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Abstract
We present sufficient conditions for the existence of a solution x to an equation

A™ (Xn — upXpn—x) = an f (Xp—z) + by,

which is “close” to a given solution y to the linear homogeneous equation of neutral
type A™(y, — Ayn—k) = 0, where A is the limit of the sequence u. Closeness of
solutions to above equations is understood as x, — y, = o(w,), where w is a given
nonincreasing sequence with positive values. Moreover, we establish under which
conditions for a given solution x to A" (x, — uyx,—x) = a, f (xy,—7) + b, and a given
nonincreasing sequence with positive values w there exists a polynomial sequence ¢
of degree less than m such that x, = ¢(n) + o(w,). Presented conditions strongly
depend on X.

Keywords Difference equation - Neutral type equation - Prescribed asymptotic
behavior - Approximative solution

Mathematics Subject Classification 39A05 - 39A22

1 Introduction

Let Ny, N, Z, R denote the set of nonnegative integers, the set of positive integers,
the set of all integers and the set of all real numbers, respectively. In this paper we
consider the difference equation of neutral type of the form
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Am(xn — UnXp—k) = an f (Xn—z) + bn (BE)
where

meN, a,,b,,u, €R, keN, reZ, f:R—-R,
AXy 1= Xp+1 — Xn, ijn :=A<Aj_lx,,), j=2,3,...,m.

By a solution of (E) we mean a sequence x : Ng — R satisfying (E) for all large n.
Let y : Ng — R be a solution to A" (y, — Ay,—x) = 0, with lim u, = A and

n—o0
o : No — (0, 00) be a nonincreasing, which we understand as “measure of approxi-

mation” of solutions to (E) and A™ (y, — Ay,—¢) = 0. In this paper we want to answer
two questions. Firstly, for given y and w we construct sufficient conditions which guar-
antee the existence of a solution x to (E) such that x, = y, + o(w,). Then y is called
an approximative solution to (E) and x is called a solution with prescribed behavior.
Secondly, for a given solution x to (E) and “measure of approximation” @ we show
sufficient conditions which imply that there exists a polynomial sequence ¢ such that
deg ¢ < m and x, = ¢(n) + o(w,). Note that ¢ is a solution to A™ (y,, — Ay,—x) = O.

Results in this paper are the continuation of studies in [15-19, 21, 22] and generalize
these studies in two directions. Firstly, we consider a general class of “measures of
approximation” which is defined by a nonincreasing sequence w with positive values
instead of o(n*) with s < 0. Let us recall that any solution y to A™(y, — Ay,—x) =0
is of the form y, = ¢(n) + O(p"), where ¢ is a polynomial sequence with deg ¢ < m
and p = ¥/JA]. If |A| < 1, then the polynomial part ¢ of y is dominating. If |A| > 1,
then the geometric part of y is dominating. Our second goal is to get results not only
in the case if the polynomial part is dominating, but also in the case if the geometric
part of solutions to A" (y, — Ay,—r) = 0 is dominating with nonconstant sequence
u in (E). It is worth noting that theorems for |A| < 1 and |A| > 1 differ only by one
assumption on u. The assumption on the sequence u for |A| > 1 is stronger, then for
[A| < 1. The fixed point approach was applied to get our main results. More precisely
we use the generalization of the Krasnoselskii fixed point theorem which was proved in
[15]. Note the usage of Krasnoselskii’s fixed point theorem excludes the case |A| # 1.
Moreover, we use properties of the remainder operator which were widely used in
[13-15].

Asymptotic behavior of differential or difference equation of neutral type were
considered in many papers. This topic can be explored in several directions. Solutions
with prescribed behavior were investigated for example in [1-3, 6,9, 10, 12, 14, 15,
17,19, 26-29, 33]. Oscillatory solutions were studied among others in [4, 5, 8, 20, 21,
31-34]. Asymptotically polynomial solutions were considered, for example in [7, 11,
16].

The texture of this paper is as follows: after introducing our notation, Sect.2 pro-
vides necessary information about auxiliary tools: the remainder operator and general
solutions to A" (y, —Ay,—x) = 0. Section 3 is devoted to the presentation of sufficient
conditions for the existence of a solution with prescribed behavior to (E). In Sect. 4,
for a given solution x to (E) we find conditions under which, there exists a polynomial
sequence ¢ which is close to x according given “measure of approximation” w.
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2 Preliminaries
Let us start with some basic definitions and notations for our paper. The space of

all sequences x : Ng — R we denote by RNo_ |x| denotes the sequence defined by
|x|(n) = |xp|, for x € RNo. Moreover,

lx]l = sup |xnl,
neNy

and

co=1{x eRY: lim x, =0}, R*=R\{0}, Z*=7\ {0}
n—oo

We say that a subset X of RMNo g ordinary if |x — y|| < oo for any x,y € X. We
regard any ordinary subset X of R0 as a metric space with metric defined by

d(x,y) = llx —yll. ey
Let f : R — R. We say that a sequence y € R0 is uniformly f-bounded if there
exists a positive number § such that f is bounded on the set

o

o = 8. yu + 61

n=0
For m € Ny we define

Pol(m — 1) = Ker A” = {x € RN : A”x = 0}.

Then Pol(m — 1) is the space of all polynomial sequences of degree less than m. Note
that Pol(—1) = Ker A? = 0 is the zero space.

2.1 Remainder Operator

Properties of remainder operators were considered, for example in [13]. Let us recall
some of them, which are crucial in our considerations. Let m € N,

o0 o0 o0
A(m) = aeRNo:Z Z Z lai, | < 0o
iIZO ir=i| im=im—1
For a € A(m), r"*(a) denotes the sequence defined by

M (a)(n) = Z Z Z ai,, n € Np. (2)

i1=niy=i| im=im—1
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Then

r"(a)(n) = o(1). 3)
Moreover, it is known (see for example Lemma 3.1, [13]) that
o0
A(m) ={a e R" : Y " 0" a,| < oo}
n=0

and
Ma@m =Y (m Shwie ")ai, A (" (@) () = (=1)"a,

4 m—1
1=n

@) < r"(lahm), " (ahn) <Y " ai )

for any a € A(m) and n € Ny. Moreover, we recall the following general result

Lemma2.1 [24, Lemma 1] Assume m € N, a € RN, ¢ : Ny — (0, 00), Aw < 0,
and

o0 —
n" l|an|

w
n=0 n

Then a € A(m) and r"™ (a)(n) = o(wy,).

2.2 Fundamental Equation of Neutral Type

Let us remind some basic information about a general solution to a linear homogeneous
difference equations of neutral type of the order m, which were considered [15]. Let

m € N, k € Z*, » € R*. We consider equations

A™(x, — Axp_i) =0 P

Xp — Ay =0 (G)
which we call a fundamental equation of neutral type and a geometric equation,
respectively. By a solution of (F) we mean a real sequence x such that (F) is satisfied

for all n > max(0, k). Analogously, we define solutions of (G). We denote by

PG(m, A, k), Geo(A, k)
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the set of all solutions of (F) and (G), respectively. Let x, y € RNo_ 1f

Xn+lk| = Xn, Yn+lk| = —Yn
for any n € Ny, then we say that x is k-periodic and y is k-alternating. We denote by
Per(k), Alt(k)

the set of all k-periodic sequences and the set of all k-alternating sequences, respec-
tively. Note that Per(k), and Alt(k) are linear subspaces of RNo and

dim Per(k) = |k| = dim Alt(k), Alt(k) C Per(2k).
We define

ndivk := (sgnk)max{j € Z: jlk| <n}, nmodk:=n — |k|(ndiv|k]),
geo(h, k), alt(k) : Ng = R, geo(r, k)(n) = A"k alt(k) = geo(—1, k).

Note that
ndiv(—k) = —(ndivk), nmod(—k) =nmodk, geo(r,—k)= geo()ﬁl, k).

Moreover, geo(A, k) is an “expanded” geometric sequence. Note also, that for a fixed
k, the sequence (n mod k) is k-periodic.

Lemma 2.2 (Solutions of geometric equation)[15, Theorem 3.1] Ifk € Z* and A € R*,
then a sequence x : Ng — R is a solution of the geometric equation (G) if and only
if for any n € Nog we have

Xn = A" dexn mod k-

Lemma 2.3 (Solutions of fundamental equation)[15, Theorem 3.1] Ifk € Z*, A € R¥,
then

PG(m, A, k) = Pol(m — 1) & Geo(X, k),
Moreover; if p = ¥|A], then k(] — 1)(p — 1) > 0 and

(") Per(k) ifr>0
(M Alt(k) ifr <0’
Alt(k) = alt(k) Per(k).

Geo(A, k) = geo(X, k) Per(k) = {

Hence any solution y € PG(m, A, k) of the fundamental equation

A" (yn = Ayn—k) =0
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is of the form

Yn = ¢(n) + wnp" =) +0(p"), )

where ¢ € Pol(m — 1), p = ¥JA[, and w is 2k-periodic.

Moreover, if k(JA| — 1) < 0, then p < 1 and the polynomial part ¢ of y is
dominating. On the other hand, if k(JA| — 1) > O, then p > 1 and the geometric part
w, p" is dominating (see Remark 3.3, [15]).

3 Approximative Solutions

Before we prove our main results we present the following lemma. For some related
results see [25] and [30].

Lemma 3.1 Assumek € N, x,z,u € RNo ¢ - No — (0, 00),

. [t |wn—k
limsup —— < o < 1,
n—00 Wy

Zn = Xp — UpXn—i for large n, and z,, = o(wy,). Then x, = o(wy).

Proof Choose ng > k suchthatz, = x, —u,x,—; and |u, |(w,—i /w,) < aforn > ny.
Let

Z X Wn—k
w, = =, forn > ng; y,,:i, for n € Ny; th = uy——, forn > k.
Wy Wy Wy
(6)
Then for n > ng we have |t,| < « and w;,, = y, — t,,y,—k. Hence
[Ynak| < [wppk| + afy,l @)

for n > ny. Since z, = o(w,), then w, = o(1) and there exists a positive constant K
such that |w,| < K for any n > ng. Let

M = max(yny, Yng+1s - -« » Yng+k—1)-

Assume n > ng. There existi € {ng,...,ng+k—1}and/ € Nsuch thatn =i + lk.
Using (7) we have

Vitak] < lwitae] + alyipe] < K +a(K +alyi]) = K +aK + oM.
Analogously

lyissk] < K +a+a®) +a’M.
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After [ steps we obtain

1—aof

|Val = Vit §K(1+a+--.+al—1)+a1M=K1

—l—oth.

Hence

+ M

K ! K
[yp|l < —— 4+ o' M <
l -« l -«
for any n > ng. Therefore the sequence y is bounded. Choose a constant P such that
|yn| < P for any n. Let ¢ > 0. There exist ¢ € N, and n| > ng such that «? < ¢ and
lw,| < e forn > ni.Letn > ny + gk. Then there existi € {ny,...,n; +k — 1} and
|l € N, > g such that n = i + [k. Similarly as above one can show that

2 1
|)’n|§m+a1P§ <l_a+P>8.

Hence y, = o(1) and x,, = w,y, = ®,0(1) = o(w,). The proof is complete. O

To achieve our main results we use the following version of Krasnoselskii’s fixed point
theorem. For x, y, p € R0 |x — y| < |p| means |x — y|(n) < |p(n)], for n € N.

Lemma3.2 Assumey e RN, peco, X ={x e RN : |x —y| < |p|}, A,B: X —
RN, AX+BX C X, a € (0, 1), A is continuous and B is an a-contraction. Then
there exists a point x € X such that Ax + Bx = x.

Proof The assertion is a consequence of [15, Lemma 2.2 and Theorem 2.2]. O

Now we are in a position to formulate and prove the first of our main theorems. We
recall that asymptotic behavior of solutions to A™ (y, — Ay,—x) = 0 strongly depends
on A, which means that for |A| < 1 the polynomial part of y is dominating and for
[A] > 1 the geometric part of y is dominating. It is worth noting that an assumption
on X is included in the condition

len—k

lim sup <1,

n—00 wWn

because w is nonincreasing with positive values.

Theorem 3.1 Assume A € R*, k e N, 1 € Z, w : Ng — (0, 00) is nonincreasing,

AMaown— = n"(la b
limsup| |@n—k <1, Z (lan| + 1bal) < o0, (8)
n— 00 Wy — Wy
n=0
f is continuous, and u, = A + o(n'~"w,). Then for any uniformly f-bounded

sequence y € PG(m, X, k) there exists a solution x of (E) such that

Xp = Yn + 0(wp).
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Proof The proof of the theorem is a nontrivial modification of the proofs of some
theorems and lemmas in [16] and theorem 1 in [23]. For x € RN Jet

, )0 for n < max(0, 7) ©)
" |anf Game) + by forn = max(0,7)
Let y € PG(m, A, k) be f-uniformly bounded. Choose §, L > 0 such that
oo
|f®OI <L forany t€ | Jlya—8,yn+8l. (10)

n=0

Since the sequence w is nonincreasing, w,_i/w, > 1 for any n > k, and using (8) we
get |[A| < 1. There exists £ > 1 such that

li &M wp—k
imsup —— < 1.
n—00 wp

Puta := &|A|. Wehave |A| <« < 1.LetZ, o',y e RN, y/ > Oforn =0, ..., k—1
and

=M —up)yn—k,  p, =r"(Llal + b])(n) + |z,,], (11)
Yo =Py + Vs (12)

forn > k. By |A| < 1and (5), y, = O™ 1) and s0 y,_x = O(n™~!). Hence
2y = o(n' " w,)00" ") = o(wy). (13)
Using (8), (11), (13), and Lemma 2.1 we get p;, = o(w,). For n > k we have
Pn = Vo = Ay
By definition and Lemma 3.1,
v, > 0forn € Ng, v, = o(wp). (14)
Choose an index p > k such that
0<y, <68, |upl <« (15)

forn > p.Now, letz, p, y € RNo and A, B, R : RNo — RN are defined as follows:
forn < p and x € RNo

Zn=pPp =¥n=BXx)(n) = R(x)(n) =0, (16)
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forn > p and x e RMNo

in = Z;p Pn = )0,/17 Yn = Vn/’ (17
R(x)(n) = (=D"r"(x")(n) and Bx)(n) = uy(Xn—k — Yn—t).  (18)

Moreover, let
Ax=y—z+4+ Rx and X:{xeRN°:|x—y|§y}. (19)
By (14), (17) and assumptions on w, we have
Yn = 0(wy) C o(D). (20)

By (15), (16), and (17) we have 0 < y,, < § for any n. Therefore, if x € X, then, by
(10), | f(xp)| < L for any n. Thus, using (4) and (9), we have

IR()(m)| = [r" (")) < r™ (Ix")(n) < r™(Llal + |b])(n)
for n > p. Hence, using (11) and (17), we get
IR < p, = 2,1 = pn — |2al 21

forn > p.Ift € X, then |t — y| < y and, by (15), we have

|B(t)(n)| = lunlltn—k — Yn—i| < &¥n—k
for n > p. Hence, using (12), (17), (19), and (21), we obtain

|Ax + Bt — y[(n) = [R(X)()| + |zn| + BO) ()| < pn + QVn—k = Vn
for n > p. Therefore, by (19), we get Ax + Bt € X. Thus
AX + BX C X.

We will show that A is continuous on X. Let ¢ > 0. There exist an index g and 8 > 0
such that

00 q
2L an71|an| <¢e and B an71|an| <e.
n=0

n=q
Let x € X, and

W =lxo—lLxo+11U[x; — Lx; + 1JU---Ulx, — 1, x, + 1.
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Then W is compact and f is uniformly continuous on W. Choose g € (0, 1) such
that for s, € W the condition |s — ¢| < ug implies | f(s) — f(t)| < B. Assume
veX,|x—v| <pupg. Then,

[Ax — Av|| = [|Rx — Rv|| = sup [r" (x" = v") ()| < supr™ (Ix" —v'])(n)

n>0 n>0

00 q
=r"(Ix" = DO < Y " NG =Y < Y™ an(f () = £ (o)

n=0 n=0
[e’e] q ]
+ D 0" Nay(f ) = I < BY 0" Magl +2L) 0" ay| <& +e.
n=q n=0 n=q

Hence A is continuous on X. Let x, v € RNo, By (16) and (18), we have

[Bx — Bv| = sup [B(x)(n) — B(v)(n)| = sup |un(xXp—k — Vn—t)l.

n>p n=p
Hence, by (15), we obtain

|Bx — Bv|| < asup |xp—k — Vp—k| < aflx —v].
n>p

Therefore B is an a-contraction. By Lemma 3.2, there exists a point x € X such that
x = Ax + Bx. Then, by (18) and (19) we have

Xp = RG)n) + yn — zn + un(Xn—k — Yn—k)-

forn > p. Using (11), (17) and (18), we get
Xp — UpXp—k = Yn — Zn — UpYn—k + (_1)mrm(x/)(n)
= Yn — Ayn—k + (=D (x")(n)
for n > p. Since y € PG(m, X, k), we have
0=A"(yn = Ayn—k)

Hence, by (9), we obtain

Am(xn — UpXp—k) = A" n — AYn—k)

+A" (=D " (x")(n) = 0+ x;, = an f (xp) + by

for n > p. Therefore x is a solution of (E). Since x € X, by (19), [x — y| < y.
Moreover, by (20), v, = o(wy,). Hence x,, — y, = o(w, ) and we obtain

Xp = Yn + (X = Y)n = yn + 0(wp).
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Before we show a theorem for [A| > 1 we need another auxiliary lemma.

Lemma3.3 Ifk e N, a € (0, 1), p is a nonincreasing sequence with positive values
and

Ytk = Pntk + AYn

with y;, i =0, ...,k — 1 satisfying
vi>0—a) pigr, i=0,... k—1,
then
Ytk < Vn,

forn > k and

Yo > (L= )™ o,
forn € Ny.
Proof Leti € {0, ...,k — 1}. We have

Yiti = Peri Hovi < (I —a)yi +ayi =,
and, by monotonicity and positivity of p,
Vedi = Prti + i > pryi Fa(l =) oegi = prypi(1 =)' > porgi (1 — o)~
Moreover,
Vok+i = P2k+i + @Viti < (1 — ) Vipi + Vkti = Vi

and, by monotonicity and positivity of p,

Vokti = P2u+i + @Viti > pauti +a(l — ) por
= pori(1 =)' > pappi (1 — ) ™'

Analogously, by induction,
Vikti < Va-tktis Vieri > (=)™ pagipei

for any / € N. O
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In the case |[A| > 1 we need a stronger assumption on u, then in the case [A| < 1.
The rest of the assumptions of the theorem are the same. As previously the assumption
on A is included in the condition

Wp—k

w is nonincreasing and  lim sup <1

n—oo |Alwy

Theorem 3.2 Assume A € R*, k e N, 1 € Z, w : N9 — (0, 00) is nonincreasing,

o —
: @n—k n" ! (lan| + 1ba)
lim sup <1, <
n—00 | Wp

00, (22)
Wy
n=0

f is continuous, and u, = A+ o0 ((«k/ |A|)_n a)n) Then for any uniformly f-bounded
sequence y € PG(m, A, k) there exists a solution x of (E) such that

Xp = yp +0o(wy).

Proof For x € RNo Jet

, 0 for n < max(0, 7)
X, = . (23)
an f(Xp—z) + b, forn > max(0, 1)
Let y € PG(m, A, k) be f-uniformly bounded. Choose §, L > 0 such that
o0
IfI <L forany te | Jiyn— 8. yu+0l. (24)

n=0

Since the sequence w is nonincreasing, w,—i/w, > 1 for any n > k, and using (22)
we get || > 1. There exists & > 1 such that

Ewn—k

lim sup
n—soo |Alwy

Taking into account that u,, — A and |A| > 1 we assume, without loss of generality,
that in£ luy| > 0. Put o := % We have ﬁ <a<l.Letz,7,p,y € RY, and
nz

I A—unik
in = Un+k

yo. 2z =sup{|z|}, forn e Ny; (25)
I>n

p; >0,fori =0,...,k—1and

, r"™(Lla| + |b))(n — k) forn € {k,...,2k —1};

= 26
& {rm(L|a|+|b|)(n—k)+z;_2k forn = 2k, 26)



Asymptotic Behavior of Solutions to Difference Equations... Page 130f20 60

v/ > 1 —a)'p/ fori =0,...,k—1and
/ / !
Vn = lon + O”/n—k (27)
forn > k. By (5), y, = O ((«k/|)\|)n) and so y,_r = O ((«k/|)\|)n). Moreover, from

the fact that ini lu,| > 0 we get that
n>

—n n
Z =o<(¢k A1) wn)O((\"AM) ) = o) Co(l) (28)
and 7’ is well defined. Let ¢ > 0. There exists n, € N such that
|Z:1| S Swns
for any n > n,. By monotonicity of w we get

z, = sup{|zj|} < e suplw;} = cw,
I>n I>n

for any n > n,. Hence
Z;; = o(wy). 29)

Using (22), (26), (29), and Lemma 2.1 we get p;, = o(wy). For n > k we have

Pn =V = AV -
By definition and Lemma 3.1,
v, >0forneN, y =o(w,) Co(l). (30)
Choose an index p > k such that
O<yn<d lil<a (31)

forn > p.Now, letz, p,y € RN and A, B, R : RNo — RNo gre defined as follows:
forn < p and x € RMNo

Zn=pp =¥Yn=Bx)(n) = R(x)(n) =0, (32)

forn > p and x e RMNo

in = Z;lv Pn = p;lv yi’l = V,i» (33)
R)(m) = = (= 1" () + k) and B () = 7= (e = ysn).
(34)
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Moreover, let
Ax =y —z+ Rx and X:{xeRN°:|x—y|§y}. (35)
By (30) and (33) we have
Yn = 0(wp) C o(l). (36)

By (31), (32), and (33) we have 0 < y,, < § for any n. Therefore, if x € X, then, by
(24), | f (xp)| < L for any n. Thus, using (4) and (23), we have

IR(x) ()| = mlrm(ﬂ)(n + )| < ar™ (XN +k) < r™(Llal + b)) (n + k)
for n > p. Hence, using (25) and (33), we get
IR(X)(M)| < Py — Zn (37)
forn > p.Ift € X, then |t — y| < y and, by (31), we have
|BO)| = gyltntk = Ysk| < @ik

for n > p. Hence by the fact p’ is the nonincreasing sequence, Lemma 3.3, (29), (33),
and (37) we obtain

|Ax + Bt — y|(n) < |[RX)(®)| + |za] + [BO@)| < pnr2k — 2y + 12al + a¥Vnsx <
Pn+2k + QVn+k = Vn+2k < Vn+k < Vn

for n > p. Therefore, by (35), we get Ax + Bt € X. Thus
AX + BX C X.
In analogous way to the proof of Theorem 3.1 we prove that A is continuous and B
is a-contraction. By Lemma 3.2, there exists a point x € X such that x = Ax + Bx.
Then, by (34) and (35) we have
Xn = RO + yn = 2 + = (Vnk = Ynrk)-

for n > p. Using (25), (33) and (34), we get

UntkXn — Xntk = UntkYn — Yntk + (A — Unk) Yn — (_l)mrm(x/)(” +k)
Xtk — UntkXn = Yntk — Ay + (=D"r" (") (n + k)

for n > p. Hence

Xp — UnXn—k = Yn — Ayn—k + (=D)"r"(x")(n)
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forn > p + k. Since y € PG(m, A, k), we have
0= A"(yn — Ayn—i)-
Hence, by (23), we obtain

A™ (Xn — UpXxpn_) = A™ On — Ayn—k) + Am(_l)mrm (X/)(I’l)
:0+x;l =anf(xy) + by

for n > p + k. Therefore x is a solution of (E). Since x € X, by (35), [x — y| < y.
Moreover, by (36), v, = o(wy). Hence x,, — y, = o(w,) and we obtain
Xn = Yn + (X = Y)n = yn + 0(wn).
O
In the case of A > 1 the assumption u,, = A + 0 ((."/ |A|)_" wn) can not be weakened

eventou, = A+ 0 ((f/|)»|)_" a)n> It is worth noting that for |A| < 1, a similar
technique can not be applied.

Example 3.1 Letm =1,k =1,w, = 1, A > 1, t € Z. Let us consider
A(yn = Ayn-1) =0 (38)
with a general solution to the form
yu=c1+ )", ¢, €R.

Moreover, let f : R — R be a continuous, bounded function and a, b be sequences
such that ZZOZO(IanI + |by]) < oo. Let us consider u,, = A + (—%)". Notice that
up =r+0OR™) and |u, — A| ¢ o(A™"") and the rest of the assumptions of Theorem
3.2 are satisfied for y, = A", n € Ng which is a f-bounded solution to (38). We prove
that for y, = A", there does not exist a solution x to

Ay — A+ (= P))xn—1) = dn f (Xn—z) + ba (39)

with x,, = y, + o(1). On the contrary, we assume that there exists a solution to (39)
such that x, = A" + d,, where d,, = o(1). Note that the left side of (39) is equal to

A — A+ (=Dx—) = A" +dy — A+ (=DM O +dye)) =
A(dy = ddp—1 + (—1)"dy—1) + 2(=D)".

Under assumptions on sequences a, b and the function f, the right side of (39) tends
to 0 as n — oo. Taking account that lim d, = 0 and A > 1 we have
n—oo

lim (dy — hdp—1 + (=§)")dn—1) =0,

n—o00
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and

lim A (dy — Adp—1 + (—=1)'dy—1) = 0.

n—oo

Hence the left side of (39) is divergent as n — 00, because of part (—1)", which gives
a contradiction.

4 Approximations of Solutions

In this section we show results in which for a given solution x to nonlinear equation
(E) and a given measure of approximation w we can find ¢ € Pol(m — 1) such that
X, = ¢(n) + o(wy,). In this section we consider only case |A| < 1. Before we present
the main result of this section we need two auxiliary lemmas.

Lemma4.1 [16, Lemma 3.4] Assume x,z,u € RN, 7, = x,, — upxn_k for large n,
nelR xe(—1,1),lim, soou, = A, and z,, = O(n™). Then x, = O(n").

Lemma4.2 Assume k € N, m € No, A € R\ {1}, x,z € RN, & : Ny — (0, 00),
w, = 0(1),

. |A|@n—k
lim sup —— < 1,
n—00 wp

Zn = Xp—AXp—p forlargen, and z € Pol(m—1)+o(w,). Thenx € Pol(m—1)+o(wy).

Proof Induction on m. For m = 0 the assertion follows from Lemma 3.1. Assume it
is true for certain m > 0 and let

z € Pol(m) 4+ o(w,).
There exist a real number ¢ and a sequence w € Pol(m — 1) 4 o(w,) such that
zn = cn™ + w,.

Since

we have
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There exists a sequence r € Pol(m — 1) such that n™ = (n — k)" + r,. Hence there
exists a sequence R € Pol(m — 1) such that

C c
Wp = <xn_ l—knm) _)\<xn—k_ 1_)L(n_k)m>+Rn =vp — AUy—k + Ry

where v is a sequence defined by

c
I1—A

Up = Xpn —

We have

vy, — Ay—k = wy, — R, € Pol(im — 1) + o(wy).

By inductive hypothesis v € Pol(m — 1) 4+ o(wy). Hence

Cc

1= )\n’" € Pol(m) + o(wy,).

Xp = Uy +

Lemma4.3 Assumek € N, x,z,u € RN, o : Ny — (0, 00), w, = O(1),

Alwn—
re(=1,1), up=xr+o0n'""w,), limsup||w—nk <1,

n—00 Wy

Zn = Xp — UpXp—k for large n, and z € Pol(m — 1) + o(wy,). Then x € Pol(m — 1) +
o(wy).

Proof Let y be a sequence definded by y,, = A — u,,. Then
In = Xp — UpXp—k = Xy — AXp—k + VnXn—k-
By Lemma 4.1, x, = O(n™~!). Hence x,,_; = O(n™ ') and we get
Vaxn—k = 0(n' " @,)O0" ") = o(wn).

There exist a polynomial sequence 8 such that deg 8 < m and z, = B(n) + o(wy).
Hence

Xp — Mp—k = Zn — YuXn—k = B() + o(wy) + o(w,) = B(1) + o(wy).

Using Lemma 4.2 we obtain the result. O
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Theorem 4.1 Assume m,k € N, w : Ny — (0, 00) is nonincreasing,

Mwp— = 1" (a b
N S L (AR S
n— 00 Wp

b
w
n=0 n

Uy = A+ o' Mw,), F: RN — RN gnd x is a solution of the equation
Am(xn — UpXp—k) = anF' (x)(n) + by

such that the sequence F(x) is bounded. Then there exists a polynomial sequence ¢
such that deg ¢ < m, and x, = ¢(n) + o(wy).

Proof By assumption lim sup,,_, WZ—”:‘"
A < 1. Forn € Ny let

< 1 and monotonicity of @, we get that

gn = anF(x)(n) + by.
By assumption we have
i " gnl
—— <
n=0 @n

By Lemma 2.1, g € A(m) and r""(g)(n) = o(wy). Let h be a sequence defined by
h, = (—D)™r"™(g)(n). Then h;,, = o(wy) and,

A"h, = 8n = A™ (Xp — UnXn—1)

for large n. Hence by linearity of the operator A™, there exists a polynomial sequence
B such that deg B < m and

Xp — UnXp—k = B(n) + hy.
By Lemma 4.3 there exists a polynomial sequence ¢ such that deg ¢ < m and
Xy = @(n) + o(wy).

O

Before we prove the last corollary we recall that for x, u € RN0 and k € N x is said
to be (u, k)-nonoscillatory if u,x,x,_x > 0 for large n.

Corollary 4.1 Assume m,k € N, w : Ng — (0, 00) is nonincreasing,

lim sup <1,

n—00 Wp

)

Mok i " anl + 1ba) _

w,
n=0 n
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f:NoxR—R, g:[0,00)— [0,00),

g is nondecreasing, g(tg) > 0 for some ty > 0,

® dt
| f(n, )] < g(nl_m|t|), for allt > Oand for largen, / ﬁ =00
Io 8

o : No = No, lim,,_, o 0 (n) = 00, 0(n) < n for large n, u, = » + o(n' "w,), and
x is a nonoscillatory solution of the equation

Am(xn — UpXp—k) = an f(n, xo(n)) + by

Then x € Pol(m — 1) + o(wy,).

Proof Define an operator F : RNo — RNo by F(y)(n) = f(n, Yo(u))- As in the proof
of [16, Theorem 1], it can be shown that the sequence F'(x) is bounded. Hence the
assertion is a consequence of Theorem 4.1. O
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