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Abstract
We present sufficient conditions for the existence of a solution x to an equation

�m(xn − unxn−k) = an f (xn−τ ) + bn,

which is “close” to a given solution y to the linear homogeneous equation of neutral
type �m(yn − λyn−k) = 0, where λ is the limit of the sequence u. Closeness of
solutions to above equations is understood as xn − yn = o(ωn), where ω is a given
nonincreasing sequence with positive values. Moreover, we establish under which
conditions for a given solution x to �m(xn − unxn−k) = an f (xn−τ ) + bn and a given
nonincreasing sequence with positive values ω there exists a polynomial sequence ϕ

of degree less than m such that xn = ϕ(n) + o(ωn). Presented conditions strongly
depend on λ.

Keywords Difference equation · Neutral type equation · Prescribed asymptotic
behavior · Approximative solution

Mathematics Subject Classification 39A05 · 39A22

1 Introduction

Let N0,N,Z,R denote the set of nonnegative integers, the set of positive integers,
the set of all integers and the set of all real numbers, respectively. In this paper we
consider the difference equation of neutral type of the form
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�m(xn − unxn−k) = an f (xn−τ ) + bn (E)

where

m ∈ N, an, bn, un ∈ R, k ∈ N, τ ∈ Z, f : R → R,

�xn := xn+1 − xn, � j xn := �
(
� j−1xn

)
, j = 2, 3, . . . ,m.

By a solution of (E) we mean a sequence x : N0 → R satisfying (E) for all large n.
Let y : N0 → R be a solution to �m(yn − λyn−k) = 0, with lim

n→∞ un = λ and

ω : N0 → (0,∞) be a nonincreasing, which we understand as “measure of approxi-
mation” of solutions to (E) and �m(yn −λyn−k) = 0. In this paper we want to answer
two questions. Firstly, for given y andωwe construct sufficient conditions which guar-
antee the existence of a solution x to (E) such that xn = yn + o(ωn). Then y is called
an approximative solution to (E) and x is called a solution with prescribed behavior.
Secondly, for a given solution x to (E) and “measure of approximation” ω we show
sufficient conditions which imply that there exists a polynomial sequence ϕ such that
degϕ < m and xn = ϕ(n)+ o(ωn). Note that ϕ is a solution to �m(yn −λyn−k) = 0.

Results in this paper are the continuation of studies in [15–19, 21, 22] and generalize
these studies in two directions. Firstly, we consider a general class of “measures of
approximation” which is defined by a nonincreasing sequence ω with positive values
instead of o(ns) with s ≤ 0. Let us recall that any solution y to �m(yn − λyn−k) = 0
is of the form yn = ϕ(n)+O(ρn), where ϕ is a polynomial sequence with degϕ < m
and ρ = k

√|λ|. If |λ| < 1, then the polynomial part ϕ of y is dominating. If |λ| > 1,
then the geometric part of y is dominating. Our second goal is to get results not only
in the case if the polynomial part is dominating, but also in the case if the geometric
part of solutions to �m(yn − λyn−k) = 0 is dominating with nonconstant sequence
u in (E). It is worth noting that theorems for |λ| < 1 and |λ| > 1 differ only by one
assumption on u. The assumption on the sequence u for |λ| > 1 is stronger, then for
|λ| < 1. The fixed point approach was applied to get our main results. More precisely
we use the generalization of theKrasnoselskii fixed point theoremwhichwas proved in
[15]. Note the usage of Krasnoselskii’s fixed point theorem excludes the case |λ| �= 1.
Moreover, we use properties of the remainder operator which were widely used in
[13–15].

Asymptotic behavior of differential or difference equation of neutral type were
considered in many papers. This topic can be explored in several directions. Solutions
with prescribed behavior were investigated for example in [1–3, 6, 9, 10, 12, 14, 15,
17, 19, 26–29, 33]. Oscillatory solutions were studied among others in [4, 5, 8, 20, 21,
31–34]. Asymptotically polynomial solutions were considered, for example in [7, 11,
16].

The texture of this paper is as follows: after introducing our notation, Sect. 2 pro-
vides necessary information about auxiliary tools: the remainder operator and general
solutions to�m(yn −λyn−k) = 0. Section3 is devoted to the presentation of sufficient
conditions for the existence of a solution with prescribed behavior to (E). In Sect. 4,
for a given solution x to (E) we find conditions under which, there exists a polynomial
sequence ϕ which is close to x according given “measure of approximation” ω.
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2 Preliminaries

Let us start with some basic definitions and notations for our paper. The space of
all sequences x : N0 → R we denote by R

N0 , |x | denotes the sequence defined by
|x |(n) = |xn|, for x ∈ R

N0 . Moreover,

‖x‖ = sup
n∈N0

|xn|,

and

c0 = {x ∈ R
N0 : lim

n→∞ xn = 0}, R
∗ = R \ {0}, Z

∗ = Z \ {0}.

We say that a subset X of RN0 is ordinary if ‖x − y‖ < ∞ for any x, y ∈ X . We
regard any ordinary subset X of RN0 as a metric space with metric defined by

d(x, y) = ‖x − y‖. (1)

Let f : R → R. We say that a sequence y ∈ R
N0 is uniformly f -bounded if there

exists a positive number δ such that f is bounded on the set

∞⋃
n=0

[yn − δ, yn + δ].

For m ∈ N0 we define

Pol(m − 1) = Ker�m = {x ∈ R
N0 : �mx = 0}.

Then Pol(m − 1) is the space of all polynomial sequences of degree less than m. Note
that Pol(−1) = Ker�0 = 0 is the zero space.

2.1 Remainder Operator

Properties of remainder operators were considered, for example in [13]. Let us recall
some of them, which are crucial in our considerations. Let m ∈ N,

A(m) =
⎧⎨
⎩a ∈ R

N0 :
∞∑

i1=0

∞∑
i2=i1

· · ·
∞∑

im=im−1

|aim | < ∞
⎫⎬
⎭ .

For a ∈ A(m), rm(a) denotes the sequence defined by

rm(a)(n) =
∞∑

i1=n

∞∑
i2=i1

· · ·
∞∑

im=im−1

aim , n ∈ N0. (2)
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Then

rm(a)(n) = o(1). (3)

Moreover, it is known (see for example Lemma 3.1, [13]) that

A(m) = {a ∈ R
N0 :

∞∑
n=0

nm−1|an| < ∞}

and

rm(a)(n) =
∞∑
i=n

(
m − 1 + i − n

m − 1

)
ai , �m(rm(a))(n) = (−1)man,

|rm(a)(n)| ≤ rm(|a|)(n), rm(|a|)(n) ≤
∞∑
i=n

im−1|ai | (4)

for any a ∈ A(m) and n ∈ N0. Moreover, we recall the following general result

Lemma 2.1 [24, Lemma 1] Assume m ∈ N, a ∈ R
N0 , ω : N0 → (0,∞), �ω ≤ 0,

and

∞∑
n=0

nm−1|an|
ωn

< ∞.

Then a ∈ A(m) and rm(a)(n) = o(ωn).

2.2 Fundamental Equation of Neutral Type

Let us remind some basic information about a general solution to a linear homogeneous
difference equations of neutral type of the order m, which were considered [15]. Let
m ∈ N, k ∈ Z

∗, λ ∈ R
∗. We consider equations

�m(xn − λxn−k) = 0 (F)

xn − λxn−k = 0 (G)

which we call a fundamental equation of neutral type and a geometric equation,
respectively. By a solution of (F) we mean a real sequence x such that (F) is satisfied
for all n ≥ max(0, k). Analogously, we define solutions of (G). We denote by

PG(m, λ, k), Geo(λ, k)
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the set of all solutions of (F) and (G), respectively. Let x, y ∈ R
N0 . If

xn+|k| = xn, yn+|k| = −yn

for any n ∈ N0, then we say that x is k-periodic and y is k-alternating. We denote by

Per(k), Alt(k)

the set of all k-periodic sequences and the set of all k-alternating sequences, respec-
tively. Note that Per(k), and Alt(k) are linear subspaces of RN0 and

dim Per(k) = |k| = dimAlt(k), Alt(k) ⊂ Per(2k).

We define

n div k := (sgn k)max { j ∈ Z : j |k| ≤ n} , nmod k := n − |k| (n div |k|) ,

geo(λ, k), alt(k) : N0 → R, geo(λ, k)(n) = λn div k, alt(k) = geo(−1, k).

Note that

n div(−k) = −(n div k), nmod(−k) = nmod k, geo(λ,−k) = geo(λ−1, k).

Moreover, geo(λ, k) is an ”expanded” geometric sequence. Note also, that for a fixed
k, the sequence (nmod k) is k-periodic.

Lemma 2.2 (Solutions of geometric equation)[15, Theorem3.1] If k ∈ Z
∗ andλ ∈ R

∗,
then a sequence x : N0 → R is a solution of the geometric equation (G) if and only
if for any n ∈ N0 we have

xn = λn div k xnmod k .

Lemma 2.3 (Solutions of fundamental equation)[15, Theorem 3.1] If k ∈ Z
∗, λ ∈ R

∗,
then

PG(m, λ, k) = Pol(m − 1) ⊕ Geo(λ, k),

Moreover, if ρ = k
√|λ|, then k(|λ| − 1)(ρ − 1) ≥ 0 and

Geo(λ, k) = geo(λ, k)Per(k) =
{

(ρn)Per(k) if λ > 0

(ρn)Alt(k) if λ < 0
,

Alt(k) = alt(k)Per(k).

Hence any solution y ∈ PG(m, λ, k) of the fundamental equation

�m(yn − λyn−k) = 0



60 Page 6 of 20 M. Nockowska-Rosiak, J. Migda

is of the form

yn = ϕ(n) + ωnρ
n = ϕ(n) + O(ρn), (5)

where ϕ ∈ Pol(m − 1), ρ = k
√|λ|, and ω is 2k-periodic.

Moreover, if k(|λ| − 1) < 0, then ρ < 1 and the polynomial part ϕ of y is
dominating. On the other hand, if k(|λ| − 1) > 0, then ρ > 1 and the geometric part
ωnρ

n is dominating (see Remark 3.3, [15]).

3 Approximative Solutions

Before we prove our main results we present the following lemma. For some related
results see [25] and [30].

Lemma 3.1 Assume k ∈ N, x, z, u ∈ R
N0 , ω : N0 → (0,∞),

lim sup
n→∞

|un|ωn−k

ωn
< α < 1,

zn = xn − unxn−k for large n, and zn = o(ωn). Then xn = o(ωn).

Proof Choose n0 ≥ k such that zn = xn−unxn−k and |un|(ωn−k/ωn) ≤ α for n ≥ n0.
Let

wn = zn
ωn

, for n ≥ n0; yn = xn
ωn

, for n ∈ N0; tn = un
ωn−k

ωn
, for n ≥ k.

(6)

Then for n ≥ n0 we have |tn| ≤ α and wn = yn − tn yn−k . Hence

|yn+k | ≤ |wn+k | + α|yn| (7)

for n ≥ n0. Since zn = o(ωn), then wn = o(1) and there exists a positive constant K
such that |wn| ≤ K for any n ≥ n0. Let

M = max(yn0 , yn0+1, . . . , yn0+k−1).

Assume n ≥ n0. There exist i ∈ {n0, . . . , n0 + k − 1} and l ∈ N such that n = i + lk.
Using (7) we have

|yi+2k | ≤ |wi+2k | + α|yi+k | ≤ K + α(K + α|yi |) = K + αK + α2M .

Analogously

|yi+3k | ≤ K (1 + α + α2) + α3M .
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After l steps we obtain

|yn| = |yi+lk | ≤ K (1 + α + · · · + αl−1) + αl M = K
1 − αl

1 − α
+ αl M .

Hence

|yn| <
K

1 − α
+ αl M <

K

1 − α
+ M

for any n ≥ n0. Therefore the sequence y is bounded. Choose a constant P such that
|yn| ≤ P for any n. Let ε > 0. There exist q ∈ N, and n1 ≥ n0 such that αq < ε and
|wn| < ε for n ≥ n1. Let n ≥ n1 + qk. Then there exist i ∈ {n1, . . . , n1 + k − 1} and
l ∈ N, l ≥ q such that n = i + lk. Similarly as above one can show that

|yn| ≤ ε

1 − α
+ αl P ≤

(
1

1 − α
+ P

)
ε.

Hence yn = o(1) and xn = ωn yn = ωno(1) = o(ωn). The proof is complete. �
To achieve our main results we use the following version of Krasnoselskii’s fixed point
theorem. For x, y, ρ ∈ R

N0 |x − y| ≤ |ρ| means |x − y|(n) ≤ |ρ(n)|, for n ∈ N0.

Lemma 3.2 Assume y ∈ R
N0 , ρ ∈ c0, X = {x ∈ R

N0 : |x − y| ≤ |ρ|}, A, B : X →
R
N0 , AX + BX ⊂ X, α ∈ (0, 1), A is continuous and B is an α-contraction. Then

there exists a point x ∈ X such that Ax + Bx = x.

Proof The assertion is a consequence of [15, Lemma 2.2 and Theorem 2.2]. �
Now we are in a position to formulate and prove the first of our main theorems. We
recall that asymptotic behavior of solutions to �m(yn −λyn−k) = 0 strongly depends
on λ, which means that for |λ| < 1 the polynomial part of y is dominating and for
|λ| > 1 the geometric part of y is dominating. It is worth noting that an assumption
on λ is included in the condition

lim sup
n→∞

|λ|ωn−k

ωn
< 1,

because ω is nonincreasing with positive values.

Theorem 3.1 Assume λ ∈ R
∗, k ∈ N, τ ∈ Z, ω : N0 → (0,∞) is nonincreasing,

lim sup
n→∞

|λ|ωn−k

ωn
< 1,

∞∑
n=0

nm−1(|an| + |bn|)
ωn

< ∞, (8)

f is continuous, and un = λ + o(n1−mωn). Then for any uniformly f -bounded
sequence y ∈ PG(m, λ, k) there exists a solution x of (E) such that

xn = yn + o(ωn).
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Proof The proof of the theorem is a nontrivial modification of the proofs of some
theorems and lemmas in [16] and theorem 1 in [23]. For x ∈ R

N0 let

x ′
n =

{
0 for n < max(0, τ )

an f (xn−τ ) + bn for n ≥ max(0, τ )
. (9)

Let y ∈ PG(m, λ, k) be f -uniformly bounded. Choose δ, L > 0 such that

| f (t)| ≤ L for any t ∈
∞⋃
n=0

[yn − δ, yn + δ]. (10)

Since the sequence ω is nonincreasing, ωn−k/ωn ≥ 1 for any n ≥ k, and using (8) we
get |λ| < 1. There exists ξ > 1 such that

lim sup
n→∞

ξ |λ|ωn−k

ωn
< 1.

Put α := ξ |λ|.We have |λ| < α < 1. Let z′, ρ′, γ ′ ∈ R
N0 , γ ′

n > 0 for n = 0, . . . , k−1
and

z′n = (λ − un)yn−k, ρ′
n = rm(L|a| + |b|)(n) + |z′n|, (11)

γ ′
n = ρ′

n + αγ ′
n−k (12)

for n ≥ k. By |λ| < 1 and (5), yn = O(nm−1) and so yn−k = O(nm−1). Hence

z′n = o(n1−mωn)O(nm−1) = o(ωn). (13)

Using (8), (11), (13), and Lemma 2.1 we get ρ′
n = o(ωn). For n ≥ k we have

ρ′
n = γ ′

n − αγ ′
n−k .

By definition and Lemma 3.1,

γ ′
n > 0 for n ∈ N0, γ ′

n = o(ωn). (14)

Choose an index p ≥ k such that

0 < γ ′
n < δ, |un| < α (15)

for n ≥ p. Now, let z, ρ, γ ∈ R
N0 and A, B, R : RN0 → R

N0 are defined as follows:
for n < p and x ∈ R

N0

zn = ρn = γn = B(x)(n) = R(x)(n) = 0, (16)
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for n ≥ p and x ∈ R
N0

zn = z′n, ρn = ρ′
n, γn = γ ′

n, (17)

R(x)(n) = (−1)mrm(x ′)(n) and B(x)(n) = un(xn−k − yn−k). (18)

Moreover, let

Ax = y − z + Rx and X = {x ∈ R
N0 : |x − y| ≤ γ }. (19)

By (14), (17) and assumptions on ω, we have

γn = o(ωn) ⊂ o(1). (20)

By (15), (16), and (17) we have 0 ≤ γn < δ for any n. Therefore, if x ∈ X , then, by
(10), | f (xn)| ≤ L for any n. Thus, using (4) and (9), we have

|R(x)(n)| = |rm(x ′)(n)| ≤ rm(|x ′|)(n) ≤ rm(L|a| + |b|)(n)

for n ≥ p. Hence, using (11) and (17), we get

|R(x)(n)| ≤ ρ′
n − |z′n| = ρn − |zn| (21)

for n ≥ p. If t ∈ X , then |t − y| ≤ γ and, by (15), we have

|B(t)(n)| = |un||tn−k − yn−k | ≤ αγn−k

for n ≥ p. Hence, using (12), (17), (19), and (21), we obtain

|Ax + Bt − y|(n) ≤ |R(x)(n)| + |zn| + |B(t)(n)| ≤ ρn + αγn−k = γn

for n ≥ p. Therefore, by (19), we get Ax + Bt ∈ X . Thus

AX + BX ⊂ X .

We will show that A is continuous on X . Let ε > 0. There exist an index q and β > 0
such that

2L
∞∑
n=q

nm−1|an| < ε and β

q∑
n=0

nm−1|an| < ε.

Let x ∈ X , and

W = [x0 − 1, x0 + 1] ∪ [x1 − 1, x1 + 1] ∪ · · · ∪ [xq − 1, xq + 1].
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Then W is compact and f is uniformly continuous on W . Choose μβ ∈ (0, 1) such
that for s, t ∈ W the condition |s − t | < μβ implies | f (s) − f (t)| < β. Assume
v ∈ X , ‖x − v‖ < μβ . Then,

‖Ax − Av‖ = ‖Rx − Rv‖ = sup
n≥0

|rm(x ′ − v′)(n)| ≤ sup
n≥0

rm(|x ′ − v′|)(n)

= rm(|x ′ − v′|)(0) ≤
∞∑
n=0

nm−1|(x ′ − v′)(n)| ≤
q∑

n=0

nm−1|an( f (xn) − f (vn))|

+
∞∑
n=q

nm−1|an( f (xn) − f (vn))| ≤ β

q∑
n=0

nm−1|an| + 2L
∞∑
n=q

nm−1|an| < ε + ε.

Hence A is continuous on X . Let x, v ∈ R
N0 . By (16) and (18), we have

‖Bx − Bv‖ = sup
n≥p

|B(x)(n) − B(v)(n)| = sup
n≥p

|un(xn−k − vn−k)|.

Hence, by (15), we obtain

‖Bx − Bv‖ ≤ α sup
n≥p

|xn−k − vn−k | ≤ α‖x − v‖.

Therefore B is an α-contraction. By Lemma 3.2, there exists a point x ∈ X such that
x = Ax + Bx . Then, by (18) and (19) we have

xn = R(x)(n) + yn − zn + un(xn−k − yn−k).

for n ≥ p. Using (11), (17) and (18), we get

xn − unxn−k = yn − zn − un yn−k + (−1)mrm(x ′)(n)

= yn − λyn−k + (−1)mrm(x ′)(n)

for n ≥ p. Since y ∈ PG(m, λ, k), we have

0 = �m(yn − λyn−k)

Hence, by (9), we obtain

�m(xn − unxn−k) = �m(yn − λyn−k)

+�m(−1)mrm(x ′)(n) = 0 + x ′
n = an f (xn) + bn

for n ≥ p. Therefore x is a solution of (E). Since x ∈ X , by (19), |x − y| < γ .
Moreover, by (20), γn = o(ωn). Hence xn − yn = o(ωn) and we obtain

xn = yn + (x − y)n = yn + o(ωn).

�
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Before we show a theorem for |λ| > 1 we need another auxiliary lemma.

Lemma 3.3 If k ∈ N, α ∈ (0, 1), ρ is a nonincreasing sequence with positive values
and

γn+k = ρn+k + αγn

with γi , i = 0, . . . , k − 1 satisfying

γi > (1 − α)−1ρi+k, i = 0, . . . , k − 1,

then

γn+k < γn,

for n ≥ k and

γn > (1 − α)−1ρn+k,

for n ∈ N0.

Proof Let i ∈ {0, . . . , k − 1}. We have

γk+i = ρk+i + αγi < (1 − α)γi + αγi = γi

and, by monotonicity and positivity of ρ,

γk+i = ρk+i + αγi > ρk+i + α(1 − α)−1ρk+i = ρk+i (1 − α)−1 ≥ ρ2k+i (1 − α)−1.

Moreover,

γ2k+i = ρ2k+i + αγk+i < (1 − α)γk+i + αγk+i = γk+i

and, by monotonicity and positivity of ρ,

γ2k+i = ρ2k+i + αγk+i > ρ2k+i + α(1 − α)−1ρ2k+i

= ρ2k+i (1 − α)−1 ≥ ρ3k+i (1 − α)−1.

Analogously, by induction,

γlk+i < γ(l−1)k+i , γlk+i > (1 − α)−1ρ(l+1)k+i

for any l ∈ N. �
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In the case |λ| > 1 we need a stronger assumption on u, then in the case |λ| < 1.
The rest of the assumptions of the theorem are the same. As previously the assumption
on λ is included in the condition

ω is nonincreasing and lim sup
n→∞

ωn−k

|λ|ωn
< 1.

Theorem 3.2 Assume λ ∈ R
∗, k ∈ N, τ ∈ Z, ω : N0 → (0,∞) is nonincreasing,

lim sup
n→∞

ωn−k

|λ|ωn
< 1,

∞∑
n=0

nm−1(|an| + |bn|)
ωn

< ∞, (22)

f is continuous, and un = λ + o
((

k
√|λ|)−n

ωn

)
. Then for any uniformly f -bounded

sequence y ∈ PG(m, λ, k) there exists a solution x of (E) such that

xn = yn + o(ωn).

Proof For x ∈ R
N0 let

x ′
n =

{
0 for n < max(0, τ )

an f (xn−τ ) + bn for n ≥ max(0, τ )
. (23)

Let y ∈ PG(m, λ, k) be f -uniformly bounded. Choose δ, L > 0 such that

| f (t)| ≤ L for any t ∈
∞⋃
n=0

[yn − δ, yn + δ]. (24)

Since the sequence ω is nonincreasing, ωn−k/ωn ≥ 1 for any n ≥ k, and using (22)
we get |λ| > 1. There exists ξ > 1 such that

lim sup
n→∞

ξωn−k

|λ|ωn
< 1.

Taking into account that un → λ and |λ| > 1 we assume, without loss of generality,
that inf

n≥k
|un| > 0. Put α := ξ

|λ| . We have 1
|λ| < α < 1. Let z′, z̃′, ρ′, γ ′ ∈ R

N0 , and

z′n = λ−un+k
un+k

yn, z̃′n = sup
l≥n

{∣∣z′l
∣∣} , for n ∈ N0; (25)

ρ′
i > 0, for i = 0, . . . , k − 1 and

ρ′
n =

{
rm(L|a| + |b|)(n − k) for n ∈ {k, . . . , 2k − 1};
rm(L|a| + |b|)(n − k) + z̃′n−2k for n ≥ 2k,

(26)
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γ ′
i > (1 − α)−1ρ′

i for i = 0, . . . , k − 1 and

γ ′
n = ρ′

n + αγ ′
n−k (27)

for n ≥ k. By (5), yn = O
((

k
√|λ|)n) and so yn−k = O

((
k
√|λ|)n). Moreover, from

the fact that inf
n≥k

|un| > 0 we get that

z′n = o

((
k
√|λ|

)−n
ωn

)
O

((
k
√|λ|

)n) = o(ωn) ⊂ o(1) (28)

and z̃′ is well defined. Let ε > 0. There exists nε ∈ N such that

|z′n| ≤ εωn,

for any n ≥ nε. By monotonicity of ω we get

z̃′n = sup
l≥n

{|z′l |} ≤ ε sup
l≥n

{ωl} = εωn

for any n ≥ nε. Hence

z̃′n = o(ωn). (29)

Using (22), (26), (29), and Lemma 2.1 we get ρ′
n = o(ωn). For n ≥ k we have

ρ′
n = γ ′

n − αγ ′
n−k .

By definition and Lemma 3.1,

γ ′
n > 0 for n ∈ N, γ ′

n = o(ωn) ⊂ o(1). (30)

Choose an index p ≥ k such that

0 < γ ′
n < δ, | 1

un
| < α (31)

for n ≥ p. Now, let z, ρ, γ ∈ R
N0 and A, B, R : RN0 → R

N0 are defined as follows:
for n < p and x ∈ R

N0

zn = ρn = γn = B(x)(n) = R(x)(n) = 0, (32)

for n ≥ p and x ∈ R
N0

zn = z′n, ρn = ρ′
n, γn = γ ′

n, (33)

R(x)(n) = − 1
un+k

(−1)mrm(x ′)(n + k) and B(x)(n) = 1
un+k

(xn+k − yn+k).

(34)
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Moreover, let

Ax = y − z + Rx and X = {x ∈ R
N0 : |x − y| ≤ γ }. (35)

By (30) and (33) we have

γn = o(ωn) ⊂ o(1). (36)

By (31), (32), and (33) we have 0 ≤ γn < δ for any n. Therefore, if x ∈ X , then, by
(24), | f (xn)| ≤ L for any n. Thus, using (4) and (23), we have

|R(x)(n)| = 1
|un+k | |rm(x ′)(n + k)| ≤ αrm(|x ′|)(n + k) ≤ rm(L|a| + |b|)(n + k)

for n ≥ p. Hence, using (25) and (33), we get

|R(x)(n)| ≤ ρ′
n+2k − z̃′n (37)

for n ≥ p. If t ∈ X , then |t − y| ≤ γ and, by (31), we have

|B(t)(n)| = 1
|un+k | |tn+k − yn+k | ≤ αγn+k

for n ≥ p. Hence by the fact ρ′ is the nonincreasing sequence, Lemma 3.3, (29), (33),
and (37) we obtain

|Ax + Bt − y|(n) ≤ |R(x)(n)| + |zn| + |B(t)(n)| ≤ ρn+2k − z̃′n + |zn| + αγn+k ≤
ρn+2k + αγn+k = γn+2k < γn+k < γn

for n ≥ p. Therefore, by (35), we get Ax + Bt ∈ X . Thus

AX + BX ⊂ X .

In analogous way to the proof of Theorem 3.1 we prove that A is continuous and B
is α-contraction. By Lemma 3.2, there exists a point x ∈ X such that x = Ax + Bx .
Then, by (34) and (35) we have

xn = R(x)(n) + yn − zn + 1
un+k

(xn+k − yn+k).

for n ≥ p. Using (25), (33) and (34), we get

un+k xn − xn+k = un+k yn − yn+k + (λ − un+k)yn − (−1)mrm(x ′)(n + k)

xn+k − un+k xn = yn+k − λyn + (−1)mrm(x ′)(n + k)

for n ≥ p. Hence

xn − unxn−k = yn − λyn−k + (−1)mrm(x ′)(n)
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for n ≥ p + k. Since y ∈ PG(m, λ, k), we have

0 = �m(yn − λyn−k).

Hence, by (23), we obtain

�m(xn − unxn−k) = �m(yn − λyn−k) + �m(−1)mrm(x ′)(n)

= 0 + x ′
n = an f (xn) + bn

for n ≥ p + k. Therefore x is a solution of (E). Since x ∈ X , by (35), |x − y| ≤ γ .
Moreover, by (36), γn = o(ωn). Hence xn − yn = o(ωn) and we obtain

xn = yn + (x − y)n = yn + o(ωn).

�
In the case of λ > 1 the assumption un = λ + o

((
k
√|λ|)−n

ωn

)
can not be weakened

even to un = λ + O
((

k
√|λ|)−n

ωn

)
. It is worth noting that for |λ| < 1, a similar

technique can not be applied.

Example 3.1 Let m = 1, k = 1, ωn = 1, λ > 1, τ ∈ Z. Let us consider

�(yn − λyn−1) = 0 (38)

with a general solution to the form

yn = c1 + c2λ
n, c1, c2 ∈ R.

Moreover, let f : R → R be a continuous, bounded function and a, b be sequences
such that

∑∞
n=0(|an| + |bn|) < ∞. Let us consider un = λ + (− 1

λ
)n . Notice that

un = λ +O(λ−n) and |un − λ| /∈ o(λ−n) and the rest of the assumptions of Theorem
3.2 are satisfied for yn = λn , n ∈ N0 which is a f -bounded solution to (38). We prove
that for yn = λn , there does not exist a solution x to

�(xn − (λ + (− 1
λ
)n)xn−1) = an f (xn−τ ) + bn (39)

with xn = yn + o(1). On the contrary, we assume that there exists a solution to (39)
such that xn = λn + dn where dn = o(1). Note that the left side of (39) is equal to

�(xn − (λ + (− 1
λ
)n)xn−1) = �(λn + dn − (λ + (− 1

λ
)n)(λn−1 + dn−1)) =

�(dn − λdn−1 + (− 1
λ
)ndn−1) + 2

λ
(−1)n .

Under assumptions on sequences a, b and the function f , the right side of (39) tends
to 0 as n → ∞. Taking account that lim

n→∞ dn = 0 and λ > 1 we have

lim
n→∞

(
dn − λdn−1 + (− 1

λ
)n)dn−1

) = 0,
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and

lim
n→∞ �

(
dn − λdn−1 + (− 1

λ
)ndn−1

) = 0.

Hence the left side of (39) is divergent as n → ∞, because of part (−1)n , which gives
a contradiction.

4 Approximations of Solutions

In this section we show results in which for a given solution x to nonlinear equation
(E) and a given measure of approximation ω we can find ϕ ∈ Pol(m − 1) such that
xn = ϕ(n) + o(ωn). In this section we consider only case |λ| < 1. Before we present
the main result of this section we need two auxiliary lemmas.

Lemma 4.1 [16, Lemma 3.4] Assume x, z, u ∈ R
N0 , zn = xn − unxn−k for large n,

η ∈ R, λ ∈ (−1, 1), limn→∞ un = λ, and zn = O(nη). Then xn = O(nη).

Lemma 4.2 Assume k ∈ N, m ∈ N0, λ ∈ R \ {1}, x, z ∈ R
N0 , ω : N0 → (0,∞),

ωn = O(1),

lim sup
n→∞

|λ|ωn−k

ωn
< 1,

zn = xn−λxn−k for large n, and z ∈ Pol(m−1)+o(ωn). Then x ∈ Pol(m−1)+o(ωn).

Proof Induction on m. For m = 0 the assertion follows from Lemma 3.1. Assume it
is true for certain m ≥ 0 and let

z ∈ Pol(m) + o(ωn).

There exist a real number c and a sequence w ∈ Pol(m − 1) + o(ωn) such that

zn = cnm + wn .

Since

1 = 1

1 − λ
− λ

1 − λ
.

we have

wn = zn − cnm = xn − λxn−k − c

1 − λ
nm + λc

1 − λ
nm

=
(
xn − c

1 − λ
nm

)
− λ

(
xn−k − c

1 − λ
nm

)
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There exists a sequence r ∈ Pol(m − 1) such that nm = (n − k)m + rn . Hence there
exists a sequence R ∈ Pol(m − 1) such that

wn =
(
xn − c

1 − λ
nm

)
− λ

(
xn−k − c

1 − λ
(n − k)m

)
+ Rn = vn − λvn−k + Rn

where v is a sequence defined by

vn = xn − c

1 − λ
nm .

We have

vn − λvn−k = wn − Rn ∈ Pol(m − 1) + o(ωn).

By inductive hypothesis v ∈ Pol(m − 1) + o(ωn). Hence

xn = vn + c

1 − λ
nm ∈ Pol(m) + o(ωn).

�

Lemma 4.3 Assume k ∈ N, x, z, u ∈ R
N0 , ω : N0 → (0,∞), ωn = O(1),

λ ∈ (−1, 1), un = λ + o(n1−mωn), lim sup
n→∞

|λ|ωn−k

ωn
< 1,

zn = xn − unxn−k for large n, and z ∈ Pol(m − 1) + o(ωn). Then x ∈ Pol(m − 1) +
o(ωn).

Proof Let γ be a sequence definded by γn = λ − un . Then

zn = xn − unxn−k = xn − λxn−k + γnxn−k .

By Lemma 4.1, xn = O(nm−1). Hence xn−k = O(nm−1) and we get

γnxn−k = o(n1−mωn)O(nm−1) = o(ωn).

There exist a polynomial sequence β such that degβ < m and zn = β(n) + o(ωn).
Hence

xn − λxn−k = zn − γnxn−k = β(n) + o(ωn) + o(ωn) = β(n) + o(ωn).

Using Lemma 4.2 we obtain the result. �
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Theorem 4.1 Assume m, k ∈ N, ω : N0 → (0,∞) is nonincreasing,

lim sup
n→∞

|λ|ωn−k

ωn
< 1,

∞∑
n=0

nm−1(|an| + |bn|)
ωn

< ∞,

un = λ + o(n1−mωn), F : RN0 → R
N0 , and x is a solution of the equation

�m(xn − unxn−k) = anF(x)(n) + bn

such that the sequence F(x) is bounded. Then there exists a polynomial sequence ϕ

such that degϕ < m, and xn = ϕ(n) + o(ωn).

Proof By assumption lim supn→∞
|λ|ωn−k

ωn
< 1 and monotonicity of ω, we get that

|λ| < 1. For n ∈ N0 let

gn = anF(x)(n) + bn .

By assumption we have

∞∑
n=0

nm−1|gn|
ωn

< ∞.

By Lemma 2.1, g ∈ A(m) and rm(g)(n) = o(ωn). Let h be a sequence defined by
hn = (−1)mrm(g)(n). Then hn = o(ωn) and,

�mhn = gn = �m(xn − unxn−k)

for large n. Hence by linearity of the operator �m , there exists a polynomial sequence
β such that degβ < m and

xn − unxn−k = β(n) + hn .

By Lemma 4.3 there exists a polynomial sequence ϕ such that degϕ < m and

xn = ϕ(n) + o(ωn).

�
Before we prove the last corollary we recall that for x, u ∈ R

N0 and k ∈ N x is said
to be (u, k)-nonoscillatory if unxnxn−k ≥ 0 for large n.

Corollary 4.1 Assume m, k ∈ N, ω : N0 → (0,∞) is nonincreasing,

lim sup
n→∞

|λ|ωn−k

ωn
< 1,

∞∑
n=0

nm−1(|an| + |bn|)
ωn

< ∞,
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f : N0 × R → R, g : [0,∞) → [0,∞),

g is nondecreasing, g(t0) > 0 for some t0 > 0,

| f (n, t)| ≤ g(n1−m |t |), for allt ≥ 0and for largen,

∫ ∞

t0

dt

g(t)
= ∞,

σ : N0 → N0, limn→∞ σ(n) = ∞, σ(n) ≤ n for large n, un = λ + o(n1−mωn), and
x is a nonoscillatory solution of the equation

�m(xn − unxn−k) = an f (n, xσ(n)) + bn .

Then x ∈ Pol(m − 1) + o(ωn).

Proof Define an operator F : RN0 → R
N0 by F(y)(n) = f (n, yσ(n)). As in the proof

of [16, Theorem 1], it can be shown that the sequence F(x) is bounded. Hence the
assertion is a consequence of Theorem 4.1. �
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