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Abstract
In this paper we prove that Picard iterations of BSDEs with globally Lipschitz contin-
uous nonlinearities converge exponentially fast to the solution. Our main result in this
paper is to establish a fundamental lemma to prove the global existence and uniqueness
of an adapted solution to a singular backward stochastic nonlinear Volterra integral
equation (for short, singular BSVIE) of order α ∈ ( 12 , 1) under a weaker condition
than Lipschitz one in Hilbert space.

Keywords Singular backward stochastic equations · Backward stochastic nonlinear
Volterra integral equation · Existence and uniqueness · Picard iteration · Adapted
process · Carathéodory conditions

1 Introduction

The study of backward stochastic differential equations (BSDEs) has necessary appli-
cations in stochastic optimal control, stochastic differential games, the probabilistic
formula for the solutions of quasilinear partial differential equations, and financial
markets. The adapted solution for a linear BSDE arising as an adjoint process for a
stochastic control problem was first studied by Bismut [1] in 1973, then by Bensouss-
san [2], and while Pardoux and Peng [3] first studied the result for the existence and
uniqueness of an adapted solution for a continuous general nonlinear BSDE, which
is a final value problem for a stochastic differential equation of Itô type under the

B Arzu Ahmadova
arzu.ahmadova@uni-due.de

Nazim I. Mahmudov
nazim.mahmudov@emu.edu.tr

1 Faculty of Mathematics, University of Duisburg-Essen, 45127 Essen, Germany

2 Department of Mathematics, Eastern Mediterranean University, 99628 Mersin 10, Turkish Republic
of Northern Cyprus

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s12346-024-01043-7&domain=pdf


  192 Page 2 of 20 A. Ahmadova, N. I. Mahmudov

uniform Lipschitz conditions of the following form:

{
dY (t) = h(t,Y (t), Z(t))dt + Z(t)dW (t), t ∈ [0, T ],
Y (T ) = ξ.

They proved the existence and uniqueness of an adapted solution by means of the
Bihari’s inequality, which is the most important generalization of the Gronwall-
Bellman inequality. Since then, the theory of BSDE became a powerful tool in many
fields, such as financial mathematics, optimal control, semi-linear and quasi-linear
partial differential equations. Later, there have been many works devoted to the study
of BSDEs and their applications in a series of papers [3–14] under the assumptions
that the coefficients satisfy Lipschitz conditions. Moreover, Mao [15] obtained a more
general result than that of Pardoux and Peng [3] in which he proved existence and
uniqueness under mild assumptions by applying Bihari’s inequality, which was the
key tool in the proof.

A few years later, Lin [16] considered the following backward stochastic nonlinear
Volterra integral equation.

X(t) +
∫ T

t
f (t, s, X(s), Z(t, s))ds +

∫ T

t
[g(t, s, X(s)) + Z(t, s)] dW (s) = X .

His goal in [16] is to find a pair {X(s), Z(t, s)} that requires that this pair {Ft∨s}-
adapted and Z(t, s) is related to t . This is the intersection point of our result on
linear singular BSVIE with [16]. The author also defines Z(t, s) = Z̃(t, s) − g(t, s),
(t, s) ∈ D = {

(t, s) ∈ R
2+; 0 ≤ t ≤ s ≤ T

}
as we defined for linear singular BSVIEs,

see Sect. 3. Another important point in this paper is the use of the well-known extended
martingale representation theorem to an adapted solution {x(t), y(t, s)}, (t, s) ∈ D
also for linear singular BSVIEs, as we extend the martingale representation to an
adapted solution {x(t), y(t, s)}, where (t, s) ∈ D, also applicable to linear singular
BSVIEs.

BSVIEs find their origin in the realm of optimal control problems linked with
forward SVIEs. The initial examination of these equations was undertaken by Yong
[17]. Building upon Yong’s pioneering work, subsequent advancements were made;
Yong [18] introduced singular Lipschitz functions and proposed an innovative solution
concept termed adapted M-solution. Yong’s contributions sparked heightened interest
in BSVIEs, prompting diverse extensions and variations by numerous researchers.
These expansions encompass a broad spectrum of BSVIE forms, including backward
doubly SVIEs (Shi et al. [19]), reflected BSVIEs (Agram-Djehiche [20]), BSVIEs
featuring diagonal-solution generators (Hernandez-Possamai [21], Hernandez [22],
Wang-Yong [23]), backward stochastic Volterra integro-differential equations (Wang
[24]), mean-field BSVIEs (Shi et al. [25] ), path-dependent BSVIEs (Overbeck and
Röder [26]), infinite horizon BSVIEs (Hamaguchi [27]), BSVIEs within general fil-
tration frameworks accommodating jumps (Popier [28]), and fractional order BSDE
[29].



Picard Approximation of a Singular Backward... Page 3 of 20   192 

Now let us briefly introduce some notations used throughout the article. First,
let us recall some spaces. Let (H, ‖ · ‖) and (U , ‖ · ‖) be real separable Hilbert
spaces with inner product 〈·, ·〉. Let L(U ,H) be the space of bounded linear operators
mapping fromU toH and (�,F ,F,P)with natural filtrationF := {Ft }t≥0 satisfying
usual conditions is a complete probability space. (w(t))t≥0 is aQ-Wiener process on
(�,F ,F,P) with a linear covariance bounded operator Q ∈ L(U ) such that trQ <

∞. Furthermore, suppose that there exists a complete orthonormal system {ek}k≥1
in U , a bounded sequence of nonnegative real numbers λk , such that Qek = λkek ,
k = 1, 2, . . . and a sequence {βk}k≥1of independent Brownian motions such that

〈w(t), e〉U =
∞∑
k=1

√
λk〈ek, e〉Uβk(t), e ∈ U , t ≥ 0.

In addition, let L0
2 = L2(Q1/2U ,H) be the space of Hilbert-Schmidt operators from

Q1/2U toH with the inner product ‖ϕ‖2L0
2

= tr[ϕQϕ∗] < ∞, ϕ ∈ L(U ,H). We also

consider that LFt
2 (�,H) is the Hilbert space H-valued, Ft -measurable and square-

integrable random variables ξ , i.e. E‖ξ‖2H < ∞.
We study singular backward stochastic nonlinear Volterra integral equation which

is an unaddressed topic in the previous literature (singular BSVIE, for short) of order
α ∈ ( 12 , 1) on [0, T ] as follows:

x(t) =ξ +
∫ T

t
(s − t)α−1 f (t, s, x(s), y(t, s))ds

+
∫ T

t
(s − t)α−1 [g(t, s, x(s)) + y(t, s)] dw(s), P-a.s. (1.1)

where f : D × H × L0
2 → H and g : D × H → L0

2 are assumed to be measurable

mappings and terminal value ξ ∈ LFT
2 (�,H) is anFT -measurable square integrable

variables with values in H such that E‖ξ‖2 < ∞. Let x(t, ω) = x(t) be a stochastic
process on [0, T ] and ω ∈ �.

The aim of the current paper is to introduce and establish the singular backward
stochastic nonlinear Volterra integral equations theory in the infinite dimensional
framework. This concept appears to introduce a fresh perspective within the lit-
erature. Our goal in this paper is to search for a pair of stochastic processes
{x(t), y(t, s); (t, s) ∈ D}, which we require to be Ft∨s -adapted and satisfy (1.1)
in the usual sense of Itô. Such a pair is called an adapted solution of the equation
(1.1). In contrast to the prevailing discourse on BSVIEs, our current study emphasizes
two fundamental elements: singularity and the infinite-dimensional setting. We first
derive representations of the adapted solution and then study existence and uniqueness
results under a weaker condition than the Lipschitz condition. This can be constructed
by an approximate sequence using the Picard type iteration. Unlike other research
discussed above, we apply the Carathéodory- type condition to prove the existence
and uniqueness of the adapted solution of Eq. (1.1).
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The motivation behind investigating singular BSVIEs stems from two primary rea-
sons. Firstly, Volterra integral equations have a historical associationwith singularities.
Our study represents a continuation of the research strand, delving into the backward
stochastic setting. Secondly, investigations have revealed a close relationship between
(time) fractional differential equations and singular Volterra integral equations (e.g.,
[29]).

Hence the plan of this work is as follows. Section2 is devoted to introducing some
important inequalities. In Sect. 3, we establish a fundamental lemma that will play a
key role in this paper. Section4 is devoted to the construction of a Picard-type approx-
imation of the adapted solution to show existence and uniqueness under non-Lipschitz
conditions using the Bihari inequality, and Sect. 5 is devoted to the conclusion.

2 Preliminaries

We begin this section with some important inequalities of stochastic calculus. The
following inequalities are fundamental inequalities of stochastic calculus. First, we
introduce Doobâe™s maximum inequality for the sub-martingale process which has
played an important role in the stochastic process theory. It has become a standard
result which appears in almost every introductory text in this field. We then state a
theorem about Jensen’s inequality which is often used in probabilistic setting.

Theorem 2.1 (Doob’s martingale maximal inequality, [30]) Let {Ft }t≥0 be a filtration
on probability space (�,F ,P) and let (Mt )t≥0 be a continuous martingale with
respect to the filtration {Ft }t≥0. Let p > 1 and T > 0. If E(‖MT ‖p) < +∞, then we
have

E

((
sup

0≤t≤T
‖Mt‖

)p)
≤

(
p

p − 1

)p

E(‖MT ‖p). (2.1)

Within the manuscript we use the extended martingale representation. The extended
martingale representation, as described by Jacod and Shiryaev [31], concerns the rep-
resentation of an arbitrary semimartingale on an abstract filtered probability space. In
the context of stochastic calculus and probability theory, a semimartingale is a class of
stochastic processes that generalize both martingales and processes with independent
increments. The extended martingale representation theorem deals with expressing
such semimartingales in terms of a martingale and a predictable process.

The representation states that any semimartingale X on a filtered probability space
can be decomposed into the sum of two components:

1. A local martingale M - a special type of martingale that is a stochastic process
adapted to a filtration and, at every stopping time, is a martingale when restricted
to the interval up to that stopping time.

2. A predictable process A - a process that can be predicted using information avail-
able at earlier times.
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The representation typically takes the form:

Xt = X0 + Mt + At ,

where

• Xt represents the value of the semimartingale at time t
• X0 is the initial value of the semimartingale.
• Mt is a local martingale.
• At is a predictable process.

This representation is a fundamental result in stochastic calculus as it allows decom-
posing a wide class of stochastic processes into two components, facilitating analysis
and providing insights into the underlying structure of these processes. Jacod and
Shiryaev’s work [31] delves into the theory of stochastic processes, including martin-
gale theory and semimartingales, providing rigorous proofs and foundational results,
including the extended martingale representation theorem for semimartingales. Their
book is considered a standard reference in the field of stochastic analysis and proba-
bility theory.

The following Theorem 2.2 states the Bihari type inequality which will be a key
tool in the proof of Theorem 3.3.1.

Theorem 2.2 (Bihari type inequality, [15]) Let T > 0 and u0 ≥ 0. Let u(t) and h(t) be
a nonnegative, continuous functions on [0, T ]. Let ω be a continuous, nondecreasing
function ω(0) = 0, ω(r) > 0 r ≥ 0 if

u(t) ≤ u0 +
∫ t

0
h(s)ω(u(s))ds, for all t ∈ [0, T ],

then

u(t) ≤ B−1
(
B(u0) +

∫ t

0
h(s)ds

)
, t ∈ [0, T ],

that

B(u0) +
∫ t

0
h(s)ds ∈ Dom(B−1),

where

B(u) =
∫ t

T

ds

ω(s)
, r ≥ 0

and B−1 is the inverse of B. In particular, if, moreover u0 = 0 and∫
0+

ds

ω(s)
= ∞,

then u(t) = 0 for all t ∈ [0, T ].
To conclude the preliminary section, we introduce the following definition, which

will be used throughout the paper.
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Definition 2.1 For any t ∈ [0, T ], we define M[t, T ] to be a Banach space

M[t, T ] := LF
2 (�,C([t, T ],H)) × LF

2 (D,L0
2)

endowed with the norm

‖(x, y)‖2t = E sup
t≤s≤T

‖x(s)‖2 + E
∫ T

t

∫ T

s
‖y(s, u)‖2duds < ∞.

3 Fundamental lemma

In this section, we establish a fundamental lemma to prove existence and uniqueness
result using Picard type iteration in Sect. 4.

Definition 3.1 Apair of adapted process (x, y) ∈ M[t, T ] is amild solution of (1.1) for
all t ∈ [0, T ] if satisfies the backward stochastic nonlinear Volterra integral equation
(1.1).

We now introduce a fundamental lemma which plays an efficient role throughout
this paper. To do so, we consider backward linear stochastic Volterra integral equation.

Lemma 3.1 For any (x, y) ∈ M[t, T ], the linear singular BSVIE

x(t) = ξ +
∫ T

t
(s − t)α−1 f (t, s)ds

+
∫ T

t
(s − t)α−1 [g(t, s) + y(t, s)] dw(s), P-a.s. (3.1)

has a unique solution in M[0, T ] and moreover we have

E sup
t≤s≤T

‖x(s)‖2 + E
∫ T

t

∫ T

s
‖y(s, u)‖2duds

≤ 8E‖ξ‖2 + 16TE‖ξ‖2 + 16(2T )2α

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr

+ 2E
∫ T

t

∫ T

s
‖g(s, u)‖2duds. (3.2)

Proof Uniqueness: Let (x1, y1) and (x2, y2) be two solutions of (3.1).

x1(t) − x2(t) =
∫ T

t
(s − t)α−1 [y1(t, s) − y2(t, s)] dw(s),

Taking E {· | Ft } from above, we can deduce that

E {x1(t) − x2(t) | Ft } = 0, ∀t ∈ [0, T ],
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It is obvious that x1(t) = x2(t) and this follows that y1(t, s) = y2(t, s).
Existence: Taking a conditional expectation from (3.1), we have

x(t) = E {ξ | Ft } +
∫ T

t
(s − t)α−1E { f (t, s) | Ft } ds. (3.3)

From extended martingale representation theorem ([31]), there exists L(·) ∈
LF
2 ([0, T ],L0

2) and uniquely K (t, ·) ∈ LF
2 (D;L0

2) which satisfy the following rela-
tions:

E {ξ | Ft } = Eξ +
∫ t

0
L(u)dw(u), (3.4)

E { f (t, s) | Ft } = E f (t, s) +
∫ t

0
K (s, u)dw(u). (3.5)

Note also from (3.5), we can easily deduce that ∀s ∈ [0, T ]

K (s, u) = 0, a.e., u ∈ [s, T ], a.s.

and that

E
∫ T

0

∫ s

0
|K (s, u)|2duds ≤ 4E

∫ T

0
| f (t, s)|2ds. (3.6)

Since t ∈ [0.T ], it is obvious that

ξ = Eξ +
∫ T

0
L(u)dw(u)

= Eξ +
∫ t

0
L(u)dw(u) +

∫ T

t
L(u)dw(u)

= E {ξ | Ft } +
∫ T

t
L(u)dw(u),

and since s ≥ t , we have

f (t, s) = E f (t, s) +
∫ s

0
K (s, u)dw(u)

= E f (t, s) +
∫ t

0
K (s, u)dw(u) +

∫ s

t
K (s, u)dw(u)

= E { f (t, s) | Ft } +
∫ s

t
K (s, u)dw(u).
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Therefore, we obtain

E {ξ | Ft } = ξ −
∫ T

t
L(u)dw(u), (3.7)

and

E { f (t, s) | Ft } = f (t, s) −
∫ s

t
K (s, u)dw(u). (3.8)

Substituting (3.7) and (3.8) into (3.3) and using stochastic Fubini’s theorem, we have

x(t) =
(

ξ −
∫ T

t
L(u)dw(u)

)
+

∫ T

t
(s − t)α−1

(
f (t, s) −

∫ s

t
K (s, u)dw(u)

)
ds

= ξ +
∫ T

t
(s − t)α−1 f (t, s)ds −

∫ T

t
L(u)dw(u)

−
∫ T

t
(s − t)α−1

∫ s

t
K (s, u)dw(u)ds

= ξ +
∫ T

t
(s − t)α−1 f (t, s)ds −

∫ T

t
L(u)dw(u)

−
∫ T

t

∫ T

u
(s − t)α−1K (s, u)dsdw(u).

Thus, we get

x(t) = ξ +
∫ T

t
(s − t)α−1 f (t, s)ds +

∫ T

t
ỹ(t, u)dw(u).

Then there exists a mild solution (x, y) ∈ M[0, T ] of (3.1) given by

x(t) = E {ξ | Ft } +
∫ T

t
(s − t)α−1E { f (t, s) | Ft } ds, (3.9)

and

ỹ(t, u) = −L(u) −
∫ T

u
(s − t)α−1K (s, u)ds. (3.10)

We finally define y(t, u) = ỹ(t, u) − g(t, u), (t, u) ∈ D = {
(t, u) ∈ R

2+; 0 ≤ t ≤
u ≤ T }. It is easily seen that the pair (x, y) solves (3.1). Therefore, the existence is
proved.

From (3.7) and (3.8), we invoke the following inequalities for 0 ≤ t ≤ s ≤ T :

E
∫ T

t
‖L(u)‖2du ≤ 4E‖ξ‖2,
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and

E
∫ s

t
‖K (s, u)‖2du ≤ 4E‖ f (t, s)‖2.

Now we estimate the solution (x, y) given by (3.9) and (3.10) in [0, T ]. From (3.9) it
follows that

E sup
t≤s≤T

‖x(s)‖2 ≤ 2E sup
t≤s≤T

‖E {ξ |Fs} ‖2

+ 2E sup
t≤s≤T

( ∫ T

s
(r − s)α−1E {‖ f (t, r)‖ |Fs} dr

)2 := I1 + I2.

From Doob’s inequality and the law of total expectation it follows that

I1 ≤ 2E sup
t≤s≤T

E‖ {ξ |Fs} ‖2 ≤ 8E
(
E‖ {ξ |Ft } ‖2

)
≤ 8E‖ξ‖2.

Doob’s inequality and Jensen’s inequality in probabilistic setting imply that

I2 ≤ 2E sup
t≤s≤T

(
E

{∫ T

s
(r − s)α−1‖ f (t, r)‖dr |Fs

})2

≤ 2E sup
t≤s≤T

(
E

{
sup

t≤τ≤T

∫ T

τ

(r − τ)α−1‖ f (t, r)‖dr |Fs

})2

≤ 8E

(
sup

t≤τ≤T

∫ T

τ

(r − τ)α−1‖ f (t, r)‖dr
)2

≤ 8E sup
t≤τ≤T

∫ T

τ

(r − τ)2α−2dr
∫ T

τ

‖ f (t, r)‖2dr

≤ 8
(T − t)2α−1

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr

≤ 8
(2T )2α

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr .

Eventually, we have

E sup
t≤s≤T

‖x(s)‖2 ≤ 8E‖ξ‖2 + 8(2T )2α

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr . (3.11)

Next we estimate ỹ using Hölder’s inequality. We attain,

‖ỹ(s, u)‖2 ≤ 2‖L(u))‖2 + 2

∥∥∥∥
∫ T

u
(r − s)α−1K (r , u)dr

∥∥∥∥
2

≤ 2‖L(u)‖2 + 2

(
(T − s)2α−1

2α − 1
− (u − s)2α−1

2α − 1

) ∫ T

u
‖K (r , u)‖2dr
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≤ 2‖L(u)‖2 + 2
(T + u)2α−1

2α − 1

∫ T

u
‖K (r , u)‖2dr

≤ 2‖L(u)‖2 + 2
(2T )2α−1

2α − 1

∫ T

u
‖K (r , u)‖2dr .

Taking double integral of above inequality and applying Fubini’s theorem twice
yield that

E sup
t≤τ≤T

∫ T

τ

∫ T

s
‖ỹ(s, u)‖2duds ≤ 2E sup

t≤τ≤T

∫ T

τ

∫ T

s
‖L(u)‖2duds

+ 2
(2T )2α−1

2α − 1
E sup

t≤τ≤T

∫ T

τ

∫ T

s

∫ T

u
‖K (r , u)‖2drduds

≤ 8(T − t)E‖ξ‖2 + 2
(2T )2α−1

2α − 1
E sup

t≤τ≤T

∫ T

τ

∫ T

s

∫ r

s
‖K (r , u)‖2dudrds

≤ 8TE‖ξ‖2 + 8
(2T )2α−1

2α − 1
E sup

t≤τ≤T

∫ T

τ

∫ T

s
‖ f (t, r)‖2drds

≤ 8TE‖ξ‖2 + 8
(2T )2α−1

2α − 1
E sup

t≤τ≤T

∫ T

τ

∫ r

τ

‖ f (t, r)‖2dsdr

≤ 8TE‖ξ‖2 + 8
(2T )2α−1

2α − 1
E sup

t≤τ≤T

∫ T

τ

∫ r

τ

‖ f (t, r)‖2dr

≤ 8TE‖ξ‖2 + 8
(2T )2α−1(T − t)

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr

≤ 8TE‖ξ‖2 + 8
(2T )2α−1T

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr

≤ 8TE‖ξ‖2 + 4(2T )2α

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr .

Thus, we get

E
∫ T

t

∫ T

s
‖ỹ(s, u)‖2duds ≤ 8TE‖ξ‖2 + 4(2T )2α

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr . (3.12)

Since we know y(t, u) = ỹ(t, u) − g(t, u), we also have

∫ T

t

∫ T

s
‖y(s, u)‖2duds ≤ 2

∫ T

t

∫ T

s
‖ỹ(s, u)‖2duds + 2

∫ T

t

∫ T

s
‖g(s, u)‖2duds.

(3.13)
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Taking into account (3.13) and summing over (3.11) and (3.12) yield that

E sup
t≤s≤T

‖x(s)‖2 + E
∫ T

t

∫ T

s
‖y(s, u)‖2duds

≤ 8E‖ξ‖2 + 16TE‖ξ‖2 + 16(2T )2α

2α − 1
E

∫ T

t
‖ f (t, r)‖2dr

+ 2E
∫ T

t

∫ T

s
‖g(s, u)‖2duds.

Therefore, the proof is complete. �

4 Picard approximation

In this section, we introduce the existence and uniqueness problem of the solution
to fractional backward stochastic evolution equation in more general form, that is, if
the function f (t, x, y) is a non-Lipschitzian function. This can be constructed by an
approximate sequence using the Picard type iteration. Let

{
x j , y j

}
be a sequence in

M[0, T ] defined recursively by

⎧⎪⎨
⎪⎩

(x0(t), y0(t, s)) = (x(T ), 0) = (ξ, 0)

x j (t) = ξ + ∫ T
t (s − t)α−1 f (s, x j−1(s), y j (t, s))ds

+ ∫ T
t (s − t)α−1

[
g(t, s, x j−1(s)) + y j (t, s)

]
dw(s), j ≥ 1.

(4.1)

To state our main results, we impose the following assumptions on the functions f
and g.

Assumption 4.1 f (·, ·, 0, 0) ∈ L2(0, T ,H;L0
2) and g(·, ·, 0) ∈ L2(0, T ;L0

2).

Assumption 4.2 Let c be a positive constant and let 
 := 1 − 8 (2T )2α

2α−1 c > 0.

Assumption 4.3 For all x, x̄ ∈ H, y, ȳ ∈ L0
2 and 0 ≤ t ≤ T ,

‖ f (t, s, x, y) − f (t, s, x̄, ȳ)‖2 ≤ ρ(‖x − x̄‖2) + c‖y − ȳ‖2, a.s.,

‖g(t, s, x) − g(t, s, x̄)‖2 ≤ ρ(‖x − x̄‖2),

where ρ(u) satisfies:

• ρ(·) is a concave nondecreasing function from R+ to R+ such that ρ(0) = 0,
ρ(u) > 0 for u > 0 and ∫

0+
du

ρ(u)
= ∞.

• there exists a ≥ 0, b ≥ 0 such that

ρ(u) ≤ a + bu,
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for all u ≥ 0;

Now we introduce some important constants which are used throughout this work.

C1 =16
(2T )2α

2α − 1
E

∫ T

t

∫ T

s

(
2‖ f (s, u, 0, 0)‖2 + 2a

)
duds

+ 2E
∫ T

t

∫ T

s

(
2a + 2‖g(s, u, 0)‖2

)
duds,

C2 = 4bT

(
1 + 36

T 2α

2α − 1

)
,

C3 =
(
16

(2T )2α

2α − 1
+ 2(T − t)

)
,

C4 = C3ρ (4C1 exp(C2T )) . (4.2)

Lemma 4.1 Under Assumptions 4.1 and 4.3, for all t ∈ [0, T ] and j ≥ 1.

E

(
sup

t≤s≤T
‖x j (s)‖2

)
≤ C1 exp(C2(T − t)), (4.3)

E
∫ T

t

∫ T

s
‖y j (s, u)‖2duds ≤ 
−1C1 (1 + C2(T − t) exp(C2(T − t))) .(4.4)

Proof It follows from Lemma 3.1 that

E sup
t≤s≤T

‖x(s)‖2 + E
∫ T

t

∫ T

s
‖y j (s, u)‖2duds

≤ 8E‖ξ‖2 + 16TE‖ξ‖2 + 16
(2T )2α

2α − 1
E

∫ T

t

∫ T

r
‖ f (r , u, x j−1(u), y j (r , u))‖2dudr

+ 2E
∫ T

t

∫ T

r
‖g(r , u, x j−1(u))‖2dudr . (4.5)

Using Assumptions 4.1 and 4.3, we have

‖ f (t, s, x j−1(s), y j (s, u))‖2
= ‖ f (t, s, x j−1(s), y j (s, u)) − f (t, s, 0, 0) + f (t, s, 0, 0)‖2
≤ 2‖ f (t, s, 0, 0)‖2 + 2a + 2b‖x j−1(s)‖2 + 2c‖y j (s, u)‖2

‖g(t, s, x j−1(s))‖2 = ‖g(t, s, x j−1(s)) − g(t, s, 0) + g(t, s, 0)‖2
≤ 2a + 2‖g(t, s, 0)‖2 + 2b‖x j−1(s)‖2
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Substituting these into (4.5) yields that

E sup
t≤s≤T

‖x j (s)‖2 + E
∫ T

t

∫ T

s
‖y j (s, u)‖2duds

≤ 8E‖ξ‖2 + 16TE‖ξ‖2 + 16
(2T )2α

2α − 1
E

×
∫ T

t

∫ T

s

(
2‖ f (s, u, 0, 0)‖2 + 2a + 2b‖x j−1(u)‖2 + 2c‖y j (s, u)‖2

)
duds

+ 2E
∫ T

t

∫ T

s

(
2a + 2‖g(s, u, 0)‖2 + 2b‖x j−1(u)‖2

)
duds.

Thus, we get

E sup
t≤s≤T

‖x j (s)‖2 +
(
1 − 32

(2T )2α

2α − 1
c

)
E

∫ T

t

∫ T

s
‖y j (s, u)‖2duds

≤ C1 + C2E
∫ T

t
sup

s≤r≤T

(
‖x j−1(r)‖2

)
ds, (4.6)

where C1 and C2 are defined in (4.2).
Then, we have

sup
1≤ j≤k

E

(
sup

t≤s≤T
‖x j (s)‖2

)
≤ C1 + C2

∫ T

t
sup

1≤ j≤k
E sup

t≤r≤T

(
‖x j−1(r)‖2

)
dr .

Applying Gronwall’s inequality invokes that

sup
1≤ j≤k

E

(
sup

t≤s≤T
‖x j (s)‖2

)
≤ C1 exp(C2(T − t)).

Since k was arbitrary, the inequality (4.3) follows. Finally it follows from (4.6), we
have

E
∫ T

t

∫ T

s
‖y j (s, u)‖2duds ≤ 
−1

(
C1 + C2

∫ T

s
C1 exp(C2(T − s))ds

)
≤ 
−1C1 (1 + C2(T − t) exp(C2(T − t))) .

�
Lemma 4.2 Under Assumptions 4.1 and 4.3, there exists a constant C3 > 0 defined in
(4.2) such that

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 ≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k−1(r) − x j−1(r)‖2

)
ds,

(4.7)
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for all 0 ≤ t ≤ T and j, k ≥ 1.

Proof Applying Lemma 3.1, we have

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 + E
∫ T

t

∫ T

s
‖y j+k(s, u) − y j (s, u)‖2duds

≤ 16
(2T )2α

2α − 1
E

∫ T

t

∫ T

s
‖ f (s, u, x j+k−1(u), y j+k(s, u))

− f (s, u, x j−1(u), y j (s, u))‖2duds

+ 2E
∫ T

t

∫ T

s
‖g(s, u, x j+k−1(u)) − g(s, u, x j−1(u))‖2duds

≤ 16
(2T )2α

2α − 1
E

∫ T

t

∫ T

s

[
ρ

(
‖x j+k−1(u) − x j−1(u)‖2

)
+c‖y j+k(s, u) − y j (s, u)‖2

]
duds

+ 2E
∫ T

t

∫ T

s
ρ

(
‖x j+k−1(u) − x j−1(u)‖2

)
duds

≤ 16
(2T )2α

2α − 1
(T − t)

∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k−1(r) − x j−1(r)‖2

)
ds

+ 16
(2T )2α

2α − 1
c
∫ T

t

∫ T

s
‖y j+k(s, u) − y j (s, u)‖2duds

+ 2(T − t)E
∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k−1(r) − x j−1(r)‖2

)
ds

≤
(
16

(2T )2α

2α − 1
+ 2(T − t)

)∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k−1(r) − x j−1(r)‖2

)
ds

+ 32
(2T )2α

2α − 1
c
∫ T

t

∫ T

s
‖y j+k(s, u) − y j (s, u)‖2duds.

Therefore, we have

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 +
(
1 − 32

(2T )2α

2α − 1
c

)
E

×
∫ T

t

∫ T

s
‖y j+k(s, u) − y j (s, u)‖2duds

≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k−1(r) − x j−1(r)‖2

)
ds,

which completes the proof. �
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Lemma 4.3 Under Assumptions 4.1–4.3, there exists a constant C4 > 0 defined in
(4.2) such that

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 ≤ C4(T − t),

for all 0 ≤ t ≤ T and for all j, k ≥ 1.

Proof By Lemmas 4.1 and 4.2, we have

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 ≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k−1(r) − x j−1(r)‖2

)
ds

≤ C3

∫ T

t
ρ (2C1 exp(C2(T − s))) ds

≤ C3ρ (2C1 exp(C2T )) (T − t) = C4(T − t).

Therefore, the proof is complete. �
Let us define the following sequences:

ϕ1(t) = C4(T − t),

ϕ j+1(t) = C3

∫ T

t
ρ(ϕ j (s))ds, j ≥ 1

ϕ̃ j,k(t) = E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2, j ≥ 1, k ≥ 1,

Lemma 4.4 There exists 0 ≤ T0 ≤ T such that for all j, k ≥ 1

0 ≤ ϕ̃ j,k(t) ≤ ϕ j (t) ≤ ϕ j−1(t) ≤ . . . ≤ ϕ1(t), for all t ∈ [T0, T ].

Proof We prove this lemma by mathematical induction principle in j .
By Lemma 4.3, we have

ϕ̃1,k(t) = E sup
t≤s≤T

‖x1+k(s) − x1(s)‖2 ≤ C4(T − t) = ϕ1(t).

By Lemma 4.2, we get

ϕ̃2,k(t) = E sup
t≤s≤T

‖x2+k(s) − x2(s)‖2

≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
‖x1+k(r) − x1(r)‖2

)
ds

= C3

∫ T

t
ρ

(
ϕ̃1,k(s)

)
ds ≤ C3

∫ T

t
ρ (ϕ1(s)) ds = ϕ2(t).
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We have to prove that there exists T0 > 0 such that for all t ∈ [T0, T ] the following
inequality holds:

ϕ2(t) = C3

∫ T

t
ρ (C4(T − s)) ds ≤ C4(T − t) = ϕ1(t). (4.8)

To this end, note that this inequality provided that

C3ρ (C4(T − t)) ≤ C4 = C3ρ (2C1 exp(C2T ))

or
C3ρ (2C1 exp(C2T )) ≤ 2C1 exp(C2T ) = 2u

On the other hand, this holds if

C3(a + 2bu)(T − t) ≤ 2u

Since u = C1 exp(C2T ) ≥ C1 the above inequality holds if

T − t ≤ 2

C3(
a
u + 2b)

(4.9)

Thus, (4.8) holds true for any t satisfying (4.9). Obviously, such a t does not depend
on the value ξ . Thus, there exists T0 > 0 such that

ϕ2(t) ≤ ϕ1(t)

for all t ∈ [T0, T ]. Now we assume that (20) holds for some n ≥ 2. Then using the
same inequalities as above yields

ϕ̃ j+1,k(t) ≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
‖x j+k(r) − x j (r)‖2

)
ds

≤ C3

∫ T

t
ρ

(
ϕ̃ j,k(s)

)
ds ≤ C3

∫ T

t
ρ

(
ϕ j (s)

)
ds = ϕ j+1(t)

for all t ∈ [T0, T ]. On the other hand, we have

ϕ j+1(t) = C3

∫ T

t
ρ

(
ϕ j (s)

)
ds ≤ C3

∫ T

t
ρ

(
ϕ j−1(s)

)
ds = ϕ j (t) for all t ∈ [T0, T ].

This completes the proof. �
Theorem 4.1 Assume that Assumptions 4.1–4.3 hold. Then there exists a unique mild
solution (x, y) of (1.1).
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Proof Uniqueness: To show the uniqueness let both (x, y) and (x̃, ỹ) be solutions of
(1.1). Then Lemma 3.1 implies that

E sup
t≤s≤T

‖x(s) − x̄(s)‖2 + E
∫ T

t

∫ T

s
‖y(s, u) − ȳ(s, u)‖2duds

≤ 16
(2T )2α

2α − 1
E

∫ T

t

∫ T

s
‖ f (s, x(s), y(s, u)) − f (s, x̄(s), ȳ(s, u))‖2ds

+ 2E
∫ T

t

∫ T

s
‖g(s, u, x(s)) − g(s, u, x̄(s))‖2duds

≤
(
16

(2T )2α

2α − 1
+ 2(T − t)

)∫ T

t
ρ

(
E sup

s≤r≤T
‖x(r) − x̄(r)‖2

)
ds

+ 16
(2T )2α

2α − 1
cE

∫ T

t

∫ T

s
‖y(s, u) − ȳ(s, u)‖2duds.

For t ≤ s ≤ T , we have

E sup
t≤s≤T

‖x(s) − x̄(s)‖2 + E
∫ T

t

∫ T

s
‖y(s, u) − ȳ(s, u)‖2duds

≤ C
∫ T

t
ρ

(
E sup

s≤r≤T
‖x(r) − x̄(r)‖2

)
ds

+ 8
(2T )2α

2α − 1
cE

∫ T

t

∫ T

s
‖y(s, u) − ȳ(s, u)‖2duds.

Let 1 − 8 (2T )2α

2α−1 c > 0, then for any 0 ≤ t ≤ T , we have

E sup
t≤s≤T

‖x(s) − x̄(s)‖2 ≤ C
∫ T

t
ρ

(
E sup

s≤r≤T
‖x(r) − x̄(r)‖2

)
ds.

Therefore, by Bihari’s inequality we obtain

E sup
t≤s≤T

‖x(s) − x̃(s)‖2 = 0.

So x(t) = x̄(t) for all 0 ≤ t ≤ T almost surely. It then follows from (3.2) that y(t, s) =
ȳ(t, s) for all (t, s) ∈ D almost surely as well. This establishes the uniqueness.

Existence: We claim that

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 → 0, for all T0 ≤ t ≤ T , as j, k → ∞.

(4.10)
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Note that by definition, ϕ j is continuous on [T0, T ] and also for each n ≥ 1, ϕ j (·) is
decreasing on [T0, T ] and for each ϕ j (t) is a nonincreasing sequence. Therefore, we
can define the function ϕ(t) by ϕ j (t) ↓ ϕ(t). It is easy to verify that ϕ(t) is continuous
and nonincreasing on [T0, T ]. By definition of ϕ j (t) and ϕ(t), we get

ϕ(t) = lim
j→∞C3

∫ T

t
ρ(ϕ j (s))ds = C3

∫ T

t
ρ(ϕ(s))ds

for each t ∈ [T0, T ]. Since ∫
0+

du

ρ(u)
= ∞,

By virtue of Assumption 4.3, ϕ(t) = 0 for all t ∈ [T0, T ]. As a consequence,
lim
j→∞ ϕ j (T0) = 0. By Lemma 4.4

E sup
t≤s≤T

‖x j+k(s) − x j (s)‖2 ≤ sup
T0≤t≤T

ϕ̃ j,k(t)

≤ sup
T0≤t≤T

ϕ̃ j (t) = ϕ j (T0) → 0, as j → ∞.

So (4.10)must hold.Applying (4.10) to (4.7),we see that
{
x j , y j

}
is aCauchy sequence

(hence convergent) in M[T0, T ] and its limit is denoted by (x, y). Now letting j → ∞
in (4.1), we obtain

x(t) = ξ +
∫ T

t
(s − t)α−1 f (t, s, x(s), y(t, s))ds

+
∫ T

t
(s − t)α−1 [g(t, s, x(s)) + y(t, s)] dw(s),

on [T0, T ]. Since the value of T0 depends only on the function ρ, one can deduce by
iteration the existence on [T − q(T − T0), T ] for each q, and therefore the existence
on the entire interval [0, T ]. �

5 Conclusions and future works

In this paper, singular backward stochastic nonlinear Volterra differential equation is
introduced which is an untreated topic in recent literature. To derive an adapted pair of
stochastic processes,we first formulated fundamental lemmawhich plays a crucial role
in the theory of singular BSDE. The main results in our paper were to show existence
and uniqueness of an adapted solution to (1.1) in infinite dimensional setting using
non-Lipschitz condition. In doing so, we constructed Picard type approximation. The
key point in the proof of main results was to apply extended martingale representation
theorem and Bihari’s inequality.

Since our results are sufficiently new in the theory of BSDEs, there are still open
problems to discuss regarding their applications to finance and optimal control theory
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using stochastic maximum principle. Our aim is solving high-dimensional nonlinear
backward stochastic differential equations usingDeep learning algorithms in the future
work.

Acknowledgements The first author acknowledges support by the Open Access Publication Fund of the
University of Duisburg-Essen.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bismut, J.M.: Theorie probabiliste du controle des diffusions. Mem. Am. Math. Soc. 176, 1–30 (1973)
2. Bensoussan, A.: Lectures on stochastic control. In: Mittler, S.K., Moro, A. (eds.) Nonlinear Filtering

and Stochastic Control, pp. 1–62. Lecture Notes in Mathematics, 972 (1982)
3. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control

Lett. 14, 55–61 (1990)
4. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps.

SIAM J. Control. Optim. 32, 1447–1475 (1994)
5. Pardoux, E., Rascanu, A.: Backward stochastic variational inequalities. Stoch. Stoch. Rep. 67(3–4),

159–167 (1999)
6. Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math.

Optim. 27, 125–144 (1993)
7. Peng, S.: A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation.

Stoch. Stoch. Rep. 38, 119–134 (1992)
8. Hu, Y., Peng, S.: Adapted solutions of a backward semilinear stochastic evolution equation. Stoch.

Anal. Appl. 9(4), 445–459 (1991)
9. Peng, S.: Probabilistic interpletation for systems of quasilinear parabolic partial differential equations.

Stoch. Stoch. Rep. 32, 61–74 (1991)
10. Rong, S.: On solutions of backward stochastic differential equations with jumps and with non-

Lipschitzian coefficients in Hilbert spaces and stochastic control. Stat. Probab. Lett. 60(3), 279–288
(2002)

11. Tessitore, G.: Existence, uniqueness, and space regularity of the adapted solutions of a backward SPDE.
Stoch. Anal. Appl. 14(4), 461–486 (1996)

12. Rong, S.: On solutions of backward stochastic differential equations with jumps and applications.
Stoch. Process. Appl. 66, 209–236 (1997)

13. Wang, T.,Yong, J.: Backward stochasticVolterra integral equations-representation of adapted solutions.
Stoch. Process. Appl. 129, 4926–4964 (2019)

14. Mahmudov, N.I., McKibben, M.A.: On backward stochastic evolution equations in Hilbert spaces and
optimal control, Nonlinear. Analysis 67, 1260–1274 (2007)

15. Mao, X.: Adapted solutions of backward stochastic differential equations with non-Lipschitz coeffi-
cients. Stoch. Process. Appl. 58, 281–292 (1995)

16. Lin, J.: Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stoch. Anal.
Appl. 20(1), 165–183 (2002)

17. Yong, J.: Backward stochastic Volterra integral equations and some related problems. Stoch. Process.
Appl. 116, 779–795 (2006)

http://creativecommons.org/licenses/by/4.0/


  192 Page 20 of 20 A. Ahmadova, N. I. Mahmudov

18. Yong, J.: Well-posedness and regularity of backward stochastic Volterra integral equations. Probab.
Theory Relat. Fields 142, 21–77 (2008)

19. Shi, Y., Wen, J., Xiong, J.: Backward doubly stochastic Volterra integral equations and their applica-
tions. J. Differ. Equ. 269, 6492–6528 (2020)

20. Agram, N., Djehiche, B.: On a class of reflected backward stochastic Volterra integral equations and
related time-inconsistent optimal stopping problems. Syst. Control Lett. 155, 9 pp (2021)

21. Hernández, C.: On quadratic multidimensional type-I BSVIEs, infinite families of BSDEs and their
applications. Stoch. Process. Appl. 162, 249–298 (2023)

22. Hernández, C., Possamai, D.: A unified approach to well-posedness of type-I backward stochastic
Volterra integral equations. Electron. J. Probab. 26, 35 (2021)

23. Wang, H., Yong, J.: Time-inconsistent stochastic optimal control problems and backward stochastic
Volterra integral equations. ESAIM Control Optim. Calc. Var., 27 40 (2021)

24. Wang, T.: Backward stochastic Volterra integro-differential equations and applications in optimal
control problems. SIAM J. Control. Optim. 60, 2393–2419 (2022)

25. Shi,Y.,Wang, T.,Yong, J.:Mean-field backward stochasticVolterra integral equations.DiscreteContin.
Dyn. Syst. Ser. B 18, 1929–1967 (2013)

26. Overbeck, L., Rod̈er, J.: Path-dependent backward stochastic Volterra integral equations with jumps,
differentiability and duality principle. Probab. Uncertain. Quant. Risk, 3, 4 (2018)

27. Hamaguchi, Y.: Infinite horizon backward stochastic Volterra inntegral equations and discounted con-
trol problems. ESAIM Control Optim. Calc. Var. 27, 47 (2021)

28. Popier, A.: Backward stochastic Volterra integral equations with jumps in a general filtration. ESAIM
Probab. Stat. 25, 133–203 (2021)

29. Mahmudov, N.I., Ahmadova, A.: Some results on backward stochastic differential equations of frac-
tional order. Qual. Theory Dyn. Syst. 21, 129 (2022)

30. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidel-
berg (2000)

31. Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes, volume 288 of Grundlehren der
mathematischen Wissenschaften. Springer, Berlin (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Picard Approximation of a Singular Backward Stochastic Nonlinear Volterra Integral Equation
	Abstract
	1 Introduction
	2 Preliminaries
	3 Fundamental lemma
	4 Picard approximation
	5 Conclusions and future works
	Acknowledgements
	References


