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Noninvasive assessment myocardial viability:
Current status and future directions

Kevin C. Allman, MBBS, FRACP, FACC, FCSANZ, FAANMS, FASNC

Observations of reversibility of cardiac contractile dysfunction in patients with coronary artery
disease and ischemia were first made more than 40 years ago. Since that time a wealth of basic
science and clinical data has been gathered exploring the mechanisms of this phenomenon of
myocardial viability and relevance to clinical care of patients. Advances in cardiac imaging
techniques have contributed greatly to knowledge in the area, first with thallium-201 imaging,
then later with Tc-99m-based tracers for SPECT imaging and metabolic tracers used in con-
junction with positron emission tomography (PET), most commonly F-18 FDG in conjunction
with blood flow imaging with N-13 ammonia or Rb-82 Cl. In parallel, stress echocardiography
has made great progress also. Over time observational studies in patients using these techniques
accumulated and were later summarized in several meta-analyses. More recently, cardiac
magnetic resonance imaging (CMR) has contributed further information in combination with
either late gadolinium enhancement imaging or dobutamine stress. This review discusses the
tracer and CMR imaging techniques, the pooled observational data, the results of clinical trials,
and ongoing investigation in the field. It also examines some of the current challenges and issues
for researchers and explores the emerging potential of combined PET/CMR imaging for
myocardial viability.
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BACKGROUND

Left ventricular (LV) function is a powerful deter-

minant of survival in patients with coronary artery

disease (CAD).1,2 The once previously held notion that

LV dysfunction in patients with CAD is always due to

irreversible myocardial fibrosis resulting from prior

infarction has now been discounted for over 4 decades.

For the purposes of the current discussion the term

myocardial viability is defined to identify myocardium

with potentially reversible contractile dysfunction in

patients with chronic CAD. Such reversibility may be

seen with revascularization or other forms of therapy

and lead to improvement in patient outcomes. This

review will summarize some of the existing knowledge

in the area of myocardial viability and will mainly

discuss aspects of radionuclide (PET and SPECT) and

cardiac magnetic resonance (CMR) imaging.

Echocardiography has also been clearly shown to have

widespread utility for viability assessment, most com-

monly in combination with dobutamine stress for

assessment of regional wall motion changes. There are

many other echo parameters which can reflect viability

also, including wall thickness, mitral deceleration time, and

strain rate. Cardiovascular computed tomography (CCT)

can show late contrast enhancement of the myocardium

similar to that seen on CMR and may have an expanded role

in the future to assess viability but has not yet reached such

widespread use as that of the other modalities. Echo and

CCT techniques lie beyond the scope of the current review

and will not be discussed in detail below except where echo

studies are included in the pooled study analyses presented.

Early Clinical Observations of Changes in
LV Function Post Revascularization

In 1970, Saltiel et al3 reported on ‘‘reversibility of left

ventricular dysfunction after aortocoronary bypass

grafts.’’ In 1972, Chatterjee et al reported on ‘‘depression
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of left ventricular function due to acute myocardial

ischemia and its reversal after aortocoronary saphenous

vein bypass’’4 and the following year on the effects of

revascularization on LV function in patients with vs

without prior infarction.5 Forty years later, we are still

studying potentially reversible LV dysfunction in patients

with CAD and seeking to improve our understanding: of

the best diagnostic approaches, of which patients may

benefit most from diagnostic tests, and of which treat-

ments may be most useful. Although much progress has

been made there is still much more to be learnt.

Pathophysiologic Studies

Based on experimental and clinical studies, the

concepts of myocardial stunning6-10 and hibernation11-13

were developed and studied. Stunning refers to temporary

depression of cardiac contraction following a bout of

ischemia. When repetitive, or chronic, this leads to

myocardial hibernation. This term suggests an adaptive

down regulation of muscle contraction in response to

chronic reduction in tissue blood flow. Both of these

concepts have had usefulness and also limitations when

applied to the practice of clinical cardiology to date.

However, these groundbreaking observations have stim-

ulated a huge body of work in basic and clinical research.

Histopathologic Studies

Myocardium compromised by ischemic insult has

been well characterized pathologically. Such examination

of ischemic, dysfunctional myocardium reveals a number

of distinct features, including progressive loss of myocyte

bundles, increasing collagen and disorganized muscle

fascicular structure, also fibrosis, increased glycogen

storage, mitochondrial changes, reduction in connexin

43, vacuolization, and a reversion to fetal myoglobin.14

Swine Model of Myocardial Hibernation:
Imaging Correlates

In recent years, a swine modal of hibernating

myocardium has been successfully developed and studied

using PET imaging of blood flow, metabolism, and

sympathetic neuronal function. Elegant physiologic and

pathologic correlative studies have confirmed many of

the features previously observed in patients including

flow/metabolism mismatch and abnormal sympathetic

innervation. Such neuronal dysfunction has also been

shown in humans.15 This represents one potential mech-

anism for adverse events in patients with viable

myocardium. These swine have also been shown to

experience sudden cardiac death preceded by a rise in

LVEDP. This model continues to add to our understand-

ing of myocardial viability in humans.16-20 It has also led

to an ongoing human study for prediction of events

(PAREPET).21 A preliminary report from this study

shows that extent of denervated myocardium on C-11

hydroxyephedrine PET in patients with heart failure

predicts subsequent ventricular tachycardia/fibrillation.22

USE OF THE TERM: MYOCARDIAL VIABILITY

Beyond pathophysiologic and histopathologic defini-

tions, clinicians over time have adopted the simpler term

‘‘myocardial viability.’’ This relies more on clinical

phenomenology and as such refers to living but ischem-

ically compromised dysfunctional myocardium in patients

with chronic CAD. This is potentially salvageable with

appropriate treatment and functional improvement can

occur using revascularization, drugs, devices, or a com-

bination thereof. Measures of benefit can include patient

survival, improved symptoms, or test parameters, which

include cardiac function measurements.

IMAGING TECHNIQUES EMPLOYED FOR
VIABILITY ASSESSMENT

A myriad of diagnostic techniques have been used for

identification and assessment of viable myocardium. Most

of the methods currently used involve cardiac imaging,

including SPECT and PET radionuclide imaging, CMR,

echocardiography, and (emerging) cardiac computed

tomography. There are also some non-imaging methods

such as catheter-based electroanatomic mapping, an inva-

sive technique which has been used in conjunction with

intramyocardial delivery of treatments such as stem cells.

The use of myocardial viability imaging tests in an

appropriate clinical setting has previously been given a

class IIa recommendation in the American College of

Cardiology/American Heart Association practice guide-

lines.23,24 Viability testing was also recommended in

2010 for patients with CAD and severe LV dysfunction in

the European guidelines based on the existing evidence at

the time of publication.25 How results of recent trials may

affect future guidelines remains to be seen. Nonetheless, a

recent conjoint appropriate use document (2013 ACCF/

ACR/ASE/ASNC/SCCT/SCMR) has recommended the

use of CMR and PET for investigation of viability in

patients with severe LV dysfunction, while at the same

time indicating possibility for the use of stress imaging

with SPECT or echocardiography.26

SPECT

SPECT tracers include thallium-201 and the Tc-99m-

based tracers, with Tc-99m sestamibi being the most
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widely used of these. Thallium retention in myocardium

reflects the intracellular potassium pool and is dependent

on the integrity of the Na/K pump in the cell membrane. Tc-

99m sestamibi binds to the mitochondrion and reflects its

integrity as a marker of viability. There exist a proliferation

of protocols and diagnostic criteria for these tracers in

regards to viability assessment. This complexity means

there is no single standardization of criteria, which can be a

source of confusion to clinicians and frustration to inves-

tigators including those wishing to perform collaborative

studies or pooled analyses. These diagnostic criteria may be

based on relative resting tracer uptake, uptake after nitrate

administration, late redistribution or improvement after rest

reinjection (for thallium), or defect reversibility between

stress and rest. SPECT has low spatial resolution and

cannot assess transmurality of tracer distribution. On the

other hand it is widely available. There are a multitude of

published SPECT viability studies.

PET

Whilst there are a number of tracers which can be

used with PET for viability assessment, F-18 FDG has

become the one almost universally employed for clinical

purposes. The seminal report on the diagnostic utility of

FDG PET for viability assessment in humans was

published by the UCLA group in 1986.27 PET has higher

spatial resolution than SPECT though still insufficient

for adequate assessment of tracer distribution across the

myocardial wall. The most commonly employed tech-

nique is to perform resting blood flow imaging with

either N-13 ammonia or Rb-82 Cl and compare this with

metabolic imaging of myocardial glucose uptake with F-

18 FDG. Less commonly, the FDG study may be

performed in isolation without a blood flow study, with

[50% relative uptake taken to indicate viability. This

technique optimally requires use of a metabolic clamp-

ing procedure to standardize regional glucose utilization.

This technique is based on the observation that

viable myocardium preferentially switches from the

usual free fatty acids to glucose as the preferred energy

substrate. FDG uptake into the myocardium is depen-

dent on the insulin-sensitive glucose transporters. These

can be activated by either oral glucose loading or

administration of insulin (together with some glucose to

avoid hypoglycemia) prior to tracer administration.

FDG is effectively fixed in the myocardium through

phosphorylation by hexokinase, with minimal reverse

transport. It clears from the blood such that images of

the myocardium can be acquired from 45-minute post

injection onward.

Myocardial segments are assessed with PET as

showing: (1) normal flow/metabolism (viable), (2) mild

matched reduction in flow/metabolism (subendocardial

scar), (3) severe matched defect, (transmural scar), or

(4) mismatch (apparent reduction in resting flow but

preserved glucose utilization) (Figure 1). All except

pattern 3 indicate a degree of retained viability in the

myocardium. The presence of mismatch can predict

functional recovery after revascularization even when

contractile reserve appears exhausted on functional

testing.28

In regards to ability of FDG PET to predict

improvement in LV function, positive predictive value

in one study was 86%, negative predictive value was

100% and accuracy was 90%.29

Earlier vs later revascularization following identi-

fication of viable myocardium by FDG imaging has been

shown to be more beneficial for patient outcome.30,31

The extent of viability in the LV needed to predict

improvement in mortality after revascularization on

FDG imaging varies in different studies between 7% of

the LV,32 10%33, and 20%.34 However, this extent

should be seen rather as a continuum, where increasing

extent implies both increased risk and increased poten-

tial for recovery.34,35

Some issues with PET imaging are: it is less widely

available than SPECT. Second, myocardial extraction of

FDG can be reduced in diabetic patients, as glucose

entry into the myocardium is dependent on the insulin-

sensitive glucose transporters. This is apparent particu-

larly in some type I diabetics, where additional late

imaging after insulin administration may be necessary to

obtain diagnostic images.

FDG imaging has also been performed using

SPECT acquisition but this has not been widely adopted

due to the increasing availability of PET tomographs

with their higher resolution.

The expanding potential for both SPECT and PET

imaging not only in identification of myocardial viabil-

ity but also in increasing our understanding of its nature

in both basic science and clinical correlates has been

recently reviewed.36

Prognostic Risk of Radiation Exposure from
Tracer Studies in Patients Undergoing
Viability Testing

The potential theoretical hazard of exposure to

ionizing radiation from tracer studies vs other test

modalities in medical diagnosis is a frequently raised

issue. It is worth considering that existing data suggest

long lead times for the development of such possible

radiation-related events in the order of decades.37 In the

cohort of patients with depressed LV function undergo-

ing viability testing the 2-year cardiac survival rate can

be very low, i.e., only a few years.38 Even with optimal
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cardiac therapy such patients are highly unlikely to live

long enough to experience such adverse events linked to

diagnostic medical radiation. Thus, the issue of ionizing

radiation exposure for them is different than it is for

young, healthy people with normal cardiac function

undergoing ischemia testing, who would be expecting

normal longevity and are likely to have normal imaging

results anyway.

CMR Imaging

CMR imaging entered the diagnostic mainstream

for viability imaging over a decade ago but remains the

newest of the established contenders in the field. Thus, it

does not yet enjoy quite the same accrual of published

studies of diagnostic performance as for the older

modalities. Nonetheless, given its high spatial resolu-

tion, ability to define extent of transmurality of scar,

assess regional wall motion, ejection fraction, and LV

volumes, these data are very rapidly accumulating.

Potential drawbacks with CMR can include administra-

tion of gadolinium-based contrast agents to patients with

renal impairment, and second, suitability for patients

with implanted devices given issues such as potential

rhythm disturbance, device motion, or lead ‘‘heating.’’

Methods for assessing viability using
CMR. There are a number of well-established ways to

use CMR for viability assessment including late

gadolinium enhancement (LGE) to define transmurality

and extent of scar, dobutamine stress CMR for stress-

induced changes in regional wall motion, and LV wall

thickness assessment from resting studies. These have

been recently summarized.39

LGE CMR. The utility of CMR with LGE in

humans was first reported by Kim et al40 and has since

become a standard viability imaging technique, now

widely adopted. The phenomenon was initially termed

delayed contrast enhancement (DCE) and this term is

still current. The finding had first been validated in

animal models.41,42 After injection, gadolinium leaks

into the interstitial space of non-viable, previously

infarcted muscle and remains there for a time. Accu-

mulation of gadolinium defines scar thickness. All tissue

which does not enhance with gadolinium is then

considered ‘‘viable.’’ Whether this tissue is capable of

subsequent functional improvement is, however, a

different matter (see below). Transmurality of greater

than 50% enhancement is generally taken as indicative

of nonviability, although a range of likelihoods of

function recovery can be predicted based on the actual

partial thickness of the myocardial wall which enhances

(between 25% and 75%). Others have also reported on

the clinical utility of CMR with LGE for viability

testing.43-46 This includes not only in regards to

subsequent revascularization but also response to beta

adrenergic receptor blockade in patients treated

medically.47

Figure 1. Midventricular short axis images of resting blood flow (upper panel) and FDG uptake on
PET (lower panel) in a patient with recent LAD occlusion and LV dysfunction treated initially in a
remote center with thrombolysis. Note extensive reduction in resting blood flow in the anterior wall
with enhanced FDG uptake (flow/metabolism mismatch pattern). Patient had improvement in LV
function following midCAB procedure (images provided by the author).
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The importance of late enhancement (LGE) as an

indicator of viability vs that of early enhancement

(EGE) as an indicator of myocardial salvage after acute

infarction has also been recently shown.48

Dobutamine stress CMR. Dobutamine CMR is

in one way analogous to a high resolution stress echo,

where changes in regional wall motion/thickening with

increasing doses of dobutamine can be correlated with

viability status. This technique was established for

viability assessment prior to the identification of LGE.49

Other CMR findings. CMR can also detect

microvascular obstruction after acute myocardial infarc-

tion and this finding has prognostic significance.50 The

presence of small myocardial infarctions without clin-

ical manifestation but demonstrable by CMR has also

been shown to be important.51,52

Resting end-diastolic wall thickness is another

CMR index of myocardial viability.53 As wall thickness

decreases, so too does likelihood of functional recovery.

LGE vs FDG PET imaging. CMR LGE does not

differentiate the subepicardial non-enhancing region as

normal vs hibernating myocardium as does FDG imag-

ing.54 The former would not be expected to change in

contraction after intervention, whereas the latter should

indeed thus manifest improvement. Flow/FDG PET in

the latter situation would be expected to show the typical

mismatch pattern. Patterson et al55 has commented on

the study of Kim et al40 stating that there is a 36% rate of

indeterminacy due to exactly this issue with LGE CMR

alone, viz: the characterization of the non-enhancing

myocardium in patients with transmurality between 25%

and 75%. Roes et al54 commented that only 53% of

segments with subendocardial scar with 1%-50% trans-

murality in the study of Kim et al40 showed functional

recovery. The addition of dobutamine stress CMR has

been advocated in patients with 25%-75% transmurality

to improve diagnostic performance56 and is mentioned

further below.

OBSERVATIONAL STUDIES EMPLOYING
VIABILITY IMAGING IN PATIENTS

The rationale for viability testing and many of the

existing studies have been previously summarized.38 As

noted, viability testing has a strong foundation in both

basic science and observational clinical studies which

has been progressively developed over 4 decades.

Existing observational studies of patients with imaging

have pointed toward the identification of viable myo-

cardium as a target for prognostic revascularization and

other therapies in patients with ischemic LV dysfunc-

tion. Admittedly, such studies were frequently small,

from single centers, without clear documentation of

medical therapy, or comorbidities such as diabetes or

renal disease. Many of them also predated the avail-

ability of PET and CMR, the advent of current medical

and device therapies for heart failure and were per-

formed in the days before current lower risk

interventional options arose.

Furthermore, definitions of viability varied widely

from study to study and duration of patient follow-up

and definitions of positive patient outcome were at times

far from standardized. Statistical methods employed for

data analysis also varied. The severity of LV dysfunc-

tion ranged substantially and in some reports the patients

had ejection fractions sometimes close to normal.

Nonetheless, from these studies data emerged con-

cerning improvements following revascularization in

regards to: regional tracer uptake, wall motion, LV

ejection fraction and volumes, as well as the clinical

indicators of symptoms, functional status, frequency of

readmission to hospital with heart failure or reinfarction,

and most importantly, patient mortality.

While the consensus appears to be that improve-

ment in ejection fraction is necessary for improved

survival this has not necessarily always been shown to

be so. In a study by Samady et al in 199957, it was

reported that survival benefit with revascularization did

not necessarily depend on a change in EF. Hence, some

of the other already mentioned contributing factors may

have been operating. Unfortunately, this study did not

include viability imaging, which would have contributed

further knowledge.

Meta-analyses of Observational Studies
Employing Tracer and Echocardiographic
Imaging Tests

Over time sufficient data had amassed for several

groups to perform meta-analysis of pooled data of such

studies. Meta-analyses may pool either observational

studies (retrospective or prospective) or trials data.

Meta-analyses are generally considered as hypothesis

generating when they summarize observational studies

rather than trials.

In 1997, Bax et al58 summarized, in an important

study, the relative sensitivities and specificities of the

then existing techniques for viability assessment (Fig-

ure 2). They pooled 37 studies published between 1980

and 1997, which utilized imaging for prediction of

improvement in regional contractile function after

revascularization.27,59-94 The initial report included

thallium-201 and Tc-99m sestamibi imaging, FDG

imaging, and low dose dobutamine echo. All methods

had high sensitivity but specificity was highest for

LDDE and lowest for thallium-201 with the remaining

techniques having intermediate specificity. Other liter-

ature also reports higher specificity for echo usually
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concomitant with lower sensitivity than for tracer

techniques. This may suggest the tracer and echo

techniques operate at different points on a receiver

operating characteristic curve but some observers have

noted the potential issue may be that echo uses LV

function as the diagnostic test endpoint as well as the

study outcome endpoint in many clinical studies.38

This report was later updated first in 2001 with the

addition of further studies and again in 2007 including

CMR data supporting the original findings and extend-

ing them.95,96

In 2002, Allman et al97 published a meta-analysis of

24 viability studies in 3,088 patients using SPECT with

either thallium-201 or Tc-99m-based tracers, FDG

imaging, and stress echocardiography.98-121 This analy-

sis showed a 79% reduction in mortality for patients

with evidence of myocardial viability on SPECT, FDG

PET, or echo, who received revascularization vs those

who did not. It also suggested a small increase in

mortality for patients without viability subjected to

CABG but this was non-significant (Figure 3). Although

significant differences in diagnostic performance of the

three tests were not demonstrated, the confidence limits

in the data were very large, reflecting at least in part the

heterogeneity in the studies included and differences in

viability definition criteria. This does not mean there is

no difference between the tests but simply that none

could be demonstrated for the reasons given. These data

do not show that newer technology tests (PET, CMR)

will perform no better than older tests (SPECT and

echo). There were no CMR data in this meta-analysis in

any case.

In an editorial accompanying publication of this

meta-analysis, Bonow122 pointed out that one in three

meta-analyses have findings which are not subsequently

confirmed by later prospective trials. This may be due to

weaknesses in either the meta-analysis or the trials. He

also correctly observed that medical therapy received

was not reported in the study patients. This was

something which would be firmly applied and docu-

mented in later studies including STICH (see below).

Furthermore, it was noted that viability was assessed in a

binary or dichotomous distribution, a deficiency which

affects much of the literature in the area up to the

present day including all the reported trials. It is likely

that shades of gray will yield better insights than black

and white.123

After this series of meta-analyses, several other

groups subsequently published further pooled analyses

of these and other studies 124,125 also suggesting benefit

of revascularization of viable myocardium.

After publication of the 1997 and 2002 meta-

analyses some physicians may have been sufficiently

convinced by their conclusions that the issue of utility of

Figure 2. Receiver operating characteristic plot showing 95%
confidence intervals for each test showing higher sensitivity for
tracer studies but higher specificity for dobutamine echo
(reproduced from58 with permission).

Figure 3. Mortality for patients treated by revascularization
vs medical therapy with and without viability. (A) Grouped by
viability status, (B) by treatment. There is a 79% reduction in
mortality for patients with viability, who were revascularized
vs received medicine. Patients without viability showed
intermediate rate of death, slightly higher with revasculariza-
tion (reproduced from 97 with permission).
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diagnostic imaging in guiding therapeutic options in

patients with/without viability on testing was settled in

favor of incorporating such testing into routine clinical

practice. Conversely, there may have been equanimity

amongst other clinicians, with many treating patients

with aggressive medical and device therapies for heart

failure and not using viability imaging for a variety of

reasons including: non-availability, lack of prospective

trials, or other reasons of personal clinical preference.

Outcomes Studies in Patients with CMR and
LGE

There are a number of studies reporting that LGE

CMR predicts outcomes in patients.51,126-129

Gerber et al46 recently reported on 144 patients with

mean EF 24% and ischemic cardiomyopathy, who

underwent DCE CMR followed for three years. Seventy

nine patients underwent CABG, 7 had PCI, and 58

patients received medical therapy alone. There were 49

deaths (34%). Patients with viability treated medically

had 52% mortality, while those who were revascularized

had 12% mortality. Patients without viability had

intermediate rates of death: 23% for those treated

medically increasing to 29% for those with revascular-

ization. Using propensity score-matched patients (43

pairs) hazard for death (ratio 2.5, P = .02) remained

significantly higher for patients with viability treated

medically vs by revascularization. This is also one of

very few studies to report on the completeness of

revascularization. This pattern of findings is similar to

those of a previous meta-analysis, where patients with

myocardial viability treated medically had the worst

prognosis but if treated by revascularization, the best

prognosis, with those without viability having interme-

diate rates of mortality regardless of treatment option.97

Meta-analysis of Prospective Studies Using
CMR

In a recent report in 2012, Romero et al130 exam-

ined the pooled reported diagnostic accuracy of CMR

for viability assessment from 24 studies including 698

patients using criteria of end-diastolic wall thickness (4

studies), response to low dose dobutamine stress (9

studies), or DCE (11 studies). The analysis used a

bivariate random effects model. These authors report

LGE CMR to have highest sensitivity (95%) and NPV

(90%) for predicting improved regional wall motion post

revascularization, followed by end-diastolic wall thick-

ness. Dobutamine CMR had highest specificity (91%)

and PPV (93%). The overall weighted diagnostic accu-

racy was 70%. Only changes in regional wall motion

were reported, with no information on patient status,

symptoms, ejection fraction improvement, or clinical

events. There were only a few studies of EDWT and

there was a borderline publication bias for the dobuta-

mine studies. The authors conclude that the best

diagnostic result from CMR testing may be a combina-

tion of LGE and dobutamine studies. Such an approach

has been advocated by others also.53,131,132

CLINICAL TRIALS

Given the growing observational literature in the

1990s there was a need for prospective trials designed to

determine whether the conclusions being drawn from the

existing literature could be confirmed or refuted when

subjected to a more rigorous approach. There were a

number of related issues outstanding. Why did revascu-

larization appear to improve outcome? Did it relate to

improved LV function, less reinfarction, reduction or

reversal in LV remodeling, and/or mitral regurgitation?

Was the myocardium more electrically stable and less

prone to lethal disturbance of cardiac rhythm? Would

revascularization by either CABG or PCI have an

additive benefit after optimal medical therapy (OMT)

was first used in all patients? Any one study was never

going to be able to answer all these questions but the

overriding concern was whether or not revascularization

of viable myocardium as an additive treatment led to

improved patient survival.

These more recent prospective clinical studies have

struggled to confirm the earlier findings, at the same

time illustrating potential confounding factors in an ever

changing diagnostic, clinical, and therapeutic environ-

ment. However, they have not succeeded in definitively

refuting the utility of viability testing either. Recent trial

findings have also spurred substantial reflection on the

potential limitations in the existing observational data.

These recent trials also illustrate some of the

difficulties in performing and analyzing trials of diag-

nostic tests when the tests themselves are the target of

study (rather than the treatment being the target, as in

most clinical trials in cardiology).

The Christmas Trial

The acronymously named The Carvedilol Hiberna-

tion Reversible Ischemia Trial: Marker of Success

(Christmas Trial)133 is noteworthy because it demon-

strated in a randomized clinical trial using cardiac

imaging that viable myocardium could be effectively

treated medically, in this case with carvedilol, a beta

adrenergic receptor blocker with vasodilatory action.

This double blind trial randomized 387 patients with

chronic CAD and depressed LV function (EF 29%) to

either placebo or carvedilol treatment with patients split
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into either ‘‘hibernators’’ or ‘‘non-hibernators’’ based

on results of nitrate-enhanced Tc-99m sestamibi scan

uptake using pre-specified criteria. Only 19% of patients

had angina, 58% showed hibernation, and 54% ischemia

on SPECT. The endpoint was LV ejection fraction at

6 months. 305 (79%) patients completed the study

which was analyzed by intention to treat. Patients

receiving carvedilol all had an improvement in EF,

while those on placebo did not (P\.0001). The treatment

effect was greater in patients showing more extensive vs

less extensive hibernation (P = .0002).

Historically, from this point onward it was no

longer possible to dichotomize patients enrolled in

viability outcome studies as receiving simply revascu-

larization vs medical management. A paradigm of

optimal medical management (OMT) vs OMT plus

revascularization had emerged. In retrospect, it may

have at least been possible that some of the apparent

benefits of revascularization in earlier observational

studies were at least in part contributed to deficits in the

quality of medical therapy compared with current best

practice.

The Canadian Positron Emission
Tomography and Recovery Following
Revascularization (PARR) Studies

Two studies utilizing FDG PET have been per-

formed in Canada, PARR-130 and PARR-2.32,35 A post

hoc OTTAWA-FIVE analysis of PARR-2 has also been

published.134

PARR-1 was set up to develop a model for

prediction of recovery of LV function post revascular-

ization for use in a subsequent randomized trial. It

employed FDG PET in 82 patients with EF \ 35%. The

investigators found that scar extent score on the FDG

study, time spent awaiting revascularization and the

presence of diabetes to be independent predictors of an

improvement in EF. Multivariate analysis showed extent

of scar to be a significant independent predictor of

improved EF at 3 months.

PARR-2 demonstrates the difficulty for both trialists

and clinicians encountered when a trial protocol requires

management based on viability testing results. PARR-2

was a randomized study performed to examine the

utility of FDG PET in guiding management in patients

with severe LV dysfunction in regards to revasculariza-

tion benefit. After stratification by recent coronary

angiography vs no recent angiography 218 patients

were allocated to FDG PET assisted management and

212 to standard care, which could include another

viability test but not PET. It does not appear that the

PET studies were read at a central core laboratory. A

composite end point at 1 year was measured, involving

cardiac death, MI, or hospital readmission for heart

disease. 30% patients in the PET arm had an event vs

36% in the standard care arm. The difference was not

statistically significant. However, a number of important

points were demonstrated:

A significant number of patients (25%) were not

managed according to the trial protocol. That is, they did

not undergo the revascularization directed by PET

results. These patients had less extensive viability than

those where protocol adherence occurred. This suggests

clinicians were sensitive to extent of demonstrated

viability and when it was less extensive they were less

inclined to revascularize, perhaps because other patient

factors were considered more important (the previous

PARR-1 study had also shown the importance of extent

of non-viable vs non-viable tissue in terms of LV function

outcome at 3 months). The authors also noted that the

finding of viability on PET led to angiography being

performed in a substantial number of patients where this

had not occurred close to the time of trial entry.

By post hoc analysis a significant reduction in

adverse outcomes was observed in patients where there

was adherence to the PET recommendations for revas-

cularization (Figure 4). This analysis illustrates the

difficulties of trying to study sick patients when the

clinician’s treatment is directed by the results of an

imaging study.

In a first sub-study of the PARR-2 data35, the

investigators observed a relationship between extent of

hibernating myocardium defined on PET and benefit

with revascularization. In this analysis, if more than 7%

of the LV showed hibernation there was benefit from

revascularization in terms of subsequent events and this

increased with increasing extent of hibernating myocar-

dium (Figure 5). In addition, renal impairment emerged

as a significant independent prognostic indicator and this

is demonstrated in other studies also.135,136

The PARR-2 authors performed a further post hoc

analysis entitled the Ottawa-Five sub-study of PARR-

2.134 Here, the authors studied outcomes of 111 patients

in PARR-2, who were treated at a large integrated

facility with ready access to PET and experienced

readers and cardiologists, surgeons, and others who

worked in a close knit team compared with the remain-

ing patients treated in other centers. Some of these

centers mostly performed PET for non-cardiac studies

(oncology) and did not have the same level of expertise

and integration in evaluating and treating patients with

myocardial viability and LV dysfunction as the larger

facility.

The analysis showed significantly better outcomes

in patients managed at the more experienced center:

19% composite event occurrence with PET-directed

management vs 41% for those with standard care
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(P = .005), despite these patients being older and with

lower EF than those at the other centers. In patients at

the other centers, there was no difference in event rate

between PET-directed and standard management (Fig-

ure 6). This finding suggests the importance of

experience and integration across the spectrum of

investigation, test interpretation, and treatment imple-

mentation in these sick patients. It is quite important to

note, however, that most of the patient events here were

readmissions (22 patients) with only 6 deaths and 4

myocardial infarctions, i.e., a small number of hard

events.

The Canadian group has documented, by the high

non-adherence rate to PET-directed management, that

whilst such a trial protocol appeals to imaging special-

ists in terms of seeking the answers they desire in terms

of diagnostic utility of their tests, that this may not be an

approach which can be successfully executed: it

involves very sick patients where other clinical factors

come into decision making. These can include physician

clinical judgment, patient willingness, comorbidities,

and competition from other heart failure trials involving

new drugs and devices recruiting from the same pop-

ulation of patients.

The Heart Failure Revascularization Trial
(HEART)

The UK HEART trial137,138 illustrates the problem

of lower than anticipated patient enrollment. This

investigator-initiated study was funded by the Medical

Research Council of the United Kingdom. Conducted at

13 centers, this was an unblinded trial planned for 800

patients with EF \ 35% and evidence of substantial

viability on any standard imaging test. They would be

randomized to conservative management or angiography

with a view to revascularization. The trial funding was

withdrawn due to low recruitment with only 79 patients

enrolled in the first year (The STICH trial was also

under way by then). Enrollment continued without

funding until 138 patients were randomized before final

study termination in 2004. Follow-up of these patients

showed no difference in outcomes for the two groups but

this was inconclusive as the requirements for statistical

significance were not met. Subsequent to closure phy-

sicians were asked to direct candidates to the STICH

trial.

The STICH Trial

The Surgical Treatment of IsChemic Heart Failure

trial was an investigator-initiated NHLBI-funded trial

Figure 4. Patients treated by adherence to the PET protocol (ADHERE arm) showed better
survival in the PARR-2 trial than those in the standard arm (P = .019) (reproduced from 32 with
permission.

Figure 5. As extent of FDG PET mismatch increases above
7% of the LV there is increasing survival benefit from
revascularization in the PARR-2 study patients by post hoc
analysis (reproduced from 35 with permission).
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(NCT00023595, https://www.stichtrial.org).139 To date,

there have been 12 publications from this study

group.140-151

The main STICH (hypothesis 1) investigators

examined outcomes in 1,212 CAD patients amenable

to CABG with EF B 35% (by CMR, SPECT, or

ventriculography) randomized to either OMT or OMT

plus CABG.146 With 50 recruiting centers initially

planned, this increased to 127, spread across 26 coun-

tries to enable completed enrollment between July 2002

and May 2007. Sites averaged 2 recruitments per annum

and details of screened but not randomized patients are

unknown.

There were also multiple sub studies related to

surgical ventricular reconstruction (SVR), mitral regur-

gitation, myocardial viability imaging, and stress-

induced ischemia.

The STICH (hypothesis 1) investigators found no

significant difference in all cause death between the two

treatment groups at 56 months median follow-up using

intention to treat analysis. 11% of the OMT group went

on the CABG during follow-up. However, with a

‘‘treatment received’’ analysis a difference in favor of

CABG was seen. In a subgroup of 490 patients allocated

to SVR in addition to CABG there was no benefit for the

patients who had postoperative ESVI greater than

70 mL/m2.141 These and other findings have generated

much controversy and discussion.

Viability sub-study. Within STICH there is a

sub-study concerning myocardial viability testing.145

Originally, it was foreseen that all 1,212 patients

enrolled in STICH would have viability testing and

statistical power calculations were projected accord-

ingly. This aspiration did not eventuate and many

patients were not imaged for viability. STICH has been

described by the authors as ‘‘the first prospective

randomized trial testing the hypothesis that CABG

improves survival in patients with ischemic LV dys-

function compared to the outcome with aggressive

medical therapy.’’ This is true for the greater STICH

trial (hypothesis 1) but scrutiny shows that in regards to

the viability sub-study there was no randomization in

regards to viability testing and results of such testing did

not mandate/direct subsequent treatment. Viability test-

ing was optional and just under half the patients

underwent either SPECT or stress echo assessment for

this purpose: Of the 1,212 STICH trial patients only 601

underwent viability imaging.

The results of the viability sub-study show 37% of

patients with viable myocardium died vs 51% of those

without viability (P = .003) (Figure 7A). However,

after baseline variables adjustment this was no longer

significant. Furthermore, there was no demonstrable

relationship among viability information, treatment

allocation, and patient outcome (P = .53) (Figure 7B).

In short, this sub-study failed to show an association

between myocardial viability on imaging and additional

benefit from revascularization. Again, the study was

underpowered for this analysis.

There has been a substantial body of commentary

on the STICH viability sub-study findings and on the

authors’ interpretations.152-162 A range of issues have

been identified: there were significant differences in

regards to symptoms, medications, LV function and

volumes, race, prior MI and PCI, and pattern of CAD in

enrolled patients with vs without viability. There was

more CABG performed on those who had viability

testing performed at the time of enrollment vs

Figure 6. A In the Ottawa-5 sub-study of PARR-2 patients in the PET arm fared better than those
in the standard care arm (P = .005, B). Patients treated in an experienced center fared better in the
PET vs standard arm but this difference was not seen in less experienced centers (right panel)
(reproduced from 134 with permission).
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beforehand (non-significant). Viability was analyzed as

a dichotomous variable in STICH although some of the

authors previously and correctly identified this as an

important limitation in the literature.122 Most of the

imaging studies were performed with SPECT. There

were multiple SPECT protocols used at the 217 sites.

Some would call this ‘‘real world’’ testing but such an

approach may be less rigorous than might be hoped for

Figure 7. A In the STICH trial viability sub-study, the unadjusted probability of death was greater
for patients without myocardial viability (P = .003). Kaplan-Meier plot shown (reproduced from
145 with permission). B In the STICH trial viability sub-study at 5 years by intention to treat analysis
there was no demonstrable difference in mortality in regards to viability presence/absence or
treatment choice of revascularization with OMT vs OMT alone. a Results for patients without
myocardial viability, b for those with viability, and c interaction between viability status and
treatment assignment (n.s.). Not all the STICH patients underwent viability testing (reproduced
from 145 with permission).
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in an optimally designed prospective clinical trial. The

extent of LV viability for SPECT and echo tests

considered significant were quite different and the

justification for this was based at least partly on existing

retrospective data even though the authors note that the

resulting criteria were applied prospectively in the trial.

Furthermore, the relationship between SPECT tracer

uptake and regional wall motion in individual segments

was not reported. Information on changes in EF and LV

volumes may have also proven useful in interpreting the

trial results but were not reported. In regards to those

patients undergoing stress echo: the presence of a

‘‘biphasic response’’ with increasing dobutamine dose

was not used as a criterion indicating viability, which

would be usual clinical practice.

Perhaps most importantly of all, the number of

patients without demonstrated viability in STICH is very

small (19% without vs 81% with viability) so there

appears to be a basic imbalance in the patient recruitment.

This reflects one problem with testing being optional and

not mandated at randomization. Other studies have also

had unbalanced recruitment favoring patients with via-

bility present. Furthermore, in STICH relatively ‘‘old’’

imaging tests were used, with no information collected in

regards to PET or CMR imaging.

Finally, it is unclear in the patients receiving

revascularization whether only viable tissue or also scar

was grafted. Revascularization of scar tissue may not

lead to any benefit.

Reversible ischemia sub-study. More

recently, the STICH investigators have published on the

presence of reversible ischemia demonstrated on stress

imaging and patient outcomes.151 Reversible ischemia is

one indicator of viable myocardium. Again, contrary to

existing notions, the authors reported that the presence of

ischemia identified: (1) neither patients with worse

subsequent outcome nor (2) patients who were more

likely to benefit from CABG. Gibbons et al163 have

recently reviewed the existing literature in this area and

criticized this STICH sub-study report citing: lack of

statistical power, high rate of ICDs in the study population

(22%), differences in baseline variables, and the apparent

anomalies in differing criteria for ischemia between

SPECT and echo, similar to those for viability cited above.

A further follow-up of the STICH Patients (STICH

ES, Extended Study) is currently being performed. It

will be of interest to learn whether longer follow-up can

confirm or refute the non-significant trend to diverging

outcomes in the patients initially reported in 2011.

The final conclusion from the STICH viability and

ischemia sub studies must be that they are both

inconclusive. The viability study does not show benefit

for CABG but there is the distinct possibility of a type II

error in the analysis.

MORE RECENT CLINICAL STUDIES

BARI 2D: Myocardial Perfusion SPECT
Findings at 1- and 5-Year Mortality

In a recent report on the BARI 2D study, the

investigators examined scintigraphically determined

findings in 1,505 patients at 12-month post randomiza-

tion viz. extent of scar and ischemia on SPECT together

with level of LV function in diabetic patients with CAD

randomized to revascularization or medical therapy.

Patients were followed for 5 years for endpoint of death.

They found that the reduction of ischemia by revascu-

larization and extent of scar as defined on SPECT at

1 year to be powerful predictors of patient outcome.164

PET: Hibernating (Viable) Myocardium vs
Inducible Ischemia and Scar

A recent prospective observational study reported

on 648 patients (65 years mean age, 77% male), with

CAD and LV dysfunction (mean EF 31%), who under-

went stress/rest Rb-82 and F-18 FDG PET imaging with

automated analysis and were followed up for

2.8 years.33 (patients undergoing early revascularization

within 92 days of PET were excluded from analysis to

avoid ‘‘waiting-time’’ bias).

Using a Cox proportional hazards model which

included a propensity score to take into account the non-

randomized nature of treatment, they observed 165

(27.5%) patient deaths. Hibernating (viable) myocar-

dium (flow/metabolism mismatch), ischemia (reversible

Rb-82 defect), and scar (fixed Rb-82 defect) were all

associated with all cause mortality: (P = .0015,

P = .0038, and P = .0010). There was an interaction

between significant hibernating myocardium [10% LV

extent and revascularization which conferred survival

benefit. The authors concluded that hibernating myo-

cardium identifies patients with LV dysfunction, who

derive survival benefit from revascularization.

SOME FACTORS IN PERFORMING CLINICAL
TRIALS WITH MYOCARDIAL VIABILITY TESTING

Recruitment

Recruiting high risk patients with LV dysfunction

into clinical studies is challenging. Patients may not

which to take part and clinicians can be reluctant to

follow study pathways especially when they feel patients

are deteriorating or not improving on a particular

treatment path. This was evident in the PARR 2 study

as outlined above in the subsequent OTTAWA 5

report.134 It is also possible that some clinicians, based
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on their past practice, clinical observations and results of

observational studies and the existing meta-analyses

may still not be keen to enter patients into trials.

Changing Treatment Options and
Compliance with Medical Treatment

In earlier studies, medical treatments for LV dys-

function were not aggressive and used older medicines.

Drugs such as ACE inhibitors, ARB blockers, statins,

and beta adrenergic receptor blockers with vasodilatory

actions were not in routine use in all patients. In many of

the older studies, manuscripts contained little informa-

tion about details of therapy and adherence to same.

Hence, the current approach of best medical therapy vs

best medical therapy plus revascularization was not

employed.

Second, implantable defibrillators and resynchroni-

zation devices were not available as treatment options at

the time of earlier observational studies.

Kidney Function

The presence of renal impairment has already been

mentioned as an adverse prognostic factor in patients

undergoing revascularization for viable myocardium

with LV dysfunction.35,135,136 It is unclear how the

combination of renal disease and viable myocardium

should be weighed when making management decisions.

It remains to be determined how much remaining renal

function and what extent of myocardial viability are

required for a beneficial outcome in a given patient.

Mitral Regurgitation

The presence of mitral regurgitation is another

factor to take into account in decision making. In

patients with ischemic mitral regurgitation undergoing

CABG, the presence of viability is a good predictor of

beneficial outcome.165,166

LV Volume

Progression of LV remodeling adversely affects

outcome in patients with LV dysfunction. Once the left

ventricle is too dilated the ability for functional

improvement is lost and there may be no value in

revascularization on prognostic grounds.167

Severity of LV Dysfunction

The severity of LV dysfunction was identified in

itself as a powerful marker of patient prognosis at the

beginning of this review.1 However, published viability

studies do not usually stratify patients according to

severity of LV dysfunction at entry. Even the PARR-2

and STICH trials report on the mean ejection fraction of

the patients. One of the previously published meta-

analyses suggests increasing survival benefit of revas-

cularization with decreasing LV ejection fraction.168

Given this observation together with the natural history

data1 it may prove fruitful to ask whether viability

testing is potentially more beneficial in those patients

with lower vs higher ejection fractions. It is possible that

there may be a range of ejection fractions over which

testing is most useful. This could mean that not all

patients across the spectrum of LV dysfunction would

need viability testing as part of their diagnostic work up

but this is currently somewhat unclear.

Changing Disease Patterns

Clinicians are today seeing older and sicker patients

than in the 1980s when observational studies were

starting to accrue. This is largely due to advances in

medical therapies for chronic diseases reflected in

improved longevity. The patients have more of the

mentioned comorbidities, in particular diabetes and

renal disease, both of which contribute substantially to

mortality within the follow-up period after myocardial

viability assessment.

Adequacy of Revascularization in Relation
to Viable Tissue Segments

The completeness of revascularization is also not

usually reported in terms of perfusion study improve-

ment for example. A call for a ‘‘personalized’’ approach

to viability assessment has recently been made by

Iskandrian and Hage.169 These authors advocate an

individual patient approach to correlating imaging test

findings with coronary angiography to (a) determine if

there is sufficiently extensive viable myocardium which

is supplied by vessels in which stenosis can be

adequately relieved by revascularization and (b) to

determine a preoperative ‘‘road map’’ of which viable

myocardial segments to target for prognostic revascu-

larization. This appears to be a sound suggestion based

on the findings and conclusions from the OTTAWA-5

study.134

Cardiac Sympathetic Neuronal Dysfunction
in Patients with CAD

Myocardial sympathetic innervation has been

shown to be abnormal in viable myocardium.15,170 This

represents one potential cause for cardiac death in such

subjects. The PAREPET trial21 has shown (in a
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preliminary report) that extent of denervation deter-

mined by C-11 hydroxyephedrine PET is an independent

predictor of cardiac arrest in patients with CAD and

heart failure.22 Further studies in this area are required.

ARE TRIAL DESIGNS ORIGINALLY UTILIZED FOR
EVALUATING TREATMENTS USEFUL FOR

EVALUATING PERFORMANCE OF DIAGNOSTIC
TESTS?

As mentioned above, randomized controlled trials

are mostly used to assess the effects of treatments

including medications, interventions, devices, and sur-

gery. The use of the treatment may be compared against

placebo, a differing dose of the same medication, or an

alternate treatment. Primary and secondary endpoints are

predefined and some may be specified post hoc. Patients

may complete the trial protocol, reach a specified

endpoint, voluntarily withdraw, die, or be withdrawn

due to an adverse event or new medical problem.

On the other hand, the situation with diagnostic

testing is different. The test results may mandate a

treatment strategy (PARR-2) or not (STICH) but are not

in themselves a treatment. One alternative approach is

the use of prospective data registries, of which at least

one is currently recruiting: Ontario Cardiac PET Reg-

istry (CADRE) (MOHLTC Grant # 06374).171

WHAT NEXT?

PET vs CMR or PET Plus CMR?

Previous reviews have at times debated the pros and

cons of PET vs CMR imaging.55,172 Others have called

Figure 8. Cardiac PET/CMR: patient with prior myocardial infarction. LGE CMR images (top
panel), FDG PET images (bottom panel), and co-registered images (center). CMR shows
subendocardial anterior wall and apical enhancement. This corresponds with reduced metabolic
uptake at these sites on FDG PET (reproduced from 175 with permission).
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for a combined approach.123,173 There may be a role for

combined PET/CMR studies in patients with intermedi-

ate values of transmurality, whilst CMR defines the

transmurality of scar, the PET study can characterize the

state of the non-scarred subepicardium and help refine

the likelihood of functional recovery in cases without

too much thickness of scar.43,174 It is possible that by

combining the high sensitivity of PET with the high

specificity of LGE CMR that a superior diagnosis may

result in intermediate cases.

The emergence of hybrid PET/MR tomographs

recently has enhanced the capability to perform such

combined imaging studies (Figure 8). This subject has

been recently reviewed by Rischpler et al.175 These

authors note the potential strengths as well as technical

challenges inherent in the design and application of this

dual approach to cardiac imaging. CMR offers greater

soft tissue contrast than that obtainable with PET/CT but

does not readily provide the attenuation correction map

obtainable from CT or radionuclide sources and this is a

real challenge. Issues for cardiac patients related to

contrast and magnetic field have already been mentioned

above.

IMAGE HF Study

This is a collaborative Canadian/Finnish funded

study (NCT01288560)176 which is currently recruiting.

It aims to study patients with ischemic heart disease and

heart failure studied by PET/CT, CMR, and CCT

imaging compared with conventional SPECT imaging

in regards to a composite endpoint as used in the PARR-

2 trial.

CONCLUSION

A vast amount of basic science, diagnostic testing

expertise, and clinical information in relation to myo-

cardial viability has been accumulated over more than

40 years now. Much has been learned and some con-

troversies, apparent contradictions and challenges have

been raised. It appears likely that improvements in basic

sciences knowledge, imaging techniques, new therapies,

and results from further well-designed, well-executed,

and well-analyzed clinical studies will increase our

understanding of how to investigate and appropriately

treat individual patients with chronic CAD and poten-

tially reversible contractile dysfunction.
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