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Despite the multiple imaging modalities that are

now available for the diagnosis and assessment of cor-

onary artery disease, radionuclide myocardial perfusion

imaging continues to enjoy widespread use due to its

combination of diagnostic accuracy and well-established

prognostic utility.

After initial research demonstrated the feasibility of

perfusion imaging with the metallic cation K-42,1

Tl-201, another metallic cation, was proposed as a

potassium analog for medical use.2 Extensive research

with cell culture, isolated heart and intact animal models

showed that thallous ion has a relatively high myocar-

dial extraction, in part via Na-K ATPase, that permits

noninvasive assessment of relative regional myocardial

blood flow.3 Experimental models clarified the effect of

variable coronary blood flow and myocardial injury on

thallium uptake and clearance.4,5 Moderate tracer

washout resulting in ‘‘redistribution’’ permitted the

differentiation of ischemic from infarcted myocardium

with a practical single day imaging protocol,6 and

Tl-201 was approved by the U.S. Food and Drug

Administration (FDA) for clinical use in 1977. How-

ever, despite widespread clinical use, the relatively long

half-life and suboptimal photon energy of Tl-201 for

Anger camera imaging led to the search for perfusion

agents labeled with Tc-99m.

During the 1980s numerous cationic complexes of

Tc-99m were evaluated for use as potential myocardial

perfusion agents. The standard assessment involved

screening compounds in rodents, evaluation of promis-

ing compounds in large animals, with subsequent study

in humans of the most promising compounds. Tertbu-

tylisonitrile (TBIN), carboxyisopropyl isonitrile (CPI),

trimethylphosphite (TMP), dimethoxyphosphinoethane

(POM-POM) and several analogues of dimethylphos-

phinoethane (DMPE) were synthesized and appeared

promising in various experimental animal models.7-9

However, subsequent evaluation in humans showed

these compounds to have poor myocardial retention,

delayed blood pool clearance due to binding with blood

components, high background lung uptake or high

adjacent organ (liver/spleen) uptake.10-12 Gerundini

et al13 concluded that animal studies were not adequate

to evaluate potential Tc-99m-labeled myocardial perfu-

sion compounds. Deutsch et al14 described ‘The Noah’s

Ark Experiment’, an attempt to predict the behavior of

Tc-99m complexes using: (1) planar cardiac imaging in

multiple animal species to screen new compounds, (2)

early imaging studies of promising compounds in human

volunteers, (3) biodistribution studies in rodents to refine

structure–distribution relationships among structural

analogues, and (4) final evaluation of the best candidate

compound in human volunteers and patients. With this

model of tracer evaluation, imaging assumed an earlier,

more prominent role in the development cycle.

In the late 1980s two Tc-99m labelled perfusion

agents were studied as myocardial perfusion agents in

several experimental models and in human subjects.

Teboroxime (TB) is a neutral, lipophlic boronic acid

adduct of Tc-99m, and sestamibi (MIBI) is a lipophilic

cationic isonitrile complex of Tc-99m.

TB shows the highest myocardial extraction and

most accurate estimation of regional myocardial blood

flow among the Tc-99m labelled tracers and Tl-201.

Myocardial retention of the neutral compound is rela-

tively less affected by myocyte injury, potentially

permitting assessment of blood flow despite myocardial

infarction.15,16 While TB shows moderate clearance

from isolated cardiac myocytes, the tracer shows rapid

clearance in isolated hearts, canine models and patients,

in part due to tracer binding to blood components.17-20

The tracer also shows prominent hepatic uptake.21

MIBI shows avid uptake and moderate clearance in

isolated myocytes, localizing in cellular mitochondria.22

However, despite this avid myocardial cellular uptake,

the tracer shows only moderate extraction in isolated

hearts and canine models due to impaired diffusion of
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the large complex across the capillary endothelial bar-

rier.23,24 This moderate extraction results in a significant

underestimation of hyperemic flow, beyond roughly

2 mL/minute/g, during pharmacologic stress. In patients,

a modest coronary flow reserve of 2:1 or higher corre-

lates with the absence of a perfusion defect with MIBI

imaging.25 Like TB, MIBI also shows prominent hepatic

uptake.

Both compounds appeared promising, permitted

accurate diagnosis of coronary artery disease compared

with coronary angiography and were approved by the

FDA 2 days apart in December 1990. With the FDA

approval of IV dipyridamole that same month, one might

have expected the more accurate measurement of

hyperemic flow by TB to be an advantage. However, the

combination of rapid myocardial clearance and promi-

nent sustained liver uptake required very rapid imaging

that was logistically challenging.26 While some labora-

tories did evaluate rapid SPECT protocols for TB,27,28 the

tracer’s rapid myocardial clearance and prominent

hepatic uptake made it appear best suited for rapid planar

imaging. Such rapid imaging might permit faster patient

throughput, but the longer imaging with MIBI gave

higher image quality, well suited to gated SPECT imag-

ing. With the transition to SPECT imaging MIBI

achieved wide acceptance. However, the major drawback

in image quality for MIBI continued to be prominent,

early hepatic uptake that sometimes interfered with

assessment of the inferior cardiac wall. Various strategies

such as ingestion of a fatty meal, milk, chilled or car-

bonated water have been suggested to deal with this.

In the 1990s Tc-99m NOET, another neutral, lipo-

philic compound, appeared promising in various

experimental models as a myocardial perfusion agent.

However, despite its favorable myocardial extraction

and moderate washout, it showed prominent pulmonary

uptake and inconsistent image quality in humans.29,30 It

has not been submitted for FDA approval. During the

same decade Tc-99m tetrofosmin (TF), a lipophilic

cationic phosphine complex, was studied as a potential

compound for myocardial perfusion imaging. TF, like

MIBI, has moderate myocardial extraction with avid

retention in myocyte mitochondria and also shows a

plateau in myocardial uptake at levels of coronary flow

higher than 2 mL/minute/g.31,32 Showing utility for the

diagnosis of CAD,33 TF was approved by the FDA in

1996. While a clinical advantage of TF is a somewhat

faster hepatic clearance than MIBI, hepatic uptake of TF

can still be problematic in some patients.

In this issue of the Journal of Nuclear Cardiology
Kim et al evaluate Tc-99m-N-MPO (MPO) as a potential

myocardial perfusion agent. This nitrido complex34-37

has some similarities in structure to another complex,

Tc-99m-N-DBODC5,38-41 and is also synthesized with

the goal of speeding hepatic clearance while maintaining

myocardial image quality. While the discussion above

suggests caution in predicting clinical utility from pre-

liminary animal data, the authors have evaluated MPO in

different animal species and compare some of their data

to those for MIBI. Like MIBI, MPO is a lipophilic cation.

Initial cell fractionation data showing similar tracer

retention for the two complexes in mitochondria, and

serial distribution in rodents showing stable myocardial

uptake and low lung uptake, are presented to predict

myocardial images similar to MIBI. Serial organ uptake

and planar imaging showing rapid hepatic clearance of

MPO are presented to predict the feasibility of early

myocardial imaging without interference from adjacent

organ activity. However, while the images and data show

rapid clearance of hepatic activity, prominent splanchnic

activity persists. Since the presence of prominent bowel

activity adjacent to the heart can sometimes be a chal-

lenge for interpretation of clinical myocardial perfusion

studies with MIBI or TF, human studies will be important

to determine if this is also an issue for MPO.

MIBI and TF achieve good myocardial image

quality with excellent myocardial contrast against low

background pulmonary tracer uptake. Despite underes-

timation of hyperemic coronary flow, these tracers

accurately detect coronary artery disease. However,

prominent early hepatic uptake remains a limitation that

delays imaging at rest or after pharmacologic stress, and

this can be especially problematic when attenuation

correction emphasizes hepatic and splanchnic tracer

activity. Despite the clinical success of Tc-99m-based

myocardial perfusion imaging, the development of new

Tc-99m complexes with favorable kinetics for faster

imaging has been slow. It was 13 years between the

FDA approval of Tl-201 and approval of the first Tc-

99m-labelled myocardial perfusion agents. It has now

been 13 years since the last Tc-99m myocardial perfu-

sion agent was approved. If rapid hepatic clearance of

new Tc-99m complexes such as MPO is shown to permit

high-quality myocardial images together with a clini-

cally significant reduction in imaging delay, this will be

a welcome addition to currently approved perfusion

agents.
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