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Abstract
In this paper we study the generalized Lagrangian system with a small perturbation.
We assume the main term in the system to have a maximum, but do not suppose any
condition for perturbation term. Then we prove the existence of a periodic solution via
Ekeland’s principle. Moreover, we prove a convergence theorem for periodic solutions
of perturbed systems.
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1 Introduction andMain Results

In this paper we prove the existence of periodic solutions for the second order
Hamiltonian systems

{
d
dt (∇�(q̇(t))) + Vq(t, q(t)) = λWq(t, q(t)), t ∈ [0, T ],
q(0) − q(T ) = q̇(0) − q̇(T ) = 0,

(1)

where V : R×R
n → R andW : R×R

n → R areC1-smooth, T -periodic with respect
to t ∈ R, n ≥ 1, T > 0, λ is a real small parameter and � : Rn → [0,∞) is a G-
function in the sense ofTrudinger, i.e.�(0) = 0,� isC1-smooth, coercive, convex and
symmetric, and ∇� ∈ C1 (Rn \ {0},Rn). Here and subsequently Vq : R×R

n → R
n

and Wq : R × R
n → R

n denote the gradient maps of V and W , respectively, with
respect to q ∈ R

n . From now on (·, ·) : Rn × R
n → R stands for the standard inner

product inRn and | · | : Rn → [0,∞) is the Euclidean norm.We assume the conditions
below:
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(a) there exists a constant α > 0 such that

V (t, q) + α|q|2 ≤ V (t, 0)

for all t ∈ [0, T ] and q ∈ R
n ;

(�2) there is a constant L > 0 such that

�(2q) ≤ L�(q)

for each q ∈ R
n ;

(∇2) there exists a constant l > 0 such that

�(lq) ≥ 2 l�(q)

for each q ∈ R
n .

Our assumptions imply that the action functional corresponding to the system (1) with
λ = 0 satisfies the Palais–Smale condition (Lemma 2.1 in Sect. 2). Let us also remark
that q ≡ 0 is a solution of (1) for λ = 0. Our aim is to prove the existence of periodic
solutions of (1) for |λ| small enough without any extra conditions on W .

Let us consider the Orlicz space

L�(0, T ;Rn) =
{
q : R → R

n : q is T -periodic, measurable,
∫ T

0
�(q(t))dt < ∞

}

with the Luxemburg norm

‖q‖� = inf

{
v > 0 :

∫ T

0
�

(
q(t)

v

)
dt ≤ 1

}
.

It is well-known that L�(0, T ;Rn) is a Banach space (cf. [11]). As� is�2-regular
and ∇2-regular, L�(0, T ;Rn) is separable and reflexive (cf. [1]). Moreover, it is not
difficult to show that

‖q‖� ≤ 1 +
∫ T

0
�(q(t))dt, q ∈ L�(0, T ;Rn). (2)

Proposition 1.1 (cf. [3], Lem. 3.16) Let qk be a sequence in L�(0, T ;Rn) and
q ∈ L�(0, T ;Rn). If qk → q almost everywhere in (0, T ) and

∫ T
0 �(qk(t))dt →∫ T

0 �(q(t))dt then qk → q in L�(0, T ;Rn).

The mixed Orlicz–Sobolev spaceW 1,�
T is the space of functions q ∈ L2(0, T ;Rn)

having a weak derivative q̇ ∈ L�(0, T ;Rn). Let us recall that, if q ∈ W 1,�
T ,

q(t) =
∫ t

0
q̇(s)ds + c
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and q(0) = q(T ). The norm over W 1,�
T is defined by

‖q‖2 = ‖q‖22 + ‖q̇‖2�,

where

‖q‖2 =
(∫ T

0
|q(t)|2dt

) 1
2

.

It is easy to verify that W 1,�
T is a reflexive Banach space.

Proposition 1.2 (cf. [8], Prop. 2.1) There exists a positive constant C� such that for
q ∈ W 1,�

T ,
‖q‖∞ ≤ C�‖q‖, (3)

where ‖q‖∞ = maxt∈[0,T ] |q(t)|.

By Proposition 2.3 of [8], the imbedding of W 1,�
T in C(0, T ;Rn), with its natural

norm ‖ · ‖∞, is compact. We are now ready to state the announced result.

Theorem 1.3 Let V (t, q) and W (t, q) be C1-smooth on R×R
n, T -periodic in t , and

�(q) be aG-function.Under the assumptions (a), (�2), (∇2), the following assertions
hold.

(i) There is a positive number λ0 such that the system (1) has a solution qλ when
|λ| ≤ λ0.

(ii) For any sequence λ j converging to zero, along a subsequence qλ j converges to

zero in W 1,�
T .

Let us emphasize that wemean by solution of (1) an absolutely continuous function
in L2(0, T ;Rn) that satisfies (1) weakly. If we require that � is not only convex
but stricly convex, then qλ has a classical first derivative. There are many important
examples of � satisfying our assumptions. If we set �(q) = 1

2 |q|2, q ∈ R
n , we

obtain the classical second order Hamiltonian systems. Applications of fundamental
techniques of critical point theory to the existence of periodic solutions of second order
Hamiltonian systems were presented e.g. in [9]. If we set �(q) = 1

p |q|p, q ∈ R
n ,

1 < p < ∞, we get the one-dimensional p-Laplacian. Nonlinear perturbations of
this operator have been studied recently e.g. in [2, 5, 6]. Variational systems involving
p-Laplacian occur naturally in a variety of settings in physics and engineering [2].
Moreover, let us remind an anisotropic example�(q) = ∑n

i=1 ai |qi |pi , 1 < pi < ∞,
ai > 0, q = (q1, q2, . . . , qn), which has been investigated e.g. in [4, 10].
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2 Proof of Theorem 1.3

We shall prove Theorem 1.3. Our approach is based on Ekeland’s variational principle.
For (1) with λ = 0, we define the Lagrangian functional by

I0(q) =
∫ T

0
(�(q̇(t)) − V (t, q(t))) dt, (4)

where� and V satisfy our assumptions. Then I0 is well-defined inW
1,�
T and becomes

a C1-functional (cf. [8], Prop. 2.10). Moreover, I0 is bounded from below. Using (a),
we get

I0(q) ≥
∫ T

0
−V (t, q(t))dt ≥

∫ T

0
−V (t, 0)dt =: V0. (5)

From an easy calculation, we also see that

I ′
0(q)v =

∫ T

0

(
(∇�(q̇(t)), v̇(t)) − (Vq(t, q(t)), v(t))

)
dt, (6)

where q, v ∈ W 1,�
T .

Lemma 2.1 I0 satisfies the Palais–Smale condition.

Proof Letqk be any sequence inW
1,�
T such that I0(qk) is bounded and I ′

0(qk) converges

to zero in
(
W 1,�

T

)∗
. By (a) and (2), we obtain

I0(q) ≥ ‖q̇‖� − 1 + α

∫ T

0
|q(t)|2dt +

∫ T

0
−V (t, 0)dt

= ‖q̇‖� − 1 + α‖q‖22 + V0. (7)

As I0(qk) is bounded, there is C > 0 such that |I0(qk)| ≤ C for each k ∈ N. We
thus get

‖q̇k‖� − 1 + α‖qk‖22 + V0 ≤ C (8)

for each k ∈ N. Hence qk is bounded in W 1,�
T . Since W 1,�

T is reflexive, there is a

subsequence of qk that converges weakly to some q ∈ W 1,�
T . We keep denoting this

subsequence by qk . By the compact imbedding, qk converges to q inC(0, T ;Rn) and,
in consequence, qk converges to q in L2(0, T ;Rn). Moreover, since themodulus func-
tion increases essentially more slowly than� near infinity q̇k goes to q̇ in L1(0, T ;R),
and hence, along a subsequence q̇k goes to q̇ almost everywhere in (0, T ). Without
loss of generality we denote this subsequence by qk . According to the above remarks,
we have

|I ′
0(qk)(qk − q)| ≤ ‖I ′

0(qk)‖(
W 1,�

T

)∗‖qk − q‖ → 0,
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∫ T

0

(
Vq(t, qk(t)), qk(t) − q(t)

)
dt → 0,

and consequently,

∫ T

0
(∇�(q̇k(t)), q̇k(t) − q̇(t)) dt = I ′

0(qk)(qk − q)

+
∫ T

0

(
Vq(t, qk(t)), qk(t) − q(t)

)
dt → 0 (9)

as k → ∞. As � is convex,

�(x) − �(x − y) ≤ (∇�(x), y)

for each x, y ∈ R
n . From this it follows that

∫ T

0
�(q̇k(t))dt −

∫ T

0
�(q̇(t))dt ≤

∫ T

0
(∇�(q̇k(t)), q̇k(t) − q̇(t))dt,

∫ T

0
�(q̇k(t))dt ≤

∫ T

0
�(q̇(t))dt +

∫ T

0
(∇�(q̇k(t)), q̇k(t) − q̇(t))dt .

Letting k → ∞ we obtain

lim sup
k→∞

∫ T

0
�(q̇k(t))dt ≤

∫ T

0
�(q̇(t))dt .

On the other hand, by Fatou’s lemma

lim inf
k→∞

∫ T

0
�(q̇k(t))dt ≥

∫ T

0
�(q̇(t))dt .

Therefore

lim
k→∞

∫ T

0
�(q̇k(t))dt =

∫ T

0
�(q̇(t))dt,

and finally, by Proposition 1.1, q̇k → q̇ in L�(0, T ;Rn). Since qk → q in
L2(0, T ;Rn) and q̇k → q̇ in L�(0, T ;Rn), we have qk → q in W 1,�

T , which
completes the proof. �

We now choose a function such that 0 ≤ h(x) ≤ 1 in R
n , h(x) = 1 for |x | ≤ C�

and h(x) = 0 for |x | ≥ 2C�, where C� is given by (3). We define

Iλ(q) =
∫ T

0
(�(q̇(t)) − V (t, q(t)) + λh(q(t))W (t, q(t))) dt, (10)



  178 Page 6 of 8 J. Janczewska

where q ∈ W 1,�
T . Then a critical point of Iλ is a solution of

{
d
dt (∇�(q̇(t))) + Vq(t, q(t)) = λh(q(t))Wq(t, q(t)) + λ∇h(q(t))W (t, q(t))

q(0) − q(T ) = q̇(0) − q̇(T ) = 0.
(11)

Our plan to prove Theorem 1.3 is as follows. First, we find a critical point qλ of Iλ.
Next, we show that ‖qλ‖∞ ≤ C� for |λ| small enough. Then h(qλ) = 1, ∇h(qλ) = 0
and therefore qλ becomes a solution of (1). Set

C0 = max{W (t, q) : t ∈ [0, T ] ∧ |q| ≤ 2C�}.

We have

Iλ(q) = I0(q) + λ

∫ T

0
h(q(t))W (t, q(t))dt ≥ V0 − |λ|TC0,

and so Iλ is bounded from below. Using the same arguments as in Lemma 2.1 with
the fact that h(q)W (t, q) and its gradient with respect to q are bounded, we get the
next lemma.

Lemma 2.2 For each λ ∈ R, Iλ satisfies the Palais–Smale condition.

Applying Ekeland’s variational principlewe conclude that Iλ has aminimumonW 1,�
T .

It follows that there is qλ ∈ W 1,�
T such that

Iλ(qλ) = inf
q∈W 1,�

T

Iλ(q) ∧ I ′
λ(qλ) = 0.

Since

I0(q) − |λ|TC0 ≤ Iλ(q) ≤ I0(q) + |λ|TC0

for each q ∈ W 1,�
T , we obtain Iλ(qλ) → V0 as λ → 0.

Lemma 2.3 Let λm be a sequence converging to zero and let the functional Iλm reach
a minimum at the point qλm . Then a subsequence of qλm converges to zero in W 1,�

T .

Proof By definition,

Iλm (qλm ) = inf
q∈W 1,�

T

Iλm (q) ∧ I ′
λm

(qλm ) = 0,

and hence qλm is a solution of (11) with λ replaced by λm . Using the same argument
as in the proof of Lemma 2.1, by the boundedness of Iλm (qλm ), we can conclude that
qλm is bounded in W 1,�

T and a subsequence of qλm converges to a limit q0 in W 1,�
T .

Then q0 satisfies that I0(q0) = V0 and I ′
0(q0) = 0, i.e. q0 ≡ 0. �
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Lemma 2.4 There is λ0 > 0 such that for |λ| ≤ λ0 we have ‖qλ‖∞ ≤ C�.

Proof Suppose on the contrary to our claim that there is a sequence λm converging to
zero such that ‖qλm‖∞ > C�. By Lemma 2.3 it follows that there is a subsequence of
qλm going to zero inW 1,�

T . Without loss of generality we will denote this subsequence
by qλm . Thus for m large enough, ‖qλm‖ ≤ 1, and consequently ‖qλm‖∞ ≤ C�, by
(3). A contradiction occurs. �

The lemma above will be used to find a solution of (1). We are now in a position
to prove Theorem 1.3.

Proof (Proof of Theorem 1.3) Choose λ0 > 0 that satisfies Lemma 2.4. Let Iλ reach
a minimum at qλ with |λ| ≤ λ0. Then ‖qλ‖∞ ≤ C�. For this reason h(qλ) = 1,
∇h(qλ) = 0, and consequently qλ becomes a solution of (1). Let λ j be a sequence
converging to zero. From Lemma 2.3 it follows that a subsequence of qλ j converges

to zero in W 1,�
T , which completes the proof. �

We conclude our work by explaining the regularity of solutions of (1) in case that
� is strictly convex. We set for |λ| ≤ λ0 and t ∈ [0, T ],

xλ(t) = ∇�(q̇λ(t)) .

Let us note that

ẋλ(t) = d

dt
(∇�(q̇λ(t))) = −Vq(t, qλ(t)) + λWq(t, qλ(t)),

and so it is continuously differentiable. It is known that if � is strictly convex then
∇� : Rn → R

n is invertible and its inverse map (∇�)−1 = ∇�∗ is continuous
(Corollary 4.1.3 in [7]), where �∗ denotes the Fenchel transform of � defined by

�∗(y) = sup
x∈Rn

((x, y) − �(x)) .

Hence q̇λ(t) = (∇�)−1(xλ(t)) is continuously differentiable too. Finally, if ∇�∗ is
C1 then qλ is C2, i.e. a classical solution. These additional assumptions are satisfied
for �(x) = 1

p |x |p, 1 < p ≤ 2.
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