanted as destination therapy3 and to a very

rigorous transplant recipient selection process.4 Fol-

lowing OHT, transplant recipients are exposed to a

stringent surveillance program periodically screening for

graft rejection, graft failure, infection, malignancy, and

other complications.2 CAV, or transplant vasculopathy,

accounts for *10% of deaths in OHT recipients starting

at 1–3 years post-transplant.2

The pathophysiology of CAV involves activation of

both the innate and adaptive immune responses in an

attempt to reject the transplanted heart, leading to coro-

nary inflammation, endothelial dysfunction, and

migration and proliferation of vascular smooth muscle

cells.5 Contrary to atherosclerotic disease, CAV is char-

acterized by the presence of an intact elastic lamina and a

diffuse disease affecting the entire coronary tree with

intimal hyperplasia composed of vascular smooth muscle

cells.6 Risk factors for the development of CAV include

traditional risk factors associated with atherosclerosis,

and additional transplant-associated risk factors such as

donor-specific antibodies and cytomegalovirus infec-

tion.7 The end-result of this disease process is the diffuse,

concentric, and fibrotic intimal thickening of the coronary

arteries, leading to extensive coronary artery disease

(CAD) and myocardial ischemia.5

Given the transplanted heart is denervated—

although not permanently—anginal symptoms are

unreliable8 and screening methods have to be utilized

for coronary artery assessment. The diffuse nature of

CAV often renders angiography insensitive and an
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alternative approach of intravascular ultrasound (IVUS)

has been proposed9 and is largely considered the refer-

ence standard. Serial invasive studies however are

impractical, cumbersome to the patient, and not devoid

of complication risk. In this setting, non-invasive

imaging approaches to screen for silent CAV have

garnered increased research and clinical attention.10

Although echocardiography and single-photon emission-

computed tomography (SPECT) have been the most

studied, neither has established itself as an accepted

alternative to IVUS in clinical practice.10 PET, with its

suitability for absolute MBF quantitation, has emerged

as a viable imaging modality to fill this void.

Absolute MBF represents an integrated measure of

epicardial CAD and microvascular disease.11,12 Impor-

tantly, PET MBF can be assessed in an endothelial-

dependent (cold-pressor test) and endothelial-indepen-

dent (adenosine agonist family of vasodilators) manner

in OHT patients.13,14 Previous studies demonstrated that

resting MBF is higher post-OHT than in matched con-

trols, likely due to increased resting heart rate and rate-

pressure product in the denervated heart.13,14 Absolute

MBF assessed by 13N-ammonia PET is homogenous

across diseased coronary territories, consistent with the

diffuse nature of CAV, and abnormal coronary flow

reserve (CFR) compared to control patients correlates

with IVUS measures of CAV severity.13–15

In the present study, the authors assessed the suit-

ability of regadenoson to induce hyperemia, stress MBF

measurements, and CFR determination by 13N-ammonia

PET for the detection of CAV.1 Twelve patients with no

history of myocardial ischemia were enrolled *5 years

after OHT, and fifteen non-OHT patients with an inter-

mediate pretest likelihood of CAD served as controls.

As previously reported, the authors observed an elevated

heart rate (78 bpm vs 66 bpm) and rate-pressure product

(10,824 vs 7424) at rest in OHT compared to control

patients. This was the main driving factor in the

observed lower CFR (global mean CFR 2.05 vs 2.63) in

OHT patients compared to controls, as hyperemic MBF

was similar in both groups.

We now address the following three points: (1)

safety of regadenoson in OHT patients, (2) efficacy of

regadenoson to generate maximal hyperemia, and (3)

adequate selection of PET radiopharmaceuticals for

absolute MBF quantitation.

Regadenoson is a selective adenosine 2A (A2A)

receptor agonist, with associated improved patient tol-

erability and reduced side effect profile compared to the

more traditional vasodilators adenosine and dipyri-

damole.16–18 Following manufacturer instructions, a

0.4 mg dose of regadenoson in 5 mL solution was

administered over 15–20 seconds into a peripheral vein,

followed by a saline flush. Approximately 30 seconds

thereafter, 13N-ammonia was injected and dynamic PET

images obtained synchronously and continued for

15 minutes. The authors did not report any adverse

events with regadenoson in OHT patients. Previous

work with regadenoson stress in OHT patients also

demonstrated its safety in this population.19 These are

important observations, given the well-known hyper-

sensitivity of the denervated sinus and atrioventricular

nodes to adenosine in OHT patients20 with the ensuing

risk of sinus pause or arrest and high-degree atrioven-

tricular block. In a larger study of 102 OHT patients

compared to age- and gender-matched non-OHT con-

trols, adenosine infusion was associated with a

significantly higher incidence of sinus pause, and 2nd

and 3rd degree atrioventricular block.21 However, these

effects of adenosine were transient and not associated

with significant adverse events in OHT patients.21

In the present study, the authors compared the

degree of hyperemia achieved with regadenoson in OHT

patients with hyperemia in an intermediate CAD risk

population. The relative extent of the hyperemia itself,

and adequacy of the regadenoson protocol, was not

studied. Recently, the duration of regadenoson injection

and timing of PET tracer injection to achieve optimal

results have been evaluated in several studies. A previ-

ous study compared absolute MBF and CFR in low

CAD risk patients stressed with either regadenoson or

dipyridamole, and found similar results.22 Relative per-

fusion results were also found to be similar when

stressing the same patients sequentially with regadeno-

son and dipyridamole, albeit with the caveat that

absolute MBF quantitation was not assessed in that

study.23 Recent work by Nils P. Johnson and K. Lance

Gould in non-OHT patients demonstrated that compared

to dipyridamole, regadenoson administered to the same

patients achieved only 80% of maximal hyperemia when

following the manufacturer’s recommendation,24 similar

to the protocol in the present study. This is of concern to

the interpreting physician, given a suboptimal hyper-

emic stimulus underestimates the true physiologic

severity of disease and also alters tracer kinetics of

absolute MBF quantitation. Using multiple regadenoson

timing protocols compared to PET radiotracer injection,

they concluded that the optimal delay between regade-

noson and radiotracer injection was 65–70 seconds,

resulting in a significant increase in hyperemia with

regadenoson to 90% of the one achieved with dipyri-

damole.24 Recent work by Timothy M. Bateman et al.

suggested an even longer delay from 60 up to 120 sec-

onds to induce maximal hyperemia with regadenoson

stress prior to radiotracer injection, leading to opti-

mization of absolute MBF quantitation by PET.25

Additional work further addressed concerns for dynamic

PET imaging studies not only of the timing of
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regadenoson injection, but also its duration,26,27 deter-

mining that increasing the regadenoson injection

duration to 30 seconds in a canine preclinical study

produced a more stable peak hyperemic response,

comparable to the one achieved by a standard adenosine

infusion. In the present study, despite likely achieving

submaximal hyperemia with a standard protocol of

regadenoson administration, the authors were able to

demonstrate significant differences in CFR with an

intermediate-risk CAD group, which would have likely

been further accentuated had they included a low-risk

CAD group.

In addition to the choice of vasodilatory agent and

induction of maximal hyperemia, the selection of the

PET radiopharmaceutical is also critical. To optimize

absolute MBF assessment by PET, an ideal radiophar-

maceutical should exhibit a high first-pass cardiac

extraction fraction with absence of ‘roll-off’—or

plateauing—at high flows.12,28 This is the case of 13N-

ammonia chosen by the investigators (*80%),12 and

also of the novel PET radiopharmaceutical 18F-flurpiri-

daz (*94%), which should be studied for suitability in

CAV assessment in future studies using relative perfu-

sion and absolute MBF quantitation.29

Whereas the present study is limited by a small

number of patients, it is a welcome addition in our

understanding of the optimal CAV screening strategies

in OHT recipients, and adds to the body of literature on

the safety of the selective A2A agonist regadenoson in

these patients. The optimal timing and duration of

regadenoson to achieve maximal hyperemia need to be

further studied in both CAD and CAV patients to

maximize the yield of PET relative perfusion determi-

nation and absolute myocardial blood flow quantitation.
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Dr. Maddahi is a scientific advisor to Lantheus Medical

Imaging and the principal investigator of the phase III clinical

trial of 18F-Flurpiridaz.
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