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Abstract
Due to the importance of some physical systems, in this paper, we aim to investigate
a generalized impulsive ρ-Caputo differential equation equipped with a p-Laplacian
operator. In fact, our problem is a generalization of fractional differential equations
equipped with the integral boundary conditions, impulsive forms and p-Laplacian
operators under the Nemytskii operators. In this direction, we prove some theorems
on the existence property along with the uniqueness of solutions under the Nemytskii
operator. More precisely, we use the Schauder’s and Schaefer’s fixed point theorems,
along with the Banach contraction principle. In the sequel, two examples are provided
to show the validity of the obtained results in practical.
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1 Introduction

In this paper, our focus is on addressing the concept of existence and uniqueness
of solutions for a boundary value problem involving the following nonlinear non-
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symmetric ρ-Caputo fractional p-Laplacian impulsive differential equation
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where p, p� > 1, 0 < ν, β, γ ≤ 1, ψp is an operator of p-Laplacian type, i.e.,
ψp(ξ) =| ξ |p−2 ξ , t,κ, η ∈ C([a, K ],R�+), f ∈ C([a, K ] × R,R), ω0, ω1, λ ∈ R,
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During the past decade, theory of differential equations involving fractional deriva-
tives of non-integer order has undergone significant development and found numerous
applications in many areas such as biology, physics, rheology, mechanics, electricity,
signal and image processing, control theory, aerodynamics. This field has attracted
the attention of many researchers constantly to study fractional differential equations.
Moreover, the fractional-order models are considered as powerful mathematical struc-
tures than the classical-ordermodels. Formore details and applications about fractional
calculus, see [1–3] and references therein.

Very recently, Almeida, in [4], gave a generalized version of the Caputo fractional
derivativewith some interesting properties. For a special case of the increasing function
ρ, one can realize that the ρ–Caputo fractional derivative can be reduced to some
well-known classical kinds of the Caputo fractional operator [5–7]. Those models that
employ generalized fractional derivatives could potentially give the greater accuracy
than models that rely on classical derivatives.

As the operators of p-Laplacian type have natural applications in many areas of
science, and are commonly used in mathematical modeling of physical and natural
phenomena, such as turbulent filtration in porous media, blood flow problems, rheol-
ogy, and viscoelasticity, it is important to study the fractional p-Laplacian differential
equations. As it is well-known, the formulation of an ordinary operator of p-Laplacian
type was done by Leibenson in 1983 [8]. In the context of the p-Laplacian differential
equations, the p-Laplacian operator ψp is often used to model the nonlinearity in a
differential equation, and the behavior of solutions of the given differential equation
is influenced by the specific value of the parameter p. More precisely, these operators
exhibit different behaviors depending on the value of the parameter p. Here are some
characteristics based on the range of p:

1. For p > 2:

• Superlinear Growth: As p increases, the function exhibits superlinear growth.
This means that the function grows faster than a linear function.
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• Dominance of | ξ |p: The term | ξ |p dominates the behavior contributing to
the superlinear growth.

2. For 1 < p < 2:

• Sublinear Growth: As p decreases but stays above 1, the operator exhibits
sublinear growth. This means that the opertor grows more slowly than a linear
function.

• Dominance of | ξ |: In this range, the term | ξ | dominates the behavior
contributing to the sublinear growth.

3. For p = 2: Linear Growth:When p is exactly 2, the operator simplifies toψp(ξ) =
ξ , which shows a linear growth.

It’s important to note that these observations are based on the form of the operator
ψp itself. There are various researches of fractional boundary value problems with
p-Laplacian operators published recently such as [9–19].

Numerous processes and phenomena in the real world undergo brief external influ-
ences during their evolution. However, these brief durations are insignificant when we
compare to the total duration of the processes and phenomena under study. As a result,
these external influences are often considered “instantaneous” in nature, manifesting
in the form of impulses. Moreover, differential equations that incorporate impulsive
effects are prevalent in various real-world phenomena and are utilized to model pro-
cesses that involve sudden anddiscontinuous jumps.Many readers interested ingaining
a comprehensive understanding of the fundamental theory and practical applications
of impulsive differential equations are encouraged to refer to several references in
the literature such as [20–22]. In particular, the existence of solutions to impulsive
fractional differential equations and other types of fractional differential equations
has been examined using different tools and approaches, including topological degree
theory, fixed point theory, upper and lower solution methods, and monotone iterative
techniques. See, for example, [23–28] and the references therein.

In 2020, Linda et al. [29] studied the existence of weak solutions for the follow-
ing form of a p-Laplacian impulsive differential equation equipped with boundary
conditions, employing the variational technique and theory of critical point, given by

⎧
⎨

⎩
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, q = 1, 2, . . . , k,
ω(0) = ω(K ) = 0,

where p > 1, ψp is an operator of p-Laplacian type, t,κ ∈ L∞([0, K ]), f ∈
C([a, K ] × R,R), for q = 1, 2, . . . , k, Iq ∈ C(R,R), 0 = ξ0 < ξ1 < · · · < ξq <
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In [30], Liu, Lu and Szántó considered the solvability of a new form of impulsive
fractional differential equation given by

⎧
⎪⎪⎨
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where p > 1, 0 < ν, β, γ ≤ 1, 1 < ν + β, γ ≤ 2, ψp is an operator of p-Laplacian
type, f ∈ C([0, 1] × R,R), ω0, ω1, λ ∈ R, for q = 1, 2, . . . , k, i = 1, 2, Iq ∈
C(R,R), 0 = ξ0 < ξ1 < · · · < ξq < · · · < ξk < ξk+1 = 1. Also, �ω
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. By using the Banach contraction principle,

they obtained some results on the existence and uniqueness of solutions for the given
model.

The main contribution and novelty of this paper is that we try to investigate the
existence results for a generalized fractional differential equation equipped with the
integral boundary conditions, impulsive forms and p-Laplacian operators under the
Nemytskii operators simultaneously. In this direction,weget help from thewell-known
fixed point theorems.

The structure of this paper is as follows. Section 2 offers a comprehensive back-
ground on fractional calculus and fixed point theory. In Section 3, we establish some
theoremson the existence anduniqueness of solutions for the given p-Laplacian impul-
sive fractional boundary value problem (1.1) by using the Schauder’s and Schaefer’s
fixed point theorems, as well as the principle of the Banach contraction mapping.
Lastly, Section 4 presents two illustrative examples that highlight the validity and
significance of our main results.

2 Preliminaries

This section of the paper deals with some preliminaries on fractional calculus and
some definitions that are essential for the proofs presented later.

Throughout this paper, let Q = [a, K ] ⊂ (0,∞) and Q0 = [a, ξ1] , Q1 =
(ξ1, ξ2] , . . . , Qk−1 = (ξk−1, ξk

]
, Qk = (ξk, K ] , n = [ν] + 1, where [ν] is the

largest integer less than or equal to ν.

1. The Banach space of continuous functions h on Q is denoted by C( Q) and is
equipped with the norm

‖h‖C = max
υ∈Q |h(υ)|.

2. AC(Q) is the space of absolutely continuous functions on Q, and Cn(Q) is the
set of all functions on Q with n continuous derivatives.
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3. The set of all Lebesgue integrable functions on (a, K ) is denoted by L p(a, K ).

2.1 Fractional Calculus that Involves a Function�

Here, we recall the fundamental definitions and lemmas from fractional calculus the-
ory, which involve an increasing function ρ. It is straightforward to observe that by
selecting appropriate functions ρ, we can obtain several commonly used fractional
operators, including the Riemann-Liouville (RL), Caputo, Hadamard, Katugampola,
and Erdélyi-Kober fractional derivatives. Several works in the literature, such as [31–
33], have studied and used these fractional operators.

Definition 2.1 (PC-Function space) Let PC(Q,R) = {ω : Q → R : ω ∈ C
(
Qq ,R

)

for q = 1, 2, . . . , k and there exist ω
(
ξ+
q

)
and ω

(
ξ−
q

)
at ξ = ξq with ω

(
ξ−
q

)
=

ω
(
ξq
)}. Then PC(Q,R) is a Banach space equipped with the norm ‖ω‖ =

supξ∈Q |ω(ξ)|.
Definition 2.2 Let ρ be a strictly increasing and n-times differentiable function on Q.

Then, ACn
ρ(Q) =

{
ω : Q → R and δ

[n−1]
ρ ω ∈ AC( Q), δ

[n−1]
ρ ω =

(
1

ρ′(ξ)
d
dξ

)
ω
}

denotes a Banach space of n-times absolutely continuous functions with respect to the
strictly increasing differentiable function ρ.

Definition 2.3 (Heaviside function H) The Heaviside function is given by

H(ξ) =
{
1 if ξ ≥ 0
0 o.w.

(2.1)

Proposition 2.4 Let ω be a piecewise continuous function (ω ∈ PC(Q,R)), and let
t1, t2, . . . , tk be the fixed moments of impulsive effect for q = 1, 2, . . . , k. Denote
�q = ω(t+k )−ω(t−k ) as the magnitude and direction of the impulsive effect at tk . Then
ω can be formulated as the sum of a continuous function g and a series of Heaviside
functions, i.e.,

ω(ξ) = g(ξ) +
q∑

j=0

� j H(ξ − t j ), (2.2)

such that �0 = 0.

Now, we recall the definitions of the ρ-Riemann-Liouville and ρ-Caputo fractional
integrals and derivatives [4, 34].

Definition 2.5 [4, 34]Let ν > 0 andρ : Q −→ Rbe a strictly increasingdifferentiable
function with ρ′(ξ) 
= 0 for all ξ ∈ Q. The left and right ρ−Riemann-Liouville (ρ-
RL) fractional integrals of order ν for an integrable functionω : Q −→ Rwith respect
to another function ρ are defined by

ρ
ξIν

a+ω(ξ) = 1

�(ν)

∫ ξ

a
ρ′(t)(ρ(ξ) − ρ(t))ν−1ω(t)dt,
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ρ
ξIν

K−ω(ξ) = 1

�(ν)

∫ K

ξ

ρ′(t)(ρ(t) − ρ(ξ))ν−1ω(t)dt,

where � is the Gamma function.

Definition 2.6 [4, 34] Let ρ ∈ Cn(Q,R) be a function where ρ is strictly increasing
andρ′(ξ) 
= 0 for all ξ ∈ Q.The left and rightρ−Riemann-Liouville (ρ-RL) fractional
derivatives of order ν ∈ (n − 1, n) for a function ω : Q → R with respect to another
function ρ are defined by

ρ
ξDν

a+ω(ξ) =
(

1

ρ′(ξ)
d

dξ

)n
ρ
ξIn−ν

a+ ω(ξ), ξ > a,

ρ
ξDν

K−ω(ξ) =
( −1

ρ′(ξ)
d

dξ

)n
ρ
ξIn−ν

K− ω(ξ), ξ < K ,

provided that the right-hand side integrals are defined on Q.

Definition 2.7 [4, 34] For each n ∈ N, let ρ and ω be two functions in Cn(Q,R),
where ρ is an increasing function with ρ′(ξ) 
= 0 for all ξ ∈ Q. The left and right
ρ-Caputo (ρ-C) fractional derivatives of order ν for the function ω : Q → R with
respect to another function ρ are defined by

ρ;C
ξDν

a+ω(ξ) =ρ
ξIn−ν

a+ δ[n]
ρ ω(ξ),

ρ;C
ξDν

K−ω(ξ) =ρ
ξIn−ν

K− (−1)nδ[n]
ρ ω(ξ),

where n = [ν] + 1 for ν /∈ N, n = ν for ν ∈ N, and δ
[n]
ρ ω(ξ) =

(
1

ρ′(ξ)
d
dξ

)n

ω(ξ).

Lemma 2.8 The left and right ρ-Caputo fractional derivatives for the function ω ∈
Cn(Q) of order ν with respect to ρ can also be formulated as

ρ;C
ξDν

a+ω(ξ) =ρ
ξDν

a+

⎡

⎣ω(ξ) −
n−1∑

q=0

δ
[q]
ρ ω(ξ)

q! |a (ρ(ξ) − ρ(a))q

⎤

⎦ , (2.3)

ρ;C
ξDν

K−ω(ξ) =ρ
ξDν

K−

⎡

⎣ω(ξ) −
n−1∑

q=0

(−1)q
δ
[q]
ρ ω(ξ)

q! |a (ρ(K ) − ρ(ξ))q

⎤

⎦ . (2.4)

Lemma 2.9 [35] Assume that ψp : R → R is a p-Laplacian operator as ψp(υ) =
|υ|p−2υ for each υ ∈ R. Then d

dυ ψp(υ) = (p − 1)|υ|p−2(υ 
= 0 if 1 < p < 2). The
following items are some fundamental properties of this operator.

1. The p-Laplacian operator ψp is a homeomorphism from R to R and its inverse is
ψp� (υ) = |υ|p�−2υ with p� = p

p−1 .
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2. Let 1 < p < 2, υζ > 0, and |υ|, |ζ | ≥ k > 0. Then,

∣
∣ψp(υ) − ψp(ζ )

∣
∣ ≤ (p − 1)k p−2|υ − ζ |.

3. Let p ≥ 2 and |υ|, |ζ | ≤ M. Then,

∣
∣ψp(υ) − ψp(ζ )

∣
∣ ≤ (p − 1)Mp−2|υ − ζ |.

Lemma 2.10 ([36], The Arzelá-Ascoli theorem of PC-type) Let � ⊂ PC(Q,R).

Then

1. � is a subset of PC(Q,R) that is uniformly bounded;
2. If � is equicontinuous in Qq for all q = 0, 1, 2, . . . , k, then � is a subset of

PC(Q,R) and hence is relatively compact.

2.2 Fixed Point Theorems

Two important theorems in fixed-point theory are given below.

Definition 2.11 A completely continuous operator preserves continuity and maps
bounded sets to precompact sets.

Theorem 2.12 (The Schauder’s fixed point theorem) Let X be a Banach space and
� ⊂ X be an open, bounded subset containing a point θ ∈ �. Let L : � → X be a
completely continuous operator, where |Lω| ≤ |ω| for all ω ∈ ∂�. Then there exists
a fixed point of L in �.

Theorem 2.13 (The Schaefer’s fixed point theorem) Consider a Banach space X and
a completely continuous operator L : X → X . If the set

E(L) = {ω ∈ X : ω = σLω for σ ∈ [0, 1]},

is bounded, then L has at least a fixed point.

3 Main Results

This section of the paper deals with the investigation of the existence of solution and
uniqueness results for the p-Laplacian impulsive fractional boundary value problem
(1.1), which has an integral representation including the inverse of a given Nemytskii
operator.

3.1 Fractional Functional Differential Equations and Integral Structure

Before starting and proving the main results, we shall provide the following lemmas.
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Lemma 3.1 Let ν ∈ (0, 1) and w ∈ C(Q,R). Then, the linear initial value problem

{
ρ;C

ξDν
a+ω(ξ) = w(ξ) a < ξ < K ,

ω(â) = ωa, â > a,
(3.1)

has a solution ω ∈ C(Q,R) given by the following integral equation

ω(ξ) = ωa − 1

�(ν)

∫ â

a
ρ′(t)(ρ(â) − ρ1(t))

ν−1h(t)dt

+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt . (3.2)

Lemma 3.2 Let β ∈ (0, 1) and � ∈ C(Q, R). Then, the linear initial value problem

{
ρ;C

ξDβ

K−ζ(ξ) = �(ξ) a < ξ < K ,

ζ(K̂ ) = yK , K̂ < K ,
(3.3)

has a solution ζ ∈ C(Q, R) given by the following integral equation

ζ(ξ) = ωK − 1

�(β)

∫ K

K̂
ρ′(t)(ρ1(t) − ρ(K̂ ))β−1�(t)dt

+ 1

�(β)

∫ K

ξ

ρ′
1(t)(ρ1(t) − ρ1(ξ))

β−1�(t)dt . (3.4)

Lemma 3.3 Suppose that ν ∈ (0, 1] and h : Q → R is continuous. Then, ω ∈
PC(Q,R) is a solution of the fractional integral equation

ω(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω0 + λ

∣
∣
∣ 1
�(γ )

∫ K
a ρ′

3(t)(ρ3(K ) − ρ3(t))γ−1η(t) |ω(t)|p−1 dt
∣
∣
∣
p�−1

+ 1
�(ν)

∫ ξ

a ρ′
1(t)(ρ1(ξ) − ρ1(t))ν−1h(t)ds

+∑q
j=0 I

1
j

(
ω
(
ξ j
))

H(ξ − t j ), for ∀ξ ∈ Q, q = 0, 1, 2, . . . , k,

(3.5)

if and only if ω is a solution of the linear impulsive problem
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1;C
ξDν

a+ω(ξ) = h(t) a < ξ < K ,

�
(
ω
(
ξq
)) = I 1q

(
ω
(
ξq
))

, q = 1, 2, . . . , k

ω(a) = ω0 + λ
∣
∣ρ3

ξIγ

a+η(ξ) | ω(ξ)|p−1
∣
∣p

�−1
ξ=K

,

(3.6)

where H is the Heavside function and I 10 = 0.

Proof Leth ∈ C(Q,R).Assume thatω(ξ) is a solutionof the linear impulsive problem
(3.6). If ξ ∈ [a, ξ1], then

ρ1;C
ξDν

a+ω(ξ) = h(ξ). (3.7)

By applying Lemma 3.1, we get

ω(ξ) = ω(a) + 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt .

If ξ ∈ (t1, t2], then
ρ1;C

ξDν
a+ω(ξ) = h(ξ) with �ω (ξ1) = I 11 (ω (ξ1)) .

In this case, Lemma 3.1 implies that

ω(ξ) = ω(ξ+
1 ) − 1

�(ν)

∫ t1

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

= ω
(
ξ−
1

)+ I 11 (ω (ξ1)) − 1

�(ν)

∫ t1

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

= ω(a) + I 11 (ω (ξ1)) + 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt .

If ξ ∈ (ξ2, ξ3], then by using Lemma 3.1 one more step, we get

ω(ξ) = ω(ξ+
2 ) − 1

�(ν)

∫ t2

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

= ω
(
ξ−
2

)+ I 12 (ω (ξ1)) − 1

�(ν)

∫ t2

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt
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+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt

= ω(a) + I 11 (ω (ξ1)) + I 12 (ω (ξ2)) + 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ)−ρ1(t))

ν−1h(t)dt .

If ξ ∈ Jk for q = 1, 2, . . . , k, then from Lemma 3.1 again and noting the boundary
condition

ω(a) = ω0 + λ

∣
∣
∣
ρ3
ξIγ

a+η(ξ) | ω(ξ)|p−1
∣
∣
∣
p�−1

ξ=K
,

one can obtain

ω(ξ) = ω(a)+
q∑

j=1

I 1j
(
ω
(
ξ j
))+

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1h(t)dt .

By a simple calculation, we get

ω(a) = ω0 + λ

∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

.

hence from Proposition 2.1, we get (3.5).
Now, suppose that (3.5) holds for ω. Then we have the following assumption: If

ξ ∈ [ca, t1], then ω(a) = ω0 + λ
∣
∣ρ3

ξIγ

a+η(ξ) |ω(ξ)|p−1
∣
∣p

�−1
ξ=K

and using the fact that
ρ1;C

ξDν
a+ is the left inverse of ρ1

ξIν
a+ , we get (3.7). If ξ ∈ Jk, q = 1, 2, . . . , k and

using the fact that the (ρ-Caputo fractional derivative of a constant equals to zero,
we obtain ρ1;C

ξDν
a+ω(ξ) = h(ξ), ξ ∈ (tk, ξq+1] and �(ω(tk)) = I 1q (ω(tk)). So, the

proof is completed. �

Lemma 3.4 Assume that ϕ(ξ) ∈ C(Q,R), ν, β ∈ (0, 1]. Then the solution of the
fractional impulsive boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ2;C
ξDβ

K−
(
κ(ξ)ψp

(
ρ1;C

ξDν
a+ω

))
(ξ) = ϕ(ξ), ξ ∈ Q, ξ 
= tk

�
(
ω
(
ξq
)) = I 1q

(
ω
(
ξq
))

,

�ψp
(
ρ1;C

ξDν
a+ω

(
ξq
)) = I 2q (ω(tk)), q = 1, 2, . . . , k

ω(a) = ω0 + λ
∣
∣ρ3

ξIγ

a+η(ξ) | ω(ξ)|p−1
∣
∣p

�−1
ξ=K

, ρ1;C
ξDν

a+ω(K ) = ω1,

(3.8)

is equivalent to the following integral equation

ω(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω0 + λ

∣
∣
∣ 1
�(γ )

∫ K
a ρ′

3(t)(ρ3(K ) − ρ3(t))γ−1η(t) |ω(t)|p−1 dt
∣
∣
∣
p�−1

+ 1
�(ν)

∫ ξ

a ρ′
1(t)(ρ1(ξ) − ρ1(t))ν−1ψp� (Fϕ(t))dt

+∑q
j=0 I

1
j

(
ω
(
ξ j
))

H(ξ − t j ) ξ ∈ Q, q = 0, 1, . . . , k,

(3.9)
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where

Fϕ(ξ)= 1

κ(ξ)

⎧
⎨

⎩

κ(K )ψp (u1)+ 1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(u)−ρ2(ξ))

β−1ϕ(u)du

+∑q
j=0 I

2
j (ω(t j )H(ξ − t j ), ξ ∈ Q, q = 0, 1, . . . , k,

(3.10)

and H is the Heavside function and I i0 = 0 for i = 1, 2.

Proof Let ν ∈ (0, 1] and ϕ ∈ C( Q,R). Let v(ξ) = ψp
(
ρ1;C

ξDν
a+ω(ξ)

)
, then from

(3.8), we get the following linear impulsive problem

ρ2;C
ξDβ

K−κ(ξ)v(ξ) = ϕ(ξ) a < ξ < K , ξ 
= tk (3.11)

�
(
v
(
ξq
)) = bq , q = 1, 2, . . . , k (3.12)

v(K ) = ψp (u1) , (3.13)

with bq = I 2q (ω(tk), q = 1, 2, . . . , k, b0 = 0.
Then by applying Lemma 3.2, (3.11)–(3.13) are equivalent to

κ(ξ)v(ξ) =
{

κ(K )ψp (u1) + 1
�(β)

∫ K
ξ

ρ′
2(u)(ρ2(u) − ρ2(ξ))

β−1ϕ(u)du
+∑q

j=0 b j (ω(t j )H(ξ − t j ), ξ ∈ Q, q = 1, . . . , k.

(3.14)

hence by v(ξ) = ψp
(
ρ1;C

ξDν
a+ω(ξ)

) = F(ϕ(ξ)), ξ ∈ Q, q = 0, 1, 2, . . . , k, one can
find that the problem (3.8) has the equivalent form

⎧
⎪⎪⎨

⎪⎪⎩

ρ1;C
ξDν

a+ω(ξ) = ψp� (F(ϕ(ξ))) , a < ξ < K , ξ 
= tk,
�
(
ω
(
ξ j
)) = I 1j

(
ω
(
ξ j
))

, q = 1, 2, . . . , k

ω(a) = ω0 + λ
∣
∣ρ3

ξIγ

a+η(ξ) | ω(ξ)|p−1
∣
∣p

�−1
ξ=K

.

(3.15)

Then, by applying Lemma 3.1 again, we get the desired result. �


3.2 Existence and Uniqueness Results

Here, two main properties including the existence and uniqueness of solutions will be
investigated.

Lemma 3.5 If f ∈ C( Q × R,R), then the function ω(ξ) ∈ PC( Q,R) is a solution
of the the p-Laplacian impulsive fractional boundary value problem (1.1) if and only
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if it satisfies the integral equation

ω(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω0 + λ

∣
∣
∣ 1
�(γ )

∫ K
a ρ′

3(t)(ρ3(K ) − ρ3(t))γ−1η(t) |ω(t)|p−1 dt
∣
∣
∣
p�−1

+ 1
�(ν)

∫ ξ

a ρ′
1(t)(ρ1(ξ) − ρ1(t))ν−1ψp� (FNω(t))dt

+∑q
j=0 I

1
j

(
ω
(
ξ j
))

H(ξ − t j ) ξ ∈ Q, q = 0, 1, . . . , k,

(3.16)

where

FNω(ξ)= 1

κ(ξ)

{
κ(K )ψp (u1)+ 1

�(β)

∫ K
ξ

ρ′
2(u)(ρ2(u)−ρ2(ξ))

β−1Nω(u)du

+∑q
j=0 I

2
j (ω(t j )H(ξ − t j ), ξ ∈ Q, q = 1, . . . , k,

(3.17)

and N is the Nemytskii operator associated to the p-Laplacian impulsive fractional
boundary value problem (1.1) definded by

N (ω(ξ)) = f (ξ, ω(ξ)) − t(ξ)ψp (ω(ξ)) , ξ ∈ Q, ξ 
= tk,

q = 1, 2, . . . , k, ω ∈ PC(Q,R). (3.18)

Now, we consider the integral operator L : PC(Q,R) → PC(Q,R) defined as

Lω(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω0 + λ

∣
∣
∣ 1
�(γ )

∫ K
a ρ′

3(t)(ρ3(K ) − ρ3(t))γ−1η(t) |ω(t)|p−1 dt
∣
∣
∣
p�−1

+ 1
�(ν)

∫ ξ

a ρ′
1(t)(ρ1(ξ) − ρ1(t))ν−1ψp� (FNω(t))dt

+∑q
j=0 I

1
j

(
ω
(
ξ j
))

H(ξ − t j ) ξ ∈ Q, q = 0, 1, . . . , k.

(3.19)

It is obvious that a solution of the p-Laplacian impulsive fractional boundary value
problem (1.1) will be the fixed point of the operator L.

Lemma 3.6 The operator L : PC(Q,R) → PC(Q,R) is completely continuous.

Proof Firstly, let us prove the continuity of the operatorL : PC(Q,R) → PC(Q,R).
Assume that {un} ⊆ PC(Q,R) is a sequence so that un → ω in PC(Q,R). In view
of the continuity of f (ξ, ω), I iq for i = 1, 2 and the first item of Lemma (2.9), one
can write

lim
n→∞Lun(ξ)= lim

n→∞

⎛

⎜
⎜
⎝

ω0+λ

∣
∣
∣ 1
�(γ )

∫ K
a ρ′

3(t)(ρ3(K )−ρ3(t))γ−1η(t) |un(t)|p−1 dt
∣
∣
∣
p�−1

+ 1
�(ν)

∫ ξ

a ρ′
1(t)(ρ1(ξ) − ρ1(t))ν−1ψp� (FNun(t))dt

+∑q
j=0 I

1
j

(
un
(
ξ j
))

H(ξ − t j ),

⎞

⎟
⎟
⎠

= ω0 + λ

∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |un(t)|p−1 dt

∣
∣
∣
∣

p�−1
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+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1ψp� (FNun(t))dt

+
q∑

j=0

I 1j
(
un
(
ξ j
))

H(ξ − t j ) = Lω(ξ)

uniformly for ξ ∈ Q, q = 0, 1, . . . , k. This shows the continuity of the operator
L : PC(Q,R) → PC(Q,R).

Next, we show that L is compact. Let � = {ω ∈ PC(Q,R), ‖ ω ‖< R}. Then
from the continuity of f and I iq , there exist the constants M0,M1,M2 > 0 such that
| f (ξ, ω(ξ) |≤ M0 and | I iq(ω(tk) |≤ Mi (q = 1, 2, . . . , k, i = 1, 2) for all ξ ∈ Q
and each ω ∈ �. We have

| FNω(ξ) | = 1

|κ(ξ)|

∣
∣
∣
∣
∣
∣
κ(K )ψp (u1)

+ 1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(u) − ρ2(ξ))

β−1 f (u, ω(u) − t(u)ψp (ω(u)) du

+
q∑

j=0

I 2j (ω(t j )H(ξ − t j ), ξ ∈ Q, q = 1, . . . , k

∣
∣
∣
∣
∣
∣

(3.20)

≤ M3

⎛

⎝κ(K )ψp (| u1 |) + 1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(t) − ρ2(ξ))

β−1 (| f (u, ω(u) |

+t(u)ψp (| ω(u) |)) du +
k∑

j=1

| I 2j (ω(t j ) |
⎞

⎠

≤ M3

(

κ(K ) | u1 |p−1 +M0 + M5Rp−1

�(β + 1)
(ρ2(K ) − ρ2(a))

β + mM2

)

:= L,

where M3 = 1
minξ∈Q(κ(ξ))

, M5 = maxξ∈Q (t(ξ)), M0 and M2 are given above. It
implies that

| Lω(ξ) |≤| ω0 |+| λ |
∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

+
k∑

j=1

| I 1j (ω(t j ) |+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ)−ρ1(t))

ν−1ψp� (|FNω(t)|) dt

≤| ω0 | + | λ | RMp�−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ + kM1
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+ 1

�(ν + 1)
(ρ1(K ) − ρ1(a))

νL p�−1 := L�.

here M4 = maxξ∈Q (η(ξ)).
Therefore, we find that | Lω |≤ L� for each ω ∈ �. Consequently, L(�) is

uniformly bounded in PC(Q,R).
Now, we need to prove that L(�) ⊂ PC(Q,R) is equicontinuous in Jk by the

Arzelá-Ascoli theorem of PC-typ. For this, let ω ∈ � and τ1, τ2 ∈ [a, t1] such that
a ≤ τ1 < τ2 ≤ t1. We have

|Lω(τ2)−Lω(τ1) |=
∣
∣
∣
∣

1

�(ν)

∫ τ1

a
ρ′
1(t)

(
(ρ1(τ2)−ρ1(t))

ν−1−(ρ1(τ1)−ρ1(t))
ν−1)

×ψp� (FNω(t)) dt

+ 1

�(ν)

∫ τ2

τ1

ρ′
1(t)(ρ1(τ2) − ρ1(t))

ν−1ψp� ( FNω(t)) dt

∣
∣
∣
∣

≤ L p�−1

�(ν)

(∫ τ1

a

∣
∣ρ′

1(t)
(
(ρ1(τ2) − ρ1(t))

ν−1 − (ρ1(τ1) − ρ1(t))
ν−1)∣∣ dt

+
∫ τ2

τ1

ρ′
1(t)(ρ1(τ2) − ρ1(t))

ν−1dt

)

= L p�−1

�(ν)

(
2 (ρ1(τ2)−ρ1(τ1))

ν−(ρ1(τ2)−ρ1(a))
ν+(ρ1(τ1)−ρ1(a))

ν
)
.

In other words, we have

| Lω(τ2) − Lω(τ1) |≤ L p�−1

�(ν)

(

2 (ρ1(τ2) − ρ1(τ1))
ν − (ρ1(τ2) − ρ1(a))

ν + (ρ1(τ1) − ρ1(a))
ν

)

,

for Qk , where tk ≤ τ1 < τ2 ≤ ξq+1, q = 1, 2, . . . , k.
As ρ1(ξ)ν is uniformly continuous on Qk and τ2 → τ1, the right-hand side of the

above inequality tends to zero. Therefore, K (�) is equicontinuous. Then, the Arzelá-
Ascoli theorem of PC-typ implies that L(�) is relatively compact in PC(Q,R). �

To investigate the existence and uniqueness of solutions to the p-Laplacian impulsive
fractional boundary value problem (1.1), we consider some assumptions below.

(H1) Let f : Q × R → R be continuous with the following conditions: there exist
non-negative constants r , e ∈ R and 0 ≤ � < p − 1 such that | f (ξ, ω)| ≤ r + e|ω|�
for all ξ ∈ Q and ω ∈ R.

(H2) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R), and there exist constants

r i , ei ≥ 0, 0 ≤ �1 < 1 and 0 ≤ �2k < p − 1 such that |I ik (ω)| ≤ r iq + eiq |ω|�ik , ω ∈ R.

(H3) Let f : Q×R → R be a continuous function. Also, there exist non-negative
constants r , e,R1 ∈ R and 0 ≤ � < p − 1 such that | f (ξ, ω)| ≤ r + e|ω|�,
ξ ∈ Q, ω ∈ [0,R1];

(H4) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R), and there exist constants

r ik, e
i
k,R1 ≥ 0, 0 ≤ �1k < 1 and 0 ≤ �2k < p−1 such that |I ik (ω)| ≤ r iq +eiq |ω|�ik , ω ∈

[0,R1];
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(H�
3) f : Q × R → R is continuous. Also, there exist non-negative constants

r , e,R1 ∈ R such that | f (ξ, ω)| ≤ r + e|ω|p−1, ξ ∈ Q, ω ∈ [0,R1];
(H�

4) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R), and also, there exist constants

r ik, e
i
k,R1 ≥ 0 and 0 ≤ �1k < 1 such that |I ik (ω)| ≤ r iq + eiq |ω|p−1, ω ∈ [0,R1];

(H5) f : Q×R → R is continuous. Also, there exist non-negative constant L ∈ R

such that

| f (ξ, ω) − f (ξ, v)| ≤ L|ω − v|, ξ ∈ Q, ω, v ∈ R;

(H6) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R), and also, there exist constants

Li
k > 0 such that

|I ik (ω) − I ik (ω)| ≤ Li
q |ω − v|, ω, v ∈ R

(H�
5) f : Q × R → R is continuous. Also, there exist non-negative function

�(ξ) ∈ C( Q) and the constant L ∈ R such that

0 < f (ξ, ω) − t(ξ)ψp (ω(ξ)) ≤ �(ξ), ξ ∈ Q, ω ∈ R,

| f (ξ, ω) − f (ξ, v)| ≤ L|ω − v|, ξ ∈ Q, ω, v ∈ R

u0, u1 > 0, λ ≥ 0;

(H�
6) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R). Also, there exist the positive

functions � i
k ∈ C(Q,R) and constants Li

k, e
1
k > 0 such that

0 ≤ I 1k (ω) ≤ �1
k (ξ) + e1k ‖ ω ‖, (ξ, ω) ∈ R × R,

0 ≤ I 2k (ω) ≤ �2
k (ξ), (ξ, ω) ∈ Q × R,

|I ik (ω) − I ik (ω)| ≤ Li
q |ω − v|, ω, v ∈ R;

(H��
5 ) f : Q × R → R is a continuous function. Also, there exist non-negative

constants L ∈ R and e such that

0 < f (ξ, ω) − t(ξ)ψp (ω(ξ)) , ξ ∈ Q, ω ∈ R,

0 < | f (ξ, ω)| ≤ e|ω|p−1, ξ ∈ Q, ω ∈ R,

| f (ξ, ω) − f (ξ, v)| ≤ L|ω − v|, ξ ∈ Q, ω, v ∈ R

u0 > u1 > 0, λ ≥ 0;

(H��
6 ) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R), and also, there exist the positive

functions �1
k ∈ C(Q,R) and constants Li

k, e
i
k > 0 such that

0 ≤ I 1k (ω) ≤ �1
k (ξ) + e1k ‖ ω ‖, (ξ, ω) ∈ R × R,

0 ≤ I 2k (ω) ≤ e2k |ω|p−1, (ξ, ω) ∈ Q × R,

|I ik (ω) − I ik (ω)| ≤ Li
q |ω − v|, ω, v ∈ R;
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(H���
5 ) f : Q × R → R is continuous. Also, there exist the non-negative function

�(ξ) ∈ C(Q) and constant L ∈ R such that

−�(ξ) ≤ f (ξ, ω) − t(ξ)ψp (ω(ξ)) < 0, ξ ∈ Q, ω ∈ R,

| f (ξ, ω) − f (ξ, v)| ≤ L|ω − v|, ξ ∈ Q, ω, v ∈ R

u0, u1 < 0, λ ≤ 0;

(H���
6 ) For q = 1, 2, . . . , k, i = 1, 2, I iq ∈ C(R,R), and also, there exist the

positive functions χ i
k ∈ C(R,R) and constants Li

k, e
1
k > 0 such that

−χ1
k (ξ) − e1k ‖ ω ‖≤ I 1k (ω) ≤ 0, (ξ, ω) ∈ Q × R,

−χ2
k (ξ) ≤ I 2k (ω) ≤ 0, (ξ, ω) ∈ Q × R,

|I ik(ω) − I ik (ω)| ≤ Li
q |ω − v|, ω, v ∈ R.

Now, we prove the first existence theorem.

Theorem 3.7 Suppose that the assumptions (H1) and (H2) are satisfied. If

| λ | Mp�−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ < 1, (3.21)

then the p-Laplacian impulsive fractional boundary value problem (1.1) has at least
one solution.

Proof Firstly, Lemma 3.6 implies that the integral operator L( Q,R) → PC( Q,R)

is completely continuous. Next, suppose that (H1) and (H2) hold. We show that the
set E(L) = {ω ∈ PC( Q,R) : ω = σLω for some σ ∈ [0, 1]} is bounded.

Let ω ∈ E(L). Then we have ω = σLω for each ξ ∈ Q, q = 0, 1, 2, . . . , k and

| FNω(ξ) | ≤ M3

(

κ(K )ψp (| u1 |) + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

×
[

| f (u, ω(u) | +t(u)ψp (| ω(u) |)
]
du +

k∑

j=1

| I 2j (ω(t j ) |
)

≤ M3

(

κ(K ) | u1 |p−1 + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

×
[
(r + e|ω(u)|� + t(u)ψp (| ω(u) |)

]
du +

k∑

j=1

r2q + e2q |ω(tk)|�2k
)

≤ M3

(

κ(K ) | u1 |p−1 +r+e ‖ ω ‖�+M5 ‖ ω ‖p−1

�(β + 1)
(ρ2(K )−ρ2(a))

β

+
k∑

j=1

r2j + e2j ‖ ω ‖�2j
)

.
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So, one can find a positive constant � such that ‖ FNω ‖< � . Now, we have

| ω(ξ) | = σ | Lω(ξ) |

= σ

∣
∣
∣
∣
∣
ω0 +

∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1ψp� (FNω(t)) dt

∣
∣
∣
∣

≤ σ | ω0 | +σ

∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

+ σ

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ)−ρ1(t))

ν−1ψp� (|FNω(t)|) dt+σ

k∑

j=1

| I 1j (ω(t j ) |

≤| ω0 | + | λ | ‖ ω ‖ Mp�−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ

+ 1

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν� p�−1 +
k∑

j=1

r1j + e1j ‖ ω ‖�1j .

Consequently,

‖ ω(ξ) ‖ ≤| ω0 | + | λ | ‖ ω ‖ Mp�−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ

+ 1

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν� p�−1 +
k∑

j=1

r1j + e1j ‖ ω ‖�1j ,

for ξ ∈ Q, q = 1, 2, . . . , k.

By taking into account that 0 ≤ �1j < 1 and
|λ|Mp�−1

4
�(γ+1) (ρ3(K ) − ρ3(a))γ < 1, we can

deduce that there exists a positive constant �� such that ‖ ω ‖≤ �� for any solution
of the functional equation ω = σLω, 0 < σ < 1. Therefore, by using Theorem 2.13,
we obtain the existence of a fixed point for L implying the existence of at least one
solution for the p-Laplacian impulsive fractional boundary value problem (1.1). �


Before starting the second existence theorem, we consider the following notations
for the sake of convenience:

C1 = M3

⎡

⎣κ(K ) | u1 |p−1 +
k∑

j=1

r2j + r

�(β + 1)
(ρ2(K ) − ρ2(a))

β

⎤

⎦ ,

C2 = 4eM3

�p−1�(β + 1)
(ρ2(K ) − ρ2(a))

β, C3 = M5M3

�p−1�(β + 1)
(ρ2(K ) − ρ2(a))

β,
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C4
j = 4M3e2j k

�p−1 , C5 =| ω0 | +
k∑

j=1

r1j , C6 = 4 | λ | Mp�−1
4

�(γ + 1)
,

C7
j = 4m

k∑

j=1

e1j , � = 4
�(ν + 1)

(ρ1(K ) − ρ1(a))ν
, for j = 1, 2, . . . , k.

Now, we are ready to prove the second existence theorem.

Theorem 3.8 Assume that the assumptions (H3) and (H4) are satisfied. If

C2,C6 ≤ 1, (3.22)

then the p-Laplacian impulsive fractional boundary value problem (1.1) has at least
one solution.

Proof We shall prove that the p-Laplacian impulsive fractional boundary value prob-
lem (1.1) has at least one solution. Suppose that (H3) and (H4) hold andC2,C6 satisfy
(3.21), and let �1 = {ω ∈ PC(Q,R), ‖ ω ‖< R1}, where

R1 ≥ max

⎧
⎨

⎩

4
(
C1)p

�
)

�
,
(
C3
) 1

p−1−�
,
(
C4

j

) 1
p−1−�2j , 4C5,

(
C7

j

) 1
1−�1j

⎫
⎬

⎭
,

for j = 1, 2, . . . , k,

for ∀ω ∈ �, ξ ∈ Q. We have

| FNω(ξ) | ≤ M3

(

κ(K )ψp (| u1 |) + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

×
[

| f (u, ω(u) | +t(u)ψp (| ω(u) |)
]
du +

k∑

j=1

| I 2j (ω(t j ) |
)

≤ M3

(

κ(K ) | u1 |p−1 + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

×
[
r + e|ω(u)|� + t(u)ψp (| ω(u) |)

]
du +

k∑

j=1

r2q + e2q |ω(tk)|�2k
)

≤ M3

(

κ(K ) | u1 |p−1 +
k∑

j=1

r2j + r + e ‖ ω ‖� +M5 ‖ ω ‖p−1

�(β + 1)

× (ρ2(K ) − ρ2(a))
β +

k∑

j=1

e2j ‖ ω ‖�2j
)

≤ C1 + �p−1

4
C2R�

1 + C3�
p−1

4
Rp−1

1 +
k∑

j=1

�p−1

4m
C4

j�
p−1R�2j

1
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≤ (�R1)
p−1

4
+ �p−1

4
Rp−1−�

1 R�
1 + C3(�R1)

p−1

+
k∑

j=1

�p−1

4
kRp−1−�2j

1 R�2j
1

≤ (�4R1)
p−1 .

This implies that

| Lω(ξ) | ≤| ω0 | +
∣
∣
∣
∣

λ

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

+
k∑

j=1

| I 1j ω(t j ) | + 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ)−ρ1(t))

ν−1ψp� (|FNω(t)|) dt

≤| ω0 | + | λ | ‖ ω ‖ Mp�−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ +
k∑

j=1

r1j + e1j ‖ ω ‖�1j

+ 1

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν�R1

≤| ω0 | +
k∑

j=1

r1j+ | λ | R1M
p�−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ +
k∑

j=1

e1jR
�1j
1

+ 1

�(ν+1)
(ρ1(K )−ρ1(a))

ν�R1 = C5+C6

4
R1+

k∑

j=1

C7
j

4m
R�1j

1 + 1

4
R1

≤ R1

4
+ R1

4
+

k∑

j=1

1

4m
R1−�1j

1 R�1j
1 + 1

4
R1 ≤ R1.

Thus,

‖ Lω(ξ) ‖≤ R1,

which implies thatL(�) ⊆ � for every ω ∈ �1. Hence, from Lemma 3.6, the integral
operatorL : � → � is completely continuous. By applying the Schauder’s fixed point
theorem, we can say that the operator L has a fixed point, which is also a solution to
the p-Laplacian impulsive fractional boundary value problem (1.1). �


Remark 3.9 Let the assumptions (H�
3) and (H�

4) be satisfied. If

C2, C3,

k∑

j=1

C4
j , C6,

k∑

j=1

C7
j ≤ 1, (3.23)
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then, by using a similar method given in the proof of Theorem 3.8, we can follow that
the p-Laplacian impulsive fractional boundary value problem (1.1) also has at least
one solution.

Theorem 3.10 Let f (ξ, ω) be continuous on Q × R and I ik (ω) be continuous on

R. Assume that limω→0
f (ξ,ω)

r+e|ω|� = 0 and limω→0
I ik (ω)

r ik+eik |ω|�ik
= 0 for i = 1, 2, q =

1, 2, . . . , k, where r , e, r ik, e
i
k are nonegative constants and 0 ≤ �, �2k < p − 1,

0 ≤ �1k < 1. Then the p-Laplacian impulsive fractional boundary value problem (1.1)
has at least one solution.

Proof In view of limω→0
f (ξ,ω)

r+e|ω|� = 0 and limω→0
I ik (ω)

r ik+eik |ω|�ik
= 0, for i = 1, 2,

q = 1, 2, . . . , k, there exists a constantR1 > 0 such that | f (ξ, ω) |≤ ε
(
r + e | ω |�)

and | I ik (ω) |≤ εik

(
r ik + eik | ω |�ik

)
for 0 <| ω |< R1, where ε, εik > 0.

As f (ξ, ω) is continuous on Q × R and I ik (ω)’s are continuous on R, we find
that the conditions (H3) and (H4) hold. The proof follows a similar process as in
Theorem 3.8. �

Remark 3.11 Consider the continuous functions f (ξ, ω) on Q × R and I ik (ω) on

R for i = 1, 2, q = 1, 2, . . . , k. Let limω→0
f (ξ,ω)

r+e|ω|p−1 = 0, limω→0
I 1k (ω)

r1k +e1k |ω| = 0

and limω→0
I 2k (ω)

r2k +e1k |ω|p−1 = 0, where r , e, r ik, e
i
k are non-negative constants. The same

technique used in the proof of Theorem 3.10 can be applied to show that the p-
Laplacian impulsive fractional boundary value problem (1.1) has at least one solution.

In the rest of study, we will give the uniqueness results to the p-Laplacian impulsive
fractional boundary value problem (1.1). For this, let us use the principle of the Banach
contraction mapping. For ease of understanding, define

Fu =ρ3
ξIγ

a+
(
η(ξ) |ω(ξ)|p−1

ξ=K

)
.

Theorem 3.12 Suppose that there exist the constants �1,�2,�3,�4,�5,�6 > 0
such that

�1 ≤| FNω(ξ) |≤ �2, (3.24)

�3 ≤‖ ω ‖≤ �4, (3.25)

�5 ≤| Fu |≤ �6, (3.26)

for each ξ ∈ Q, ω ∈ PC(Q,R). If the assumptions (H5) and (H6) hold, then the
p-Laplacian impulsive fractional boundary value problem (1.1) has a unique solution.

Proof Let the assumptions (H5) and (H6) be satisfied. We only consider the case
1 < p < 2; as the other case p ≥ 2 is straigtforward. If 1 < p ≤ 2, we have p� ≥ 2
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by 1
p + 1

p� = 1, and by applying (3.24)–(3.26) and Lemma 2.9 for every ξ ∈ Q,
ω ∈ PC(Q,R), we obtain

|ψp� (FNω(ξ)) − ψp� (FNv(ξ)) | ≤ (p� − 1)�p�−2
2 |FNω(ξ) − FNv(ξ)|

=(p�−1)�p�−2
2

1

|κ(ξ)|
∣
∣
∣
∣

1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(u)−ρ2(ξ))

β−1 ( f (u, ω(u)− f (u, v(u)) du

− 1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(u) − ρ2(ξ))

β−1t(u)(ψp (ω(u)) − ψp (ω(u)))du

∣
∣
∣
∣

≤ (p�−1)�p�−2
2 M3

(
1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(u) − ρ2(ξ))

β−1 | f (u, ω(u) − f (u, v(u) | du

+ 1

�(β)

∫ K

ξ

ρ′
2(u)(ρ2(u) − ρ2(ξ))

β−1t(u) | ψp (ω(u)) − ψp (ω(u)) | du

+
q∑

j=1

| I 2j (ω(t j ) − I 2j (ω(t j ) |
)

≤ (p� − 1)�p�−2
2 M3

⎛

⎝
L + (p − 1)�p−2

1

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

L2
j

⎞

⎠ ‖ ω − v ‖,

and

∣
∣
∣| Fu |p�−1 − | Fv |p�−1

∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣

1

�(γ )

∫ K

a
(ρ′

3(t)(ρ3(K ) − ρ3(t))
γ−1η(t) | ω |p−1 dt

∣
∣
∣
p�−1

−
∣
∣
∣

1

�(γ )

∫ K

a
(ρ′

3(t)(ρ3(K ) − ρ3(t))
γ−1η(t) | ω |p−1 dt

∣
∣
∣
p�−1

∣
∣
∣
∣

≤(p�−1)�p�−2
6

∣
∣
∣

1

�(γ )

∫ K

a
(ρ′

3(t)(ρ3(K )−ρ3(t))
γ−1η(t)

[
ψp (ω(t))−ψp (v(t))

]
dt
∣
∣
∣

≤ (p� − 1)�p�−2
6

(
M4(p − 1)�p−2

3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ

)

‖ ω − v ‖ .

So, for every ξ ∈ Q, ω, v ∈ PC(Q,R), we obtain

| Lω(ξ) − Lv(ξ) |

≤| λ | (p� − 1)�p�−2
6

(
M4(p − 1)�p−2

3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ

)

‖ ω − v ‖

+ (p�−1)�p�−2
2 M3

⎛

⎝
L+(p−1)�p−2

3

�(β + 1)
(ρ2(K )−ρ2(a))

β+
k∑

j=1

L2
j

⎞

⎠‖ ω−v ‖
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+
k∑

j=1

L1
j ‖ ω − v ‖

=
⎡

⎣| λ | (p� − 1)�p�−2
6

(
M4(p − 1)�p−2

3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ

)

+
k∑

j=1

L1
j

+(p�−1)�p�−2
2 M3

⎛

⎝
L+(p−1)�p−2

3

�(β + 1)
(ρ2(K )−ρ2(a))

β+
k∑

j=1

L2
j

⎞

⎠

⎤

⎦‖ ω−v ‖

=: �� ‖ ω − v ‖ .

Hence, for each ω, v ∈ PC(Q,R), we get

‖Lω − Lv‖ ≤ �� ‖ ω − v ‖;

otherwise,

‖Lω − Lv‖ ≤ ��� ‖ ω − v ‖,

for each ω, v ∈ PC( Q,R), where

��� =
⎡

⎣| λ | (p� − 1)�p�−2
5

(
M4(p − 1)�p−2

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ

)

+
k∑

j=1

L1
j

+ (p� − 1)�p�−2
1 M3

⎛

⎝
L + (p − 1)�p−2

4

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

L2
j

⎞

⎠

⎤

⎦ .

Since 0 < ��,��� < 1, we can follow that L : PC(Q,R) → PC(Q,R) is a
contraction mapping. By applying the Banach contraction principle, we can say thatL
has a unique fixed point in PC(Q,R), which is a solution of the p-Laplacian impulsive
fractional boundary value problem (1.1). �

Theorem 3.13 Assume that the assumptions (H�

5) and (H�
6) are satisfied. If

��,C8,��� < 1, (3.27)

where

�1 =: M3κ(K )u p−1
1 ,

�2 := M3

⎛

⎝κ(K )u p−1
1 + maxξ∈Q(�((ξ))

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

�2
j (t j )

⎞

⎠ ,

�3 =: u0, �4 =: ω0 +∑k
j=1 �

1
j (t j ) + 1

�(ν+1) (ρ1(K ) − ρ1(a))ν�
p�−1
2

1 − C8 ,
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�5 =: M6�
p−1
3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ , �6 =: M5�
p−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ ,

C8 =:
k∑

j=1

e1j + λ
Mp�−1

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

(p�−1)γ ,

then there exists a unique solution for the p-Laplacian impulsive fractional boundary
value problem (1.1).

Proof Assume that the assumptions (H�
5) and (H

�
6) are satisfied and letω ∈ PC(Q,R).

Then for every ξ ∈ [a, t1], we obtain

0 < FNω(ξ) ≤ M3

(

κ(K )ψp (u1) + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

×
[
f (u, ω(u) − t(u)ψp (ω(u))

]
du +

k∑

j=1

I 2qω(tk)

)

≤ M3

⎛

⎝κ(K )u p−1
1 + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1�(u)du +
k∑

j=1

�2
j (t j )

⎞

⎠

≤ M3

⎛

⎝κ(K )u p−1
1 + maxξ∈Q {�(ξ)}

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

�2
j (t j )

⎞

⎠ =: �2,

and so,

0 <, omega(ξ) ≤ ω0+λ

∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K ) − ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

+
k∑

j=1

I 1j ω(t j ) + 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1ψp� (FNω(t)) dt

≤ ω0 + λ
‖ ω ‖ Mp�−1

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ +
k∑

j=1

�1
j (t j ) + e1j ‖ ω ‖

+ 1

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν�
p�−1
2

= u0 + C8 ‖ ω ‖ +
k∑

j=1

�1
j (t j ) + 1

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν�
p�−1
2 .

As C8 < 1, then

‖ ω ‖≤ω0 +∑k
j=1 �

1
j (t j ) + 1

�(ν+1) (ρ1(K ) − ρ1(a))ν�
p�−1
2

1 − C8 =: �4,
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and

Fu =
∣
∣
∣

1

�(γ )

∫ K

a
(ρ′

3(t)(ρ3(K ) − ρ3(t))
γ−1η(t)ψp (ω(t)) dt

∣
∣
∣

≤ M5�
p−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ =: �6.

On the other hand, from the positivity of FNω(ξ), λ, u0 and I ik for i = 1, 2, q =
1, 2, . . . , k, for each ξ ∈ [a, t1], ω ∈ PC(Q,R), we have

ω(ξ) ≥ u0 =: �3,

FNω(ξ) ≥ M3κ(K )ψp (u1) =: �1,

Fu ≥ M6�
p−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ =: �6.

By using the same process above, we get

�1 ≤| FNω(ξ) |≤ �2,

�3 ≤‖ ω ‖≤ �4,

�5 ≤| Fu |≤ �6,

for any ξ ∈ Jk ,ω ∈ PC(Q,R), q = 1, 2, . . . , k. Hence, by applying Theorem 3.12,
one can deduce that the p-Laplacian impulsive fractional boundary value problem (1.1)
has a unique solution. �

Theorem 3.14 Suppose that the assumptions (H��

5 ) and (H��
6 ) are satisfied. If

��, C9, ��� < 1, (3.28)

where

M7 =: M3

⎛

⎝κ(K ) + e + M5

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

e2j (t j )

⎞

⎠ ,

�1 =: M3κ(K )u p−1
1 , �2 := M7�

p−1
4 ,

�3 =: u0, �4 =: ω0 +∑k
j=1 �

1
j (t j )

1 − C9 ,

�5 =: M6�
p−1
3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ , �6 =: M5�
p−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ ,

C9 =:
k∑

j=1

e1j + λ
Mp�−1

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

(p�−1)γ Mp�−1
7

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν,
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then a unique solution exists for the p-Laplacian impulsive fractional boundary value
problem (1.1).

Proof Assume that the assumptions (H��
5 ) and (H��

6 ) are satisfied and let ω ∈
PC(Q,R). Then for every ξ ∈ [a, t1], we obtain

0 < ω0 < ω(ξ) ≤ ω0 + λ

∣
∣
∣
∣

1

�(γ )

∫ K

a
ρ′
3(t)(ρ3(K )−ρ3(t))

γ−1η(t) |ω(t)|p−1 dt

∣
∣
∣
∣

p�−1

+
k∑

j=1

I 1j ω(t j )+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ)−ρ1(t))

ν−1ψp� (FNω(t)) dt

≤ ω0 + λ
‖ ω ‖ Mp�−1

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ +
k∑

j=1

�1
j (t j ) + e1j ‖ ω ‖

+ 1

�(ν)

∫ ξ

a
ρ′
1(t)(ρ1(ξ) − ρ1(t))

ν−1ψp� (FNω(t)) dt (3.29)

0 < FNω(ξ) ≤ M3

(

κ(K )ψp (u1) + 1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

×
[
| f (u, ω(u)| + t(u)ψp (|ω(u)|)

]
du +

k∑

j=1

I 2qω(tk)

)

≤ M3

(

κ(K )u p−1
0 + ‖ ω ‖p−1

�(β)

∫ K

ξ

ρ′
2(t)(ρ2(t) − ρ2(ξ))

β−1

× (1 + t(u)) du + ‖ ω ‖p−1
k∑

j=1

e2j (t j )

⎞

⎠

≤‖ ω ‖p−1 M3

⎛

⎝κ(K ) + 1 + M5

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

e2j (t j )

⎞

⎠

:= M7 ‖ ω ‖p−1 . (3.30)

From(3.29) and (3.30), we have

u0 ≤ ω(ξ) ≤ ω0 + λ
‖ ω ‖ Mp�−1

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ +
k∑

j=1

�1
j (t j ) + e1j ‖ ω ‖

+ ‖ ω ‖ Mp�−1
7

�(ν + 1)
(ρ1(K ) − ρ1(a))

ν
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= u0 + C9 ‖ ω ‖ +
k∑

j=1

�1
j (t j ),

as C9 < 1, then

‖ ω ‖≤ω0 +∑k
j=1 �

1
j (t j )

1 − C9 =: �4,

and

Fu =
∣
∣
∣

1

�(γ )

∫ K

a
(ρ′

3(t)(ρ3(K ) − ρ3(t))
γ−1η(t)ψp (ω(t)) dt

∣
∣
∣

≤ M5�
p−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ =: �6.

On the other hand, from the positivity of FNω(ξ), λ, u0 and I ik for i = 1, 2, q =
1, 2, . . . , k, for each ξ ∈ [a, t1], ω ∈ PC(Q,R), we have

ω(ξ) ≥ u0 =: �3,

FNω(ξ) ≥ M3κ(K )ψp (u1) =: �1,

Fu ≥ M6�
p−1
3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ =: �5.

By using the same process above, we get

�1 ≤| FNω(ξ) |≤ �2,

�3 ≤‖ ω ‖≤ �4,

�5 ≤| Fu |≤ �6,

for each ξ ∈ Jk , ω ∈ PC(Q,R), q = 1, 2, . . . , k. Hence, by applying Theo-
rem 3.12, one can deduce that the p-Laplacian impulsive fractional boundary value
problem (1.1) has a unique solution. �

Theorem 3.15 Suppose that the assumptions (H���

5 ) and (H���
6 ) are satisfied. If

��,C10,��� < 1, (3.31)

where

�1 =: −M3κ(K )ψp(u1),

�2 := M3

⎛

⎝−κ(K )ψp(u1) + maxξ∈ Q(�((ξ))

�(β + 1)
(ρ2(K ) − ρ2(a))

β +
k∑

j=1

χ2
j (t j )

⎞

⎠ ,
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�3 =: −u0, �4 =: −ω0 +∑k
j=1 χ

1
j (t j ) + 1

�(ν+1) (ρ1(K ) − ρ1(a))ν�
p�−1
2

1 − C10 ,

�5 =: M5�
p−1
4

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ , �6 =: M6�
p−1
3

�(γ + 1)
(ρ3(K ) − ρ3(a))

γ ,

C10 =:
k∑

j=1

e1j − λ
Mp�−1

4

�(γ + 1)
(ρ3(K ) − ρ3(a))

(p�−1))γ ,

then the p-Laplacian impulsive fractional boundary value problem (1.1) has a unique
solution.

Proof By following the similar steps as in the proof of Theorem 3.12, we can complete
the proof of this theorem. �


4 Applications

In this section, we provide two examples to validate the applicability of the theorems
proved in the previous section.

Example 4.1 Consider the following boundary value problem of impulsive differential
equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C−HD
3
4

e2−

(√
ξψp

(
C−HD

3
4

e1+
ω

))

(ξ) + ln(ξ)ψp (ω(ξ))

= sin(ξ) + ω(ξ)

10
(
e|ω(ξ)|+ | ω(ξ) |) e1 < ξ < e2,

� (ω (u)) =| ω (u) |1/2 sin (ω(u)) ,

�ψp

(
C−HD

3
4

e1+
ω

)

(u) =| ω (u) |1/2 cos (ω(u)) ,

ω(e1) = 1,C−HD
3
4

e1+
ω(e2) = 0.

(4.1)

here u ∈ (e1, e2) and

ρ1(ξ) = ρ2(ξ) = t(ξ) = ln(ξ), κ(ξ) = √
ξ, ν = β = 3

4 , λ = 0,
u ∈ (e1, e2), p = 3, p� = 3

2 , u1 = 0,
u0 = 1, t1 = u, k = 1.

Also,C−HD
3
4

e1+
andC−HD

3
4

e2−
are the left and rightCaputo-Hadamard fractional deriva-

tives.
It is easy to show that (4.1) is a special form of the p-Laplacian impulsive fractional

boundary value problem (1.1).
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Set

f (ξ, ω(ξ)) = sin(ξ) + ω(ξ)

10
(
e|ω(ξ)|+ | ω(ξ) |) , (ξ, ω) ∈ [e1, e2] × R,

| f (ξ, ω(ξ)) |≤ 1

10
+ 1

10
| ω(ξ) |, (ξ, ω) ∈ [e1, e2] × R.

Set

I 1(ω(ξ) =| ω (ξ) |1/2 sin (ω(ξ)) , I 2(ω(ξ) =| ω (ξ) |1/2 cos (ω(ξ)) .

Also,

| I 1(ω(ξ) |≤| ω (ξ) |1/2, | I 2(ω(ξ) |≤| ω (ξ) |1/2 (ξ, ω) ∈ [e1, e2] × R.

• It is straightforward to show that the assumptions in Theorem 3.7 hold. Therefore,
it follows that the p-Laplacian impulsive fractional boundary value problem (4.1)
has a solution in PC([e1, e2],R).

• It is straightforward to show that all the conditions of Theorem 3.8 satisfy the
p-Laplacian impulsive fractional boundary value problem (4.1). Therefore, we
can conclude that there is one solution for the p-Laplacian impulsive fractional
boundary value problem (4.1) in the space of piecewise continuous functions on
the interval [e1, e2] with values in the set of real numbers.

Example 4.2 Consider the following boundary value problem of impulsive differential
equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(υ/2);C
ξD

4
5
1−

(

(18 + 2eξ )ψ 3
2

(
ln(υ+1);C

ξD
4
5
0+ω

))

(ξ)

= f (ξ, ω(ξ)) − ξ2 sin(ξ+1)
10 ψ 3

2
(ω(ξ)) 0 < ξ < 1,

�
(
ω
( 1
2

)) = 1
20

(| sin (ω(u)) | + exp
(− 1

2

∣
∣ω
( 1
2

)∣
∣
))

,

�ψ 3
2

(
ln(υ+1);C

ξD
4
5
0+ω

)
( 1
2

) = 1
10 exp

(− 1
2

∣
∣ω
( 1
2

)∣
∣
)
,

ω(0) = 1
2 + λ

∣
∣
∣(υ+1)2

ξIγ

a+
ξ2+1
10

√| ω(ξ)|
∣
∣
∣
2

ξ=1
, ln(υ+1);CD

4
5
0+ω(1) = 1

5 ,

(4.2)

where

f (ξ, ω) = ω2

(19 + eξ )(1 + ω2)
+ | sin(ω) | ξ2

10

+ e−ξ | ω |
(18 + 2e−ξ )(ω2 + 1)

+ ξ2 sin(ξ + 1)

10
ψ 3

2
(ω) ,

I 1(ω) = 1

20

(

| sin (ω(u)) | + exp

(

−1

2

∣
∣
∣
∣ω

(
1

2

)∣
∣
∣
∣

))

,
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I 2(ω) = 1

10
exp

(

−1

2

∣
∣
∣
∣ω

(
1

2

)∣
∣
∣
∣

)

.

here

ρ1 = ln(υ + 1), ρ2 = sin( υ2 ), ρ3 = (υ + 1)2,

κ(ξ) = 18 + 2eξ , t(ξ) = ξ2 sin(ξ+1)
10 , η(ξ) = ξ2+1

10 ,

ν = β = 4
5 , p = 3

2 , p
� = 3, t1 = 1

2 , k = 1,

u0 = 1
4 , u1 = 1

100 , λ =
√

π
26
.

It is easy to show that (4.2) is a special form of the p-Laplacian impulsive fractional
boundary value problem (1.1). Moreover, there exists a function �(ξ)(ξ) = 1

19+eξ
+

ξ2

5 + 1
20 such that | f (ξ, ω(ξ)) − t(ξ)ψ 3

2
(ω(ξ)) | ≤ �(ξ).

One can see that the solutionω(ξ) of the p-Laplacian impulsive fractional boundary
value problem (4.2), which is given by the integral equation (3.16), is well-defined
and satisfies

�1 ≤| FNω(ξ) |≤ �2,

�3 ≤‖ ω ‖≤ �4,

�5 ≤| Fu |≤ �6,

where

�1 = ψ 3
2

(
1

100

)

, �2 = (19 + 2e)
√
π + 8 sin( 12 )

1
2

200
√
π

,

�3 = 1

4
, �4 = 7

√
π + 40�2

2(ln(2))
1
2

20
√
π(1 − C8)

, C8 = 6λ

25π
,

�5 = 1

5

√
3�3

π
, �6 = 2

5

√
3�4

π
.

It is straightforward to show that f (ξ, ω), I1(ω) and I2(ω) satisfy

| f (ξ, ω) − f (ξ, v)|

=
∣
∣
∣
∣

1

19 + eξ

(
ω2

1 + ω2 − v2

1 + v2

)

+ ξ2

10
(| sin(ω) | − | sin(v) |)

+ e−ξ

18 + 2e−ξ

( | ω |
v2 + 1

− | ω |
v2 + 1

)

+ ξ2 sin(ξ + 1)

10

(
ψ 3

2
(ω) − ψ 3

2
(v)
)∣∣
∣
∣

≤ 1

20

∣
∣
∣
∣

ω2

1 + ω2 − v2

1 + v2

∣
∣
∣
∣+

1

10
|sin(ω) − sin(v)|

+ 1

20

∣
∣
∣
∣

ω

v2 + 1
− ω

v2 + 1

∣
∣
∣
∣+

sin(2)

10

∣
∣
∣ψ 3

2
(ω) − ψ 3

2
(v)

∣
∣
∣
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≤ 1

20

∣
∣
∣
∣

ω2

1 + ω2 − v2

1 + v2

∣
∣
∣
∣+

1

10
|sin(ω) − sin(v)|

+ 1

20

∣
∣
∣
∣

ω

v2 + 1
− ω

v2 + 1

∣
∣
∣
∣+

sin(2)

10

∣
∣
∣ψ 3

2
(ω) − ψ 3

2
(v)

∣
∣
∣

≤ 1

10
|ω − v| + 1

10
|ω − v| + 1

10
|ω − v| +

√
2 sin(2)

20
|ω − v|

= 6 + √
2 sin(2)

20
|ω − v| , ξ ∈ [0, 1], ω, v ∈ PC([0, 1],R),

| I 1(ω) − I 1(v) |
= 1

20

∣
∣
∣
∣

(

| sin (ω) | − | sin (ω)

∣
∣
∣
∣+ exp

(

− 1

20
| ω
(
1

2

)∣
∣
∣
∣

)

− exp

(

−1

2

∣
∣
∣
∣v

(
1

2

)∣
∣
∣
∣

))∣
∣
∣
∣

≤ 1

10
| ω − v |, (ξ, ω) ∈ [0, 1] × R,

and

| I 2(ω) − I 2(v) | = 1

10

∣
∣
∣
∣exp

(

−1

2

∣
∣
∣
∣ω

(
1

2

)∣
∣
∣
∣

)

− exp

(

−1

2

∣
∣
∣
∣v

(
1

2

)∣
∣
∣
∣

)∣
∣
∣
∣

≤ 1

10
| ω − v |, (ξ, ω) ∈ [0, 1] × R.

Also, we have

| I 1(ω(ξ) |≤ 1

10
, | I 2(ω(ξ) |≤ 1

10
(ξ, ω) ∈ [0, 1] × R.

Consequently, the conditions (H�
5) and (H�

6) hold, where L1 = L2 = 1
10 , L =

6+√
2 sin(2)
20 . By some calculations, we get �� ≈ 0.1134991 < 1.

Obviously, the p-Laplacian impulsive fractional boundary value problem (4.2) sat-
isfies all the conditions of Theorem 3.13. Hence, the p-Laplacian impulsive fractional
boundary value problem (4.2) has a unique solution.

5 Conclusion

Throughout this study, we explored the boundary value problem of impulsive differen-
tial equations with a nonlinear non-symmetric ρ−Caputo fractional derivative and an
operator of p-Laplacian type. By utilizing the Schauder’s and Schaefer’s fixed point
theorems, together with the Banach contraction principle, we established the existence
and uniqueness of solutions for the impulsive p-Laplacian boundary value problem
given by (1.1). Moreover, we provided two examples to show the applicability and
significance of our main results. Furthermore, we derived a new representation for-
mula for the integral solution of the p-Laplacian impulsive fractional boundary value
problem (1.1) using the Heaviside function. Additionally, we established the existence
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and uniqueness of solutions under different conditions. These results shed light on the
importance and relevance of the study of impulsive differential equations with non-
linear generalized fractional and p-Laplacian operators. Future work can be extended
and delved deeper into the underlying mechanisms, potentially employing specific
methodologies or techniques of functional analysis for generic p-Laplacian boundary
value problems with (ψ, k)-Hilfer fractional derivatives to gain a more nuanced under-
standing. Additionally, investigating the long-term effects of the specific conditions
on related outcomes can provide valuable insights into the persistence of the observed
patterns during the time.
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