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Abstract
In this paper, we prove some existence theorems for elliptic boundary value prob-
lems within the p(x)-Laplacian on a variable Sobolev space. For this purpose, the
main problem is transformed into a fixed point problem and then fixed point argu-
ments such as Schaefer’s and Schauder’s theorems are used. Our approach involves
fewer stringent assumptions on the nonlinearity function than the prior findings. An
interesting example is presented to examine the validity of the theoretical findings.

Keywords p(x)-Laplacian · Variable exponent Sobolev space · Schaefer fixed point ·
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1 Introduction

The study of differential equations and variational problems involving non-standard
p-growth conditions has attracted special attention. Such problems often arise in the
modeling of several phenomena such as electrorheological fluids, image restoration,
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magnetostatics problems, and many other problems in elastic mechanics [33, 36, 46].
Due to their widespread applications, the investigation of nonlinear elliptic boundary
value problems involving the p(x)-Laplacian operators have been reported using dif-
ferent approaches [1, 5, 13, 16, 18, 25, 26, 39, 42–44]. Meanwhile, there have been
many authors who focused their works on the study of the equations involving the
p(x)-Laplacian operators and obtained some important results; the reader can consult
the papers [4, 7, 15, 17, 20–22, 27, 29, 30, 34, 35].

On the other hand, the notion of variable exponent Lebesgue spaces introduced by
Orlicz in the paper [31]. In [46], Zhikov presented a new direction of investigation,
which created the relationship between spaces with variable exponent and variational
integrals under nonstandard growth conditions. Some interesting results concerning
the generalized Lebesgue spaces and the generalized Lebesgue–Sobolev spaces can
be found in [8, 9], and references therein.

Recently in [40], Vetro investigated a nonlinear p(x)-Kirchhoff type problem with
the Dirichlet boundary condition, in the case of a reaction term depending on the
gradient (convection). Utilizing a topological attitude based on the Galerkin method,
he studied the existence of two notions of solutions: strong generalized solutions and
weak solutions. Further, the authors in [46] used minimax approaches in conjunction
with the Trudinger-Moser inequality to investigate a particular kind of the weighted
Kirchhoff problem and found some existence results of a solution in the subcritical
exponential growth situation with positive energy. For more information in this area
refer to [14, 17, 20, 41]. Yet, in the event that the Catheodory reaction is gradient
dependent, some approximation methods such as the Galerkin method are regarded
as essential resources for understanding the p(x)-Laplace equation since the problem
loses its variational character in this scenario. In [38], Sousa studied a version of the
abstract lower and upper-solutionmethod for some operators. Indeed, he presented, the
existence of a positive solution for a new class of fractional systems of the Kirchhoff
type with ψ-Hilfer operators via the method of sub and supersolutions.

Motivated by the results of the above-mentioned work, we prove some existence
results of solutions for elliptic boundary value problems with p(x)-Laplacian of the
following form {

−�p(x)j (x) = f (x, j (x)), x ∈ �,

j (x) = 0, x ∈ ∂�,
(1.1)

where

−�p(x)(j) = div
(
‖∇j (x)‖p(x)−2∇j (x)

)
,

and � is a smooth bounded domain in R
N (N ≥ 2), p(x) ∈ C(�) is log-Hölder

continuous with values in (1,+∞), and f : �×R −→ R is a Carathéodory function,
satisfying some growth conditions [12]. Problem (1.1) naturally describes applications
in fluid mechanics and thus it is of a great significance for engineers and scientists.
Fixed point arguments based on Schaefer’s and Schauder’s fixed point theorems as
well as the method of sub-supersolution are used for proving the main theorems.
Indeed, the existence results of the weak solutions for the p-Laplacian BVPs have



Existence of Solutions for p(x)-Laplacian Elliptic BVPs... Page 3 of 15 195

been established in [19, 23, 28], while the variational and topological methods were
used in [6, 11, 32, 45], and the simple variational arguments based on the Mountain-
Pass theorem was used in [28]. The structure of the nonlinearity f in (1.1) suggests
that the assumptions made about it are less restrictive than in previous discoveries. The
paper discusses major findings within the variable exponent Sobolev space, as well as
via utilizing fundamental properties of the p(x)-Laplacian and Nemytskii operators.

The article is structured as follows. Section 2 presents some fundamental concepts
which are essential to prove the results in the next sections. The main results together
with an interesting example are explicitly delivered in Sects. 2 and 3.Abrief conclusion
is given in Sect. 4.

2 Preliminary Results

Here, we present some essential results on the variable exponent Sobolev space and
state some basic properties of the p(x)-Laplacian and Nemytskii operators. For more
details, we orient the reader to [8, 9, 12, 19, 23, 28].

Let � ⊂ R
N (N ≥ 2) be an open bounded subset with smooth boundary ∂� and

set

C+(�) := {g : g ∈ C(�), g(x) > 1 for all x ∈ �},

and

D = {j : � → R; is a measurable real–valued} .

For p ∈ C+(�), we define

p− := min
x∈�

p(x), p+ := max
x∈�

p(x).

Clearly, 1 < p− ≤ p+ < ∞, and

L p(x)(�) =
{
j ∈ D :

∫
�

|j (x)|p(x)dx < ∞
}

.

We define the Luxemburg norm by:

‖j‖p(x) = inf

{
τ > 0 :

∫
�

|j (x)

τ
|p(x)dx ≤ 1

}
.

Further,
(
L p(x)(�), ‖j‖p(x)

)
are Banach spaces which are reflexive if and only if

1 < p− ≤ p+ < ∞. Due to the inclusion of the Lebesgue spaces, we get: if
0 < |�| < ∞ and p1(·), p2(·) are variable exponents such that p1(x) ≤ p2(x) a.e.
x ∈ �, then, there exists a continuous embedding L p2(x)(�) ↪→ L p1(x)(�).
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Moreover, if L p′(x)(�) is the conjugate space of L p(x)(�),where 1
p(x) + 1

p′(x) = 1,
then:

∣∣∣ ∫
�

jvdx
∣∣∣ ≤

( 1

p− + 1

(p′)−
)
‖j‖p(x)‖v‖p′(x) ≤ 2‖j‖p(x)‖v‖p′(x), ∈ L p(x)(�), v ∈ L p′(x)(�).

(2.1)
In the sequel, we employ the modular and its properties, which is σp(x) : L p(x)(�) →
R, defined by

σp(x)(j) :=
∫

�

|j |p(x)dx .

It should be noticed that the log–Hölder continuous and Carathéodory functions are
defined as follows.

Definition 2.1 The variable exponent p(x) is log–Hölder continuous if there exists
C > 0 with

|p(x) − p(y)| ≤ C

−log‖x − y‖ ,

for x, y ∈ R
N , and ‖x − y‖ ≤ 1

2 .

Definition 2.2 A function f : � × R −→ R is Carathéodory function, if f (., η) be
measurable on R and f (ξ, .) is continuous on R.

Proposition 2.3 [12] For all j, v ∈ L p(x)(�), we have

‖j‖p(x) < 1 (resp. = 1;> 1) ⇔ σp(x)(j) < 1 (resp. = 1;> 1),

‖j‖p(x) < 1 �⇒ ‖j‖p+
p(x) ≤ σp(x)(j) ≤ ‖j‖p−

p(x),

‖j‖p(x) > 1 �⇒ ‖j‖p−
p(x) ≤ σp(x)(j) ≤ ‖j‖p+

p(x),

σp(x)(j − v) → 0 ⇔ |j − v|p(x) → 0.

It follows that

‖j‖p(x) ≤ σp(x)(j) + 1,

and

σp(x)(j) ≤ ‖j‖p+
p(x) + ‖j‖p−

p(x).

Definition 2.4 The variable Sobolev space W 1,p(x)(�) is defined as follows

W 1,p(x)(�) =
{
j ∈ L p(x)(�) : ‖∇j‖ ∈ L p(x)(�)

}
,
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with the norm

‖j‖1,p(x) := ‖j‖p(x) + ‖∇j‖p(x).

Remark 2.5 The closure of C∞
0 (�) in W 1,p(x)(�) is denoted by W 1,p(x)

0 (�), and we
define

p∗(x) :=
⎧⎨
⎩

Np(x)

N − p(x)
, if p(x) < N ,

+∞, if p(x) ≥ N .

Definition 2.6 Suppose � and  be real Banach spaces, S ⊂ � be nonempty and
the symbols ⇀ and → denotes the weak and strong convergence, respectively. The
mappingL : S →  is called bounded if the projection of any bounded set in � under
L be a bounded set in .

Definition 2.7 Suppose � be a real reflexive Banach space, �∗ be its dual and S ⊂ �

be nonempty. A mapping L : S → �∗ is said to be of class (S+), if for any {γn} in �,
where γn⇀γ and lim 〈L(γn), γn − γ 〉 ≤ 0, we can conclude that γn → γ .

Proposition 2.8 ([8])

(i) The spaces W 1,p(x)(�) and W 1,p(x)
0 (�) are separable reflexive Banach spaces.

(ii) If γ ∈ C+(�) and γ (x) < p∗(x) for x ∈ �, then the embedding from
W 1,p(x)(�) to Lγ (x)(�) is continuous and compact.

(iii) There exists ϑ0 > 0, with

‖j‖p(x) ≤ ϑ0‖∇j‖p(x), j ∈ W 1,p(x)
0 (�), (2.2)

which implies that, ‖∇j‖p(x) and ‖j‖1,p(x) are equivalent norms on W 1,p(x)
0 (�).

The Nemytskii operator will play an essential role in the subsequent discussion.

Proposition 2.9 ([19]) Let f : � × R → R be a Carathéodory function and satisfies
the growth condition

| f (x, s)| ≤ a|s|
p1(x)
p2(x) + g(x), ∀x ∈ �, s ∈ R,

where p1(.), p2(.) ∈ C+(�), g ∈ L p2(x)(�) and a ≥ 0 is a constant. Then the
Nemytskii operator N f satisfies:

(i) N f
(
L p1(x)(�)

) ⊂ L p2(x)(�),

(ii) N f is continuous from L p1(x)(�) to L p2(x)(�),

(iii) N f maps bounded set into bounded set.
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Further, it is important to review the properties of p(x)-Laplacian operator. We
consider the following functional ϕ defined by

ϕ(j) =
∫

�

1

p(x)
‖∇j‖p(x) dx, j ∈ W 1,p(x)

0 (�).

Here ϕ is continuously Fréchet differentiable and ϕ′(j) = −�p(x)j, for all j ∈
W 1,p(x)

0 (�) where

−�p(x) : W 1,p(x)
0 (�) −→ W̃ 1,p(x)

0 (�),

with

〈−�p(x)j, v〉 =
∫

�

1

p(x)
‖∇j‖p(x)−2∇j∇v dx, j, v ∈ W 1,p(x)

0 (�),

where, W̃ 1,p(x)
0 (�) is a dual space of W 1,p(x)

0 (�).

Proposition 2.10 [12] The mapping −�p(x) : W 1,p(x)
0 (�) −→ W̃ 1,p(x)

0 (�) satisfies
the following:

(i) −�p(x) is a homeomorphism from W 1,p(x)
0 (�) to W̃ 1,p(x)

0 (�);
(ii) −�p(x) is a continuous, bounded and monotone operator;
(iii) −�p(x) is a mapping of type S+;
(iv) The operator −�p(x) has a continuous inverse mapping

(−�p(x)
)−1 :

W̃ 1,p(x)
0 (�) −→ W 1,p(x)

0 (�);

(v)
(−�p(x)

)−1 is bounded and satisfies the S+ condition.

Proof The proofs of (i–iii) are given in literature. We only prove (iv) and (v).
Proof of (iv). Suppose βn, β ∈ W̃ 1,p(x)

0 (�), and βn → β. Let αn =(−�p(x)
)−1

(βn) and α = (−�p(x)
)−1

(β), then it’s obvious that −�p(x) (αn) = βn

and −�p(x) (α) = β, thus {αn} is bounded in W 1,p(x)
0 (�). If αn → α∗, then

limn→∞
〈−�p(x) (αn) − (−�p(x)

) (
α∗) , αn − α∗〉 = limn→∞

〈
βn, αn − α∗〉 = 0,

considering that −�p(x) is of type S+ and αn → α∗, we conclude that αn → α.

Therefore
(−�p(x)

)−1 is continuous.

Proof of (v). Due to the continuity of
(−�p(x)

)−1, it is clear that it is bounded. Now

we show that
(−�p(x)

)−1 is of type S+. Supposeβn ∈ W̃ 1,p(x)
0 (�) andβn⇀β, so there

exist αn, α ∈ W 1,p(x)
0 (�) such that

(−�p(x)
)−1

βn = αn and
(−�p(x)

)−1
β = α

and αn⇀α, that is,
(−�p(x)

)
αn = βn and

(−�p(x)
)
α = β. Further, assume that

limsupn→∞
〈(−�p(x)

)−1
βn, βn − β

〉
≤ 0, so we get

limsupn→∞
〈(
αn,−�p(x) (αn) − (−�p(x)β

)〉〉 ≤ 0.
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Since −�p(x) is of type S+, we conclude that αn → α. By the continuity of(−�p(x)
)−1, we get αn → α. ��

We close this section with recalling some important fixed point theorems.

Theorem 2.11 (Classical Schaefer’s fixed point theorem [37]) Let T : X → X a
continuous function which is compact on each bounded subset of X . Then, either
j = λT j has a solution for λ = 1, or the set of all such solutions j , (0 < λ < 1) are
unbounded.

Theorem 2.12 (Schauder’s fixed point theorem [2, 3]) Let D be a closed and convex
subset of a normed linear space X . Then every compact, continuous map T : D −→
D has at least one fixed point.

3 Main Results

Let I1 be the embedding of W 1,p(x)
0 (�) into Lη(x)(�) and I2 the embedding of

Lδ(x)(�) into W̃ 1,p(x)
0 (�) which is the dual space of W 1,p(x)

0 (�). We recall that δ(x)
is the conjugate of η(x). Let F : Lη(x)(�) −→ Lδ(x)(�) be the Nemytskii operator
defined by Fj (x) = f (x, j (x)) and F : W 1,p(x)

0 (�) −→ W̃ 1,p(x)
0 (�), defined by

〈Fj, v〉 =
∫

�

f (x, j)v dx, ∀j, v ∈ W 1,p(x)
0 (�),

where

F : W 1,p(x)
0 (�)

I1−→ Lη(x)(�)
F−→ Lδ(�)

I2−→ W̃ 1,p(x)
0 (�).

Let

T : W 1,p(x)
0 (�) −→ W 1,p(x)

0 (�)

be the operator given by

T j = (−�p(x))
−1Fj.

We transfer problem (1.1) into a fixed point problem of some operators. One can easily
see that u is a solution of problem (1.1) if only if

j = (−�p(x))
−1Fj.

Let ϑ0 be such that ‖j‖p(x) ≤ ϑ0‖∇j‖p(x), j ∈ W 1,p(x)
0 (�) and ϑ1 the constant of

the embedding of L p(x)(�) into Lη(x)(�).Wemake use of the following assumptions:
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A1. | f (x, s)| ≤ ζ(x) + c|s|η(x)−1 where c > 0, η(x) ∈ C+(�), η(x) <

p∗(x), ∀(x, s) ∈ � × R, with 1 < ℘− ≤ ℘(x) ≤ ℘+ < p−, 1
℘(x) + 1

δ(x) =
1, ζ(x) ∈

(
Lδ(x)(�) ∩ L p′(x)(�)

)
,

A2. 0 < c <
1

2κ p+−1 (ϑ0ϑ1)
p− , and ‖ζ‖p′(x) <

1

2ϑ0κ p+−1
−

cϑ p−−1
0 ϑ

p−
1 , for some κ in [0 1] , where p′(x) is the conjugate of p(x).

Theorem 3.1 Under the assumptions A1 and A2, problem (1.1) admits at least a
non-trivial solution in W 1,p(x)

0 (�).

Proof To complete the proof, we split the process into three parts: the operator T is

well defined, T is compact and the set B =
{
j ∈ W 1,p(x)

0 (�) : j = κT j, κ ∈ [0 1]
}

is bounded.

(i) T is well defined. It is clear that the operator T : W 1,p(x)
0 (�)

F−→
W̃ 1,p(x)

0 (�)
(−�p(x))

−1

−→ W 1,p(x)
0 (�) is well defined;

(ii) T is compact. Let (jn) be a bounded sequence in the reflexive spaceW
1,p(x)
0 (�).

Then, there exist j0 and a subsequencewhichwe also denote (jn) that jn converge
weakly to j0 in W 1,p(x)

0 (�). By the strong continuity of F (Lemma 2.7, [28]),

we have F(jn) −→ F(j0) in W̃ 1,p(x)
0 (�). By the continuity of the operator

(−�p(x))
−1 (according to the fourth assertion in Proposition 2.10), we have

(−�p(x))
−1F(jn) −→ (−�p(x))

−1F(j0), that is, T (jn) −→ T (j0);
(iii) The set B is bounded. In fact, we prove that for j ∈ B, there exists R >

0 with ‖∇j‖p(x) ≤ R. Considering j ∈ B, we have two cases.

• If ‖∇j‖ ≤ 1, then B is bounded.
• If ‖∇j‖ > 1, then by using modular’s properties, we proceed as follows:

for j = κT j , and assuming κ �= 0, we have
j

κ
= T j = (−�p(x))

−1Fj.

Therefore,

−�p(x)

( j

κ

)
= Fj,

and consequently,

∫
�

|∇
( j

κ

)
|p(x)−2∇

( j

κ

)
∇v dx =

∫
�

f (x, j)v dx, ∀v ∈ W 1,p(x)
0 (�).

Using Hölder–type inequality, propositions 2.3–2.8 and the embedding of
L p(x)(�) into Lη(x)(�), we have

1

κ p+ σp(x)(∇j) ≤ σp(x)∇
( j

κ

)
≤ 1

κ

∫
�

f (x, j (x))j (x) dx .
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Furthermore, we get

σp(x)(∇j) ≤ κ p+−1
∫

�

f (x, j (x))j (x) dx

≤ κ p+−1
[∫

�

|ζ(x)j (x)| + c
∫

�

|j (x)|η(x) dx
]
,

≤ κ p+−1
[
2|ζ |p′(x)‖j‖p(x) + cση(x)(j)

≤ κ p+−1
[
2|ζ |p′(x)ϑ0‖∇j‖p(x) + cση(x)(j)

≤ κ p+−1
[
2|ζ |p′(x)ϑ0

(
σp(x)(∇j) + 1

) + cση(x)(j).

Therefore, we obtain

(
1 − 2κ p+−1ϑ0|ζ |p′(x)

)
σp(x)(∇j) ≤ 2κ p+−1ϑ0|ζ |p′(x) + κ p+−1cση(x)(j),

(
1 − 2κ p+−1ϑ0|ζ |p′(x)

)
σp(x)(∇j) ≤ 2κ p+−1ϑ0|ζ |p′(x) + κ p+−1c

(
‖j‖η+

η(x) + ‖j‖η−
η(x)

)
,(

1 − 2κ p+−1ϑ0|ζ |p′(x)
)
σp(x)(∇j) ≤ 2κ p+−1ϑ0|ζ |p′(x) + 2κ p+−1c(ϑ0ϑ1)

p−‖∇j‖p−
p(x),(

1 − 2κ p+−1ϑ0|ζ |p′(x)
)
‖∇j‖p−

p(x)

≤ 2κ p+−1ϑ0|ζ |p′(x) + 2κ p+−1c(ϑ0ϑ1)
p−‖∇j‖p−

p(x),(
1 − 2κ p+−1ϑ0|ζ |p′(x) − 2κ p+−1c(ϑ0ϑ1)

p−)
‖∇j‖p−

p(x) ≤ 2κ p+−1ϑ0|ζ |p′(x).

Fromassumption A2; ‖ζ‖p′(x) < 1
2v0κ p+−1

−cv0 p
−−1v1

p−
, hence bymultiplying

the both sides of this inequality in 2v0κ p+−1 we get

2v0κ
p+−1‖ζ‖p′(x) < 1 − 2v0κ

p+−1cv0
p−−1v1

p−
,

Thus

1 − 2κ p+−1ϑ0|ζ |p′(x) − 2κ p+−1c(ϑ0ϑ1)
p−

> 0,

and

‖∇j‖p−
p(x) ≤ 2κ p+−1ϑ0|ζ |p′(x)

1 − 2κ p+−1ϑ0|ζ |p′(x) − 2κ p+−1c(ϑ0ϑ1)p
− .

That is, B is bounded.

By Schaefer’s fixed point theorem, the operator T has a fixed point j which is the
solution of (1.1). ��
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For our purpose, we consider the following associated problem to (1.1)

⎧⎨
⎩

∫
�

‖∇j‖p(x)−2∇j∇v dx =
∫

�

f (x, j)v dx, ∀v ∈ W 1,p(x)
0 (�),

j ∈ W 1,p(x)
0 (�).

(3.1)

Our approach is based on the principle of the sub-super-solution for which the reader
can consult [10, 24]. By the sub-solution and the super-solution of (3.1), where, ϑ, ν ∈
W 1,p(x)

0 (�) satisfying

∫
�

|∇ϑ |p(x)−2∇ϑ∇v dx ≤
∫

�

f (x, ϑ)v dx,

and ∫
�

|∇j |p(x)−2∇ν∇v dx ≥
∫

�

f (x, ν)v dx, ∀v ∈ W 1,p(x)
0 (�), v ≥ 0.

We assume the following conditions:

A3. There exist a subsolution ϑ ∈ W 1,p(x)
0 (�) and a supersolution ν ∈ W 1,p(x)

0 (�)

of (3.1) with ϑ ≤ ν.

A4. For fixed x ∈ �, f (x, s) is a nondecreasing function of s for ϑ(x) ≤ s ≤ ν(x).

Theorem 3.2 Under the assumptions A1, A3 and A4, (1.1) has at least one solution.

Proof Consider the subset D ⊂ W 1,p(x)
0 (�) defined as follow

D =
{
j ∈ W 1,p(x)

0 (�) : ϑ(x) ≤ j (x) ≤ ν(x), ∀x ∈ �
}

,

and

T : D −→ W 1,p(x)
0 (�), T j = (−�p(x))

−1Fj.

The proof will be completed in several steps.

Step 1: D is convex. For j,w ∈ D and t ∈ [0, 1], it is clear to see that tj+(1−t)w ∈
D.

Step 2: D is closed. If (jn) be a sequence in D which converge to j0 inW
1,p(x)
0 (�).

Then, jn −→ j0 in L p(x)(�). Therefore, there exists a subsequence also
denoted (jn) ∈ L p(x)(�) and ψ ∈ L p(x)(�) with jn(x) −→ j0(x) and
|jn(x)| ≤ ψ(x), a.e., x ∈ �. Since ϑ(x) ≤ jn(x) ≤ ν(x), passing to the
limit when n → ∞, we get ϑ(x) ≤ j (x) ≤ ν(x), and hence j ∈ D.

Step 3: T : D
F−→ W̃ 1,p(x)

0 (�)
(−�p(x))

−1

−→ W 1,p(x)
0 (�) is strongly continuous. Let

(jn) ⊂ D be a sequence such that converges weakly to j0 in D.By the strong
continuity of F, it follows that F(jn) −→ F(j0) and the strong convergence
of T (jn) −→ T (j0) is ensured by the continuity of (−�p(x))

−1.
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Step 4: T is compact.
Step 5: D is bounded. For j ∈ D, we have ‖j‖ ≤ ‖ϑ‖ + ‖ν‖.
Step 6: T (D) ⊂ D. Because, if j ∈ D, then ϑ(x) ≤ j (x) ≤ ν(x), x ∈ �. Using

assumptions A3 and A4 we have f (x, ϑ(x)) ≤ f (x, j (x)) ≤ f (x, ν(x)).
Therefore, for any v ∈ W 1,p(x)

0 (�), v ≥ 0 we have

∫
�

f (x, ϑ(x))v(x) dx ≤
∫

�

f (x, j (x))v(x) dx ≤
∫

�

f (x, ν(x))v(x) dx .

By the definition of ϑ and ν we can write

∫
�

|∇ϑ |p(x)−2∇ϑ∇v dx ≤
∫

�

f (x, ϑ(x))v(x) dx

≤
∫

�

f (x, ν(x))v(x) dx

≤
∫

�

|∇ν|p(x)−2∇ν∇v dx,

that is,

〈−�p(x)ϑ, v〉 ≤ 〈Fj, v〉 ≤ 〈−�p(x)ν, v〉.

According to the maximum principle and the monotonicity of (−�p(x))
−1,

we have

ϑ ≤ T j ≤ ν,

which implies

ϑ(x) ≤ T j (x) ≤ ν(x), ∀x ∈ �.

By the Schauder’s fixed point Theorem 2.12, T has a fixed point which is a solution
for (1.1). ��
Remark 3.3 If in Theorems 3.1 and 3.2, we assume that there exists x0 ∈ � with
f (x0, 0) �= 0, then the solution of problem (1.1) is non trivial.

For the purpose of support, we provide an example that is completely consistent
with the theoretical findings.

Example 3.4 Let X = R
2, � = {(x1, x2) : 1

9 < x12 + x22 < 1
4 }. Define p : � → R,

by

p(x = (x1, x2)) := 1 + x22

x12
.



195 Page 12 of 15 S. Ayadi et al.

Therefore, we have

p′(x = (x1, x2)) :=

⎧⎪⎨
⎪⎩

∞, x ∈ �
p
1 ,

1, x ∈ �
p∞,

p(x)
p(x)−1 , x ∈ �,

(3.2)

where �
p
1 = {x ∈ � : p(x) = 1} and �

p∞ = {x ∈ � : p(x) = ∞}, we can obtain;

p′(x := (x1, x2)) = 1 + x12

x22
.

Consider the following p(x)–Laplacian Dirichlet problem:

⎧⎪⎨
⎪⎩

−�p(x)j = f (x, j) = f (x1, x2, j ((x1, x2)) = j (x1, x2) + 2x1x2,

x = (x1, x2) ∈ �,

j = 0 x ∈ ∂�.

(3.3)

Setting ϑ1 = 1, κ = 1 and ϑ0 ≥ ‖j‖p(x)
‖∇j‖p(x)

, we obtain

0 < c <
1

2ϑ0
p− .

Therefore, condition A2 of Theorem 3.1 is satisfied. Moreover, A1 of Theorem 3.1
holds. Hence, it is easy to see that f is a Carathéodory function and the conditions of
Theorem 3.1 are satisfied. Therefore, we conclude that problem (3.3) admits at least
a non–trivial solution in W 1,p(x)

0 (�).

4 Conclusion

Despite its significance, the investigation of the existence of solutions for elliptic
BVPs with the p(x)-Laplacian equation has received limited attention from interested
scholars who have elaborated on this topic using various methodologies.

In this paper,wepresent somedifferent conditions that allowusingof variational and
topological methods in the case of p(x)-Laplacian to prove the existence of solutions
for elliptic BVPs with the p(x)-Laplacian equation. Main theorems are proven using
fixed point theorems and the sub-supersolution approach. The paper presents key
discoveries on the variable exponent Sobolev space, as well as basic features of the
p(x)-Laplacian and Nemytskii operators. When compared to earlier findings, the
assumptions made concerning the nonlinearity f in (1.1) appear to be less restrictive
given its structure.

It should be emphasised that the findings of this study are significant since they
provide a novel approach for establishing the primary results, which can be used to
examine solutions for Kirchhoff’s non-local version of the p-Laplace equations in the
future.
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