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Abstract
In this paper, we consider the delay dynamic equation

x�(t) + p(t)x
(
τ(t)

) = 0 for t ∈ [t0,∞)T. (∗)
Based on Lyapunov’s method, we study global attractivity of the trivial solution of
(∗). Our new result generalizes some well-known results in the theory of difference
and differential equations to dynamic equations of the form (∗). We also present some
examples on nonstandard time scales to illustrate the importance of the new result.

Keywords Delay dynamic equations · Global attractivity · Time scale

1 Introduction

The stability theory has proven to be a versatile and effective tool in comprehending
the behaviour of solutions in differential equations in recent years. Over the last few
decades, the theory of dynamic equations on time scales has played a pivotal role in
bridging the gap between difference and differential equations [2]. Notably, signifi-
cant results on uniform global asymptotic stability in differential equations [22] and
difference equations [6] were extended to the theory of dynamic equations by Wu
and Zou in their work [20] (also discussed in [10]). In this direction, Braverman and

Nour H. M. Alsharif and Basak Karpuz contributed equally to this work.

B Basak Karpuz
bkarpuz@gmail.com

Nour H. M. Alsharif
nour2791994@gmail.com

1 Department of Mathematics, Graduate School of Natural and Applied Sciences, Dokuz Eylül
University, Tınaztepe Campus, Buca, 35160 Izmir, Turkey

2 Department of Mathematics, Faculty of Sciences, Dokuz Eylül University, Tınaztepe Campus, Buca,
35160 Izmir, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s12346-023-00907-8&domain=pdf


118 Page 2 of 18 N. H. M. Alsharif, B. Karpuz

Karpuz [4] unified the results for differential equations [15] and for difference equa-
tions [7]. While some studies in the time scale literature have generalized classical
forms like difference equations, q-difference equations, and differential equations, it
is essential to note that extending results from these fields to dynamic equations is not
always straightforward. In some cases, this process necessitates the development of
new tools within the framework of time scale calculus.

Let us now start introducing the objective of this paper. In 1994, Yu and Cheng [21]
presented a general form of the following stability test for neutral difference equations
with delay.

Theorem A (Cf. [21, Theorem 2]) Suppose that {pn}∞n=0 is a nonnegative sequence
and τ is a nonnegative integer such that

∞∑

j=0

p j = ∞ and lim sup
n→∞

n+2τ∑

j=n

p j < 2.

Then, the trivial solution of

x(n + 1) − x(n) + p(n)x(n − τ) = 0 for n ∈ N0

is globally attracting.

A continuous counterpart of Theorem A for neutral differential equations with
positive and negative coefficients is considered by Shen and Yu. They have obtained
the following result as corollaries of their more general main result.

Theorem B [19, Corollary 1 and Corollary 2] Suppose that p ∈ C([0,∞), [0,∞))

and τ ≥ 0 such that

∫ ∞

0
p(ξ)dξ = ∞ and lim sup

n→∞

∫ t+2τ

t
p(ξ)dξ < 2.

Then, the trivial solution of

x ′(t) + p(t)x(t − τ) = 0 for t ∈ [0,∞)

is globally attracting.

It is a natural question to ask if Theorems A and B can be generalized to time scales
for linear delay dynamic equations. In this work, we aim to give a positive answer to
this question. However, the proofs on time scales require very technical computations,
which may lead to some expansions in the field of dynamic equations.

In this paper, we consider the linear delay dynamic equation

x�(t) + p(t)x
(
τ(t)

) = 0 for t ∈ [t0,∞)T, (1)

where T is a time scale unbounded above, p ∈ Crd([t0,∞)T, [0,∞)T) and τ satisfies
the following two conditions.
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(C1) τ ∈ Crd([t0,∞)T,R) satisfies τ(t) ≤ t for all t ∈ [t0,∞)T and limt→∞ τ(t) =
∞.

(C2) τ ∈ C1
rd([t0,∞)T,R) satisfies τ�(t) > 0 for all t ∈ [t0,∞)T and τ(T) = T.

Due to (C2), τ−1 : T → T exists. Let us define t−1 := inf{τ(t), t ∈ [t0,∞)T}, which
is a finite value by (C1).

Next, we have two definitions for the completeness of the structure of the paper.

Definition 1 (Solution) A function x : [t−1,∞)T → R, which is rd-continuous on
[t−1, t0]T and �-differentiable on [t0,∞)T with an rd-continuous derivative, is called
a solution of (1) provided that it satisfies the equality (1) identically on [t0,∞)T.

Definition 2 (Globally Attractivity) The trivial solution of (1) is said to be globally
attracting if any solution x of (1) satisfies limt→∞ x(t) = 0.

We mention here the papers [6–8, 14] and [12, 13, 15, 16, 19, 22–24], which
deal with asymptotic behaviour of difference equations and differential equations,
respectively. We also refer the readers to the papers [1, 3, 5, 9, 10, 17, 18] for a
discussion on asymptotic behaviour of solutions of dynamic equations on time scales.

The paper is organized as follows. In Sect. 2, we state our main theorem, which
generalizes Theorems A and B to time scales. Section3 includes auxiliary lemmas
required in the proof of the main theorem. The proof of the main theorem is given
in Sect. 4. In Sect. 5, there are two numerical examples illustrating applicability and
importance of themain result. Section6 is dedicated to conclusions. Finally, in Appen-
dices A and B, we give some basic results on time scales required in the proofs of our
lemmas.

2 Main Result

The main result of the paper is presented below.

Theorem 1 Assume (C1), (C2),

∫ ∞

t0
p(ξ)�ξ = ∞, (2)

and

lim sup
t→∞

∫ τ−2(σ (t))

t
p(ξ)�ξ < 2. (3)

Then, the trivial solution of (1) is globally attracting.

3 Preparatory Lemmas

The main result is motivated by the following important observations.

Lemma 1 If (C1) and (2) hold, then every convergent solution of (1) tends to zero.
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Proof Let x be a solution of (1), which tends to some constant � ∈ R. If � 	= 0, we
may assume without loss of generality that � > 0. Then, we can find t1 ∈ [t0,∞)T
such that x(t), x(τ (t)) > �

2 > 0 for all t ≥ t1. In view of (1), we see that

x�(t) = −p(t)x(τ (t)) ≤ −�

2
p(t) (4)

for t ∈ [t1,∞)T. Due to (2), there exists a sufficiently large t2 ∈ [t1,∞)T such that

∫ t2

t1
p(ξ)�ξ >

2

�
x(t1). (5)

By integrating (4), and then using (5), we see that

x(t2) ≤ x(t1) − �

2

∫ t2

t1
p(ξ)�ξ < 0.

This contradiction completes the proof. 
�
In the next result, we will define a companion function to get some information on

the solutions of (1).

Lemma 2 Suppose that (C1) and (C2) hold. Let x be a solution of (1), and define the
companion function

y(t) := x(t) −
∫ τ−1(t)

t
p(ξ)x

(
τ(ξ)

)
�ξ for t ∈ [t0,∞)T. (6)

If y converges to some value, then x also converges to the same value.

Proof Suppose x is a solution of (1) and y defined by (6) converges to �. We will show
that x converges to �. It follows that

y�(t) = x�(t) − [(
τ−1)�

(t)p
(
τ−1(t)

)
x(t) − p(t)x(τ (t))

]

= x�(t) + p(t)x(τ (t)) − p
(
τ−1(t)

)
x(t)

τ�
(
τ−1(t)

)

= − p
(
τ−1(t)

)
x(t)

τ�
(
τ−1(t)

) (7)

for all t ∈ [t0,∞)T (see Theorem 2 and Theorem 3). Integrating (7) from t1 to ∞,
where t1 ∈ [t0,∞)T is sufficiently large, we have

∫ ∞

t1

p
(
τ−1(η)

)
x(η)

τ�
(
τ−1(η)

) �η = −
∫ ∞

t1
y�(η)�η = y(t1) − lim

t→∞ y(t) = y(t1) − �.
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Note that

∫ ∞

t2
p(ξ)x

(
τ(ξ)

)
�ξ =

∫ ∞

t1

p
(
τ−1(η)

)
x(η)

τ�
(
τ−1(η)

) �η =: L < ∞, where t2 := τ−1(t1)

(8)
(see Theorem 4). We claim that

lim
t→∞

∫ τ−1(t)

t
p(ξ)x

(
τ(ξ)

)
�ξ = 0. (9)

Indeed, letting

z(t) :=
∫ t

t2
p(ξ)x

(
τ(ξ)

)
�ξ for t ∈ [t1,∞)T,

we see from (8) that

lim
t→∞ z(t) = L and lim

t→∞ z
(
τ−1(t)

) = L

since limt→∞ τ−1(t) = ∞ because of limt→∞ τ(t) = ∞. Therefore, we estimate

lim
t→∞

∫ τ−1(t)

t
p(ξ)x

(
τ(ξ)

)
�ξ = lim

t→∞
[
z
(
τ−1(t)

) − z(t)
] = L − L = 0,

which proves (9). Rewriting (6) in the form

x(t) = y(t) +
∫ τ−1(t)

t
p(ξ)x

(
τ(ξ)

)
�ξ for t ∈ [t0,∞)T,

and considering (9) yields that x(t) → � as t → ∞. This completes the proof. 
�

4 Proof of theMain Result

In view of Lemmas 1 and 2, in order to show that the trivial solution of (1) is globally
attracting, that is, every solution x tends to zero, we shall need a sufficient condition
such that for every solution x of (1), the function y defined by (6) will tend to a
constant.

Before proceeding to the next result, we compute

(y2)�(t) = y�(t)
(
2y(t) + μ(t)y�(t)

)

= − p
(
τ−1(t)

)
x(t)

τ�
(
τ−1(t)

)
[
2x(t) − 2

∫ τ−1(t)

t
p(ξ)x

(
τ(ξ)

)
�ξ − μ(t)

p
(
τ−1(t)

)
x(t)

τ�
(
τ−1(t)

)
]

= p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
[
μ(t)

p
(
τ−1(t)

)(
x(t)

)2

τ�
(
τ−1(t)

) − 2
(
x(t)

)2 + 2
∫ τ−1(t)

t
p(ξ)x

(
τ (ξ)

)
x(t)�ξ

]
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≤ p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
[
μ(t)

p
(
τ−1(t)

)(
x(t)

)2

τ�
(
τ−1(t)

) − 2
(
x(t)

)2

+
∫ τ−1(t)

t
p(ξ)

(
[
x
(
τ(ξ)

)]2 + (
x(t)

)2
)

�ξ

]

≤ p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
[∫ σ(t)

t

p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �ξ − 2
(
x(t)

)2

+
∫ τ−1(t)

t
p(ξ)

[
x
(
τ(ξ)

)]2
�ξ +

∫ τ−1(t)

t
p(ξ)

(
x(t)

)2
�ξ

]

= p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
[∫ τ−1(σ (t))

τ−1(t)
p(ξ)

(
x(τ (ξ))

)2
�ξ − 2

(
x(t)

)2

+
∫ τ−1(t)

t
p(ξ)

[
x
(
τ(ξ)

)]2
�ξ +

∫ τ−1(t)

t
p(ξ)

(
x(t)

)2
�ξ

]

= p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
∫ τ−1(σ (t))

t
p(ξ)

(
x(τ (ξ))

)2
�ξ − 2

p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
(
x(t)

)2

+ p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
∫ τ−1(t)

t
p(ξ)

(
x
(
t)

))2
�ξ (10)

for t ∈ [t0,∞)T. Note that we have applied the inequality 2αβ ≤ α2 + β2 in the
fourth step above.

Lemma 3 Assume (C1), (C2) and

lim sup
t→∞

∫ τ−2(σ (t))

t
p(ξ)�ξ < 2. (11)

Then, every solution of (1) tends to a constant.

Proof We shall construct a nonnegative Lyapunov functional V , which is eventually
nonincreasing along solutions of (1). Let x be a solution of (1), and let y be defined
by (6). Define Lyapunov functional V by

V
(
x(t)

) = (
y(t)

)2 + w(t) for t ∈ [t0,∞)T,

where

w(t) :=
∫ τ−1(t)

t

∫ τ−1(t)

η

p
(
τ−1(η)

)

τ�
(
τ−1(η)

) p(ξ)
[
x
(
τ(ξ)

)]2
�ξ�η for t ∈ [t0,∞)T.

In view of (10), we estimate that

(V ◦ x)�(t) = (
y2

)�
(t) + w�(t)

≤
[

p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
∫ τ−1(σ (t))

t
p(ξ)

(
x(τ (ξ))

)2
�ξ − 2

p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
(
x(t)

)2
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+ p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
∫ τ−1(t)

t
p(ξ)

(
x
(
t)

))2
�ξ

]

− p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
∫ τ−1(σ (t))

t
p(ξ)

(
x(τ (ξ))

)2
�ξ

+ p(τ−1(t))
(
x(t)

)2

τ�
(
τ−1(t)

)
∫ τ−2(σ (t))

τ−2(t)
p(ξ)�ξ

+ p
(
τ−1(t)

)(
x(t)

)2

τ�
(
τ−1(t)

)
∫ τ−2(t)

τ−1(t)
p
(
ξ
)
�ξ

= −2
p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
(
x(t)

)2 + p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
∫ τ−1(t)

t
p(ξ)

(
x(t)

)2
�ξ

+ p(τ−1(t))
(
x(t)

)2

τ�
(
τ−1(t)

)
∫ τ−2(σ (t))

τ−2(t)
p(ξ)�ξ

+ p
(
τ−1(t)

)(
x(t)

)2

τ�
(
τ−1(t)

)
∫ τ−2(t)

τ−1(t)
p(ξ)�ξ

= p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
(
x(t)

)2
[
−2 +

∫ τ−2(σ (t))

t
p(ξ)�ξ

]

for t ∈ [t0,∞)T. In view of (11), there exists t1 ∈ [t0,∞)T and ε ∈ R
+ such that

2 −
∫ τ−2(σ (t))

t
p(ξ)�ξ ≤ ε for all t ∈ [t1,∞)T.

Thus, we get

(V ◦ x)�(t) ≤ −ε
p
(
τ−1(t)

)

τ�
(
τ−1(t)

)
(
x(t)

)2 ≤ 0 for all t ∈ [t1,∞)T. (12)

Therefore, (V ◦ x) is nonnegative and nonincreasing on [t1,∞)T. This shows that

lim
t→∞ V

(
x(t)

) = lim
t→∞

((
y(t)

)2 + w(t)
)

= � ≥ 0.

By integrating the inequality (12) from t1 to ∞, we have

∫ ∞

t1

p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �ξ ≤ V
(
x(t1)

) − �

ε
. (13)
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By using (11), we obtain

w(t) =
∫ τ−1(t)

t

∫ σ(ξ)

t

p
(
τ−1(η)

)

τ�
(
τ−1(η)

) p(ξ)
[
x
(
τ(ξ)

)]2
�η�ξ

=
∫ τ−1(t)

t

∫ τ−1(σ (ξ))

τ−1(t)
p(η)p(ξ)

[
x
(
τ(ξ)

)]2
�η�ξ

<

∫ τ−1(t)

t

∫ τ−2(t)

t
p(η)p(ξ)

[
x
(
τ(ξ)

)]2
�η�ξ

<

∫ τ−1(t)

t

∫ τ−2(σ (t))

t
p(η)p(ξ)

[
x
(
τ(ξ)

)]2
�η�ξ

< 2
∫ τ−1(t)

t
p(ξ)

[
x
(
τ(ξ)

)]2
�ξ,

which together with (13) implies

lim
t→∞ w(t) = 0. (14)

Combining (13) and (14), we find

lim
t→∞ | y(t) |= lim

t→∞

√
V

(
x(t)

) − w(t) = √
�.

We assert further that y converges. The proof is clear if � = 0. Let � > 0. We claim
that y cannot be oscillatory. Assume the contrary that y is oscillatory. Then, there exist
δ ∈ (0,

√
�)R and t2 ∈ [t1,∞)T such that

0 <
√

� − δ <| y(t) |< √
� + δ for all t ∈ [t2,∞)T (15)

and let

J+ = {t ∈ [t2,∞)T : y(t) > 0} and J− = {t ∈ [t2,∞)T : y(t) < 0}. (16)

Since y is oscillatory, I and J are unbounded and satisfy J− ∪ J+ = [t2,∞)T. Hence,
we may pick an increasing divergent sequence {sk}k∈N ⊂ [t2,∞)T (i.e., sk+1 > sk
for k ∈ N and sk → ∞ as k → ∞) such that {sk} ⊂ J+ and {σ(sk)} ⊂ J−. Then,
y(sk) > 0 and yσ (sk) < 0 for all k ∈ N. Furthermore, by (15), we easily see that

0 <
√

� − δ <| yσ (sk) |< √
� + δ

�⇒ √
� − δ < −yσ (sk) <

√
� + δ

�⇒ −(√
� + δ

)
< yσ (sk) < −√

� + δ
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and
0 <

√
� − δ <| y(sk) |< √

� + δ

�⇒ √
� − δ < y(sk) <

√
� + δ

�⇒ −(√
� + δ

)
< −y(sk) < −√

� + δ,

then
−2

(√
� + δ

)
< yσ (sk) − y(sk) < 2

(−√
� + δ

)
< 0, k ∈ N.

It follows from (7) that

− 2
(√

� + δ
)

<

∫ σ(sk )

sk
y�(ξ)�ξ < 2

(−√
� + δ

)

�⇒ −2
(√

� + δ
)

< −
∫ σ(sk )

sk

p
(
τ−1(ξ)

)
x(ξ)

τ�
(
τ−1(ξ)

) �ξ < 2
(−√

� + δ
)

�⇒ 2
(√

� − δ
)

<

∫ σ(sk )

sk

p
(
τ−1(ξ)

)
x(ξ)

τ�
(
τ−1(ξ)

) �ξ < 2
(√

� + δ
)

�⇒ 4
(√

� − δ
)2

<

(∫ σ(sk )

sk

p
(
τ−1(ξ)

)
x(ξ)

τ�
(
τ−1(ξ)

) �ξ

)2

< 4
(√

� + δ
)2 (17)

for all k ∈ N. By using (11), we obtain the following inequality

(∫ σ(sk )

sk

p
(
τ−1(ξ)

)
x(ξ)

τ�
(
τ−1(ξ)

) �ξ

)2

=
(

μ(sk)
p
(
τ−1(sk)

)
x(sk)

τ�
(
τ−1(sk)

)
)2

=
∫ σ(sk )

sk

∫ σ(ξ)

ξ

p
(
τ−1(η)

)

τ�
(
τ−1(η)

)
p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �η�ξ

≤
∫ σ(sk )

sk

∫ τ−1(σ (ξ))

τ−1(ξ)

p
(
η
) p

(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �η�ξ

≤
∫ σ(sk )

sk

∫ τ−2(σ (ξ))

ξ

p
(
η
) p

(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �η�ξ

≤ 2
∫ σ(sk )

sk

p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �ξ (18)

for all k ∈ N. From (17) and (18), we have

∫ σ(sk )

sk

p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �ξ > 2
(√

� − δ
)2 for all k ∈ N. (19)

From (13) and (19), we get

∞∑

k=1

2
(√

� − δ
)2

<

∞∑

k=1

∫ σ(sk )

sk

p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �ξ
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≤
∫ ∞

s1

p
(
τ−1(ξ)

)(
x(ξ)

)2

τ�
(
τ−1(ξ)

) �ξ < ∞

but
∑∞

k=1 2
(√

� − δ
)2 = ∞, which is a contradiction. Therefore, y cannot be oscilla-

tory. If y is either eventually positive or eventually negative, then limt→∞ y(t) = √
�

or limt→∞ y(t) = −√
�, respectively. By Lemma 2, every solution x of (1) converges

to some value, and this completes the proof. 
�

Proof of Theorem 1 The proof is an immediate consequence of Lemmas 1 and 3. 
�

5 Some Examples

We start this section with a numerical example on a particular isolated time scale.

Example 1 Let T = {. . . , 0, 1, 3, 6, 7, 9, 12, . . .} = ∪k∈Z{6k, 6k + 1, 6k + 3}, and
consider the equation

x�(t) + p(t)x(ρ(t)) = 0 for t ∈ [0,∞)T, (20)

where

p(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

3
4 , t = 6k
1
2 , t = 6k + 1
1
36 , t = 6k + 3

for t ∈ [0,∞)T.

Comparing (20) with (1), we see that τ(t) = ρ(t) < t for all t ∈ T, and τ−1(t) = σ(t)
for t ∈ T. Further, τ�(t) = t−ρ(t)

μ(t) > 0 for all t ∈ T, i.e., τ is differentiable, increasing
and that τ(T) = T. Next, we compute that

lim sup
t→∞

∫ σ(t)

τ (t)
p(ξ)�ξ = lim sup

t→∞

∫ σ(t)

ρ(t)
p(ξ)�ξ

= lim sup
t→∞

[∫ t

ρ(t)
p(ξ)�ξ +

∫ σ(t)

t
p(ξ)�ξ

]

= lim sup
t→∞

[μ(ρ(t))p(ρ(t)) + μ(t)p(t)]

= lim sup
t→∞

⎧
⎪⎨

⎪⎩

3 · 1
36 + 1 · 3

4 , t = 6k

1 · 3
4 + 2 · 1

2 , t = 6k + 1

2 · 1
2 + 3 · 1

36 , t = 6k + 3

= lim sup
t→∞

⎧
⎪⎨

⎪⎩

5
6 , t = 6k
7
4 , t = 6k + 1
13
12 , t = 6k + 3

⎫
⎪⎬

⎪⎭
= 7

4
	< 1
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Fig. 1 Graphic of the solutions x1 (blue) and x2 (red) on [−3, 45]T

and

lim sup
t→∞

∫ σ(t)

τ (t)
p(ξ)�ξ = 7

4
	< 3

2
+ 1

3 + 3
= 5

3
.

Hence, conditions of [4, §6] and [20, Theorem 1.2] (see also [10]) fail to hold. Fortu-
nately,

lim sup
t→∞

∫ τ−2(σ (t))

t
p(ξ)�ξ = lim sup

t→∞

∫ σ 3(t)

t
p(ξ)�ξ

= lim sup
t→∞

[∫ σ(t)

t
p(ξ)�ξ +

∫ σ 2(t)

σ (t)
p(ξ)�ξ +

∫ σ 3(t)

σ 2(t)
p(ξ)�ξ

]

= lim sup
t→∞

[μ(t)p(t) + μ(σ(t))p(σ (t)) + μ(σ 2(t))p(σ 2(t))]

= lim sup
t→∞

⎧
⎪⎨

⎪⎩

1 · 3
4 + 2 · 1

2 + 3 · 1
36 , t = 6k

2 · 1
2 + 3 · 1

36 + 1 · 3
4 , t = 6k + 1

3 · 1
36 + 1 · 3

4 + 2 · 1
2 , t = 6k + 3

⎫
⎪⎬

⎪⎭
= 11

6
< 2,

which shows by Theorem 1 that the trivial solution of (20) is globally attracting.
In Fig. 1, we have the plots of the solutions x1 and x2, which have the initial

conditions x(−3) = 0, x(0) = 1, and x(−3) = 1, x(0) = 0, respectively.
We can simply compute x1 as

x1(t) =
{(− 1

12

)k
, t = 6k or t = 6k + 1

0, t = 6k + 3,

which satisfies limt→∞ x(t) = 0. But, it is not very easy to compute the solution x2
explicitly. Due to the superposition principle, we can say that any solution x of (20)
is of the form x(t) = x(−3)x1(t) + x(0)x2(t) for t ∈ [−3,∞)T. It can be also seen
from Fig. 1 that limt→∞ x(t) = 0.

Next, we give an example on a time scale, which is a union of closed intervals of
length 1.

Example 2 Let T = P1,1 = ∪k∈Z[2k, 2k + 1]R, and consider the equation

x�(t) + p(t)x(t − 2) = 0 for t ∈ [0,∞)T, (21)
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Fig. 2 Graphic of the coefficient p on [0, 9]T

Fig. 3 Graphic of the integral of the coefficient p from τ(t) to σ(t) for t ∈ [0, 9]T

where

p(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

5
4 , t ∈ [4k, 4k + 1)R
1
8 , t = 2k + 1
1
4 , t ∈ [4k + 2, 4k + 3)R

for t ∈ [0,∞)T.

Comparing (21) with (1), we see that τ(t) = t−2 < t for all t ∈ T, and τ−1(t) = t+2
for t ∈ T. Further, τ�(t) ≡ 1 > 0 for all t ∈ T, i.e., τ is differentiable, increasing and
that τ(T) = T.

It should be mentioned here that mint∈T{μ(t)} = 0, maxt∈T{μ(t)} = 1 and
maxt∈T{t − τ(t)} = 2.

Now, we compute

lim sup
t→∞

∫ σ(t)

τ (t)
p(ξ)�ξ = lim sup

t→∞

[∫ t

τ(t)
p(ξ)�ξ +

∫ σ(t)

t
p(ξ)�ξ

]

= lim sup
t→∞

[∫ t

t−2
p(ξ)�ξ + μ(t)p(t)

]

= lim sup
t→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − 4k + 3
8 , 4k ≤ t < 4k + 1

3
2 , t = 4k + 1

−t + 4k + 27
8 , 4k + 2 ≤ t < 4k + 3

1
2 , t = 4k + 3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 3

2

showing that conditions of [4, §6] and [20, Theorem 1.2] (see also [10]) fail to hold.
On the other hand, we compute that

lim sup
t→∞

∫ τ−2(σ (t))

t
p(ξ)�ξ = lim sup

t→∞

∫ σ(t)+4

t
p(ξ)�ξ



A Test for Global Attractivity of Linear Dynamic... Page 13 of 18 118

Fig. 4 Graphic of the integral of the coefficient p from t to τ−2(σ (t)) for t ∈ [0, 9]T

Fig. 5 Graphic of a solution x on [−2, 31]T under the initial condition x(t) = 0 for t ∈ [−2,−1]T and
x(0) = 1

= lim sup
t→∞

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

7
4 , 4k ≤ t < 4k + 1
15
8 , t = 4k + 1
7
4 , 4k + 2 ≤ t < 4k + 3
15
8 , t = 4k + 3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= 15

8
< 2.

This shows that the conditions of Theorem 1 hold, i.e., the trivial solution of (21) is
globally attracting.

Due to Theorem 1, the trivial solution of (21) is globally attracting. A solution of
(21) is plotted in Fig. 2 showing that limt→∞ x(t) = 0 (Figs. 3, 4, 5).

6 Final Comments

In this section, we make our final comments to conclude the paper. We will start with
a remark that holds trivially for the well-known time scales T = R and T = Z with a
delay in the linear form.

Remark 1 Suppose that τ ◦ σ = σ ◦ τ , then

lim sup
t→∞

∫ σ(t)

τ (t)
p(η)�η < 1

�⇒ lim sup
t→∞

∫ σ(τ−1(t))

t
p(η)�η < 1 and lim sup

t→∞

∫ σ(τ−2(t))

τ−1(t)
p(η)�η < 1

�⇒ lim sup
t→∞

∫ τ−1(σ (t))

t
p(η)�η < 1 and lim sup

t→∞

∫ τ−2(σ (t))

τ−1(t)
p(η)�η < 1
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�⇒ lim sup
t→∞

∫ τ−1(t)

t
p(η)�η < 1 and lim sup

t→∞

∫ τ−2(σ (t))

τ−1(t)
p(η)�η < 1

�⇒ lim sup
t→∞

∫ τ−2(σ (t))

t
p(η)�η < 2.

Hence, the condition in [4, §6 (i)] implies Theorem 1 under the condition τ ◦σ = σ ◦τ .

The key point in this paper is to assume conditions such that τ(T) = T holds. This
enables us to use the substitution formula in integrals on time scales (see Theorem 4).
Note that for the classical types of equations

x(n + 1) − x(n) + p(n)x(n − τ) = 0 for n ∈ N0, T = Z

and
x ′(t) + p(t)x(t − τ) = 0 for t ∈ [0,∞), T = R,

the condition τ(T) = T holds trivially. For more general special types of dynamic
equations

�hx(t) + p(t)x(t − kh) = 0 for t ∈ hZ, k ∈ N0, �hx(t) := x(t + h) − x(t)

h
,

x ′(t) + p(t)x(αt) = 0 for t ∈ R
+
0 , α ∈ (0, 1),

and

Dq x(t) + p(t)x(t/qk) = 0 for t ∈ qZ ∪ {0}, k ∈ N0, Dq x(t) := x(qt) − x(t)

(q − 1)t
,

one can easily see that (C2) holds too. h-difference equations and q-difference equa-
tions can be considered under a more general class, that is, dynamic equations on
isolated time scales. In this case, with a delay term of the form τ(t) = ρk(t) :=
(ρ ◦ ρk−1)(t) and ρ0(t) := t for t ∈ T and k ∈ N0, (C2) also holds.

We would like to emphasize that Theorem 1 generalizes Theorems A and B to
arbitrary time scales. It is also important tomention thatTheorem1cannot be compared
with the results in [4] and [20]. Hence, it is new in the stability theory of dynamic
equations.

Finally, we would like to mention that the main result of this paper can be extended
to dynamic equations of the neutral form

[
x(t) − r(t)x

(
γ (t)

)]� + p(t)x
(
α(t)

) − q(t)x
(
β(t)

) = 0 for t ∈ [t0,∞)T, (22)

where the coefficients p, q, r and the delays α, β, γ satisfy suitable conditions
(cf. [11]). However, we prefer demonstrating our results on the simple equation (1)
because the key point behind the idea can be presented without getting lost in compu-
tational details.
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Appendix A Basics of Time Scales

A time scale which is represented by the symbol T, is a nonempty closed subset
of reals R. The intervals with a subscript T are used to indicate the ordinary interval
intersects withT, i.e., [a, b]T = [a, b]∩T. The forward and backward jump operators,
σ : T → T and ρ : T → T, are respectively defined by σ(t) = inf(t,∞)T and
ρ(t) = sup(t,∞)T. A point t is called right or left-dense, if σ(t) = t or ρ(t) = t ,
respectively, meanwhile, it is called right or left-scattered, if σ(t) > t or ρ(t) < t ,
respectively. The graininess or forward step size map μ : T → [0,∞)R is given by
μ(t) = σ(t) − t . For f : T → R and t ∈ T, the �-derivative f �(t) of f at the
point t is defined to be the number, provided it exists with the property that, for given
ε ∈ R

+, there is a neighborhood Ut of t such that

| ( f σ (t) − f (s)) − f �(t)(σ (t) − s) | ≤ ε | σ(t) − s | for all t ∈ Ut ,

where f σ = f ◦ σ on T. A function f is said to be an rd-continuous function if it
is continuous at right-dense points in t ∈ T and has a finite limit at left-dense points.
The set of rd-continuous and differentiable rd-continuous functions are respectively
denoted by Crd(T,R) and C1

rd(T,R). For a function f , the so-called simple useful
formula holds

f σ (t) = f (t) + μ(t) f �(t) for all t ∈ T
κ ,

where

T
κ :=

{
T \ (ρ(supT), supT], if supT < ∞,

T, if supT = ∞.

For s, t ∈ T and a function f ∈ Crd(T,R), the �-integral of f is defined by

∫ t

s
f (ξ)�ξ = F(t) − F(s) for s, t ∈ T,

http://creativecommons.org/licenses/by/4.0/
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Table 1 Forward jump, �-derivative, �-integral on some particular time scales

T R hZ (h > 0) qZ (q > 1)

σ (t) t t + h qt

μ(t) 0 h (q − 1)t

f �(t) f ′(t) f (t+h)− f (t)
h

f (qt)− f (t)
(q−1)t

∫ t
s f (ξ)�ξ

∫ t
s f (ξ)dξ

∑ t
h −1

ξ= s
h

f (hξ)h
∑logq (t)−1

ξ=logq (s) f (qξ )qξ

where F ∈ C1
rd(T,R) is an antiderivative of f , i.e., F� = f on T

κ . Assume that
f ∈ Crd(T,R) and t ∈ T

κ , then

∫ σ(t)

t
f (ξ)�ξ = μ(t) f (t).

Table 1 gives the explicit forms for the forward jump, �-derivative, and �-integral on
the well-known time scales of reals, integers, and the quantum set, respectively.

Appendix B Advanced Results on Time Scales

Some advanced results on time scales such as chain rule, derivative of inverse, substi-
tution, Leibniz rule, and change of integration order are given in this section.

Theorem 2 ([2, Theorem 1.93] Chain Rule) Assume that f ∈ C1(T,R) is strictly
increasing and f (T) =: T̃ is a time scale. Further assume that g ∈ C1(T̃,R). Then

(g ◦ f )�(t) = g�̃
(
f (t)

)
f �(t) for t ∈ T

κ .

Remark 2 If T̃ = T holds in Theorem 2, then we get the familiar form (g ◦ f )�(t) =
g�( f (t)) f �(t) for t ∈ T.

Theorem 3 ([2, Theorem 1.97] Derivative of Inverse) Assume that f ∈ C1(T,R) is
strictly increasing and f (T) =: T̃ is a time scale. Then

(
f −1)�̃

(t) = 1

f �
(
f −1(t)

) provided that f �
(
f −1(t)

) 	= 0.

Remark 3 If T̃ = T holds in Theorem 3, then we get the familiar form ( f −1)�(t) =
1

f �( f −1(t))
provided that f �( f −1(t)) 	= 0.

Theorem 4 (Cf. [2, Theorem 1.98] Substitution) Assume that a, b ∈ T with b > a
and ν ∈ C1

rd(T,R) is strictly increasing and ν(T) =: T̃ is a time scale. Furthermore,



A Test for Global Attractivity of Linear Dynamic... Page 17 of 18 118

assume that g is a function such that g ◦ ν ∈ Crd(T,R). Then

∫ b

a
g
(
ν(η)

)
ν�(η)�η =

∫ ν(b)

ν(a)

g(ξ)�̃ξ.

Theorem 5 ([2, Theorem 1.117] Leibniz Rule) Let a ∈ T
κ and f : T × T

κ → R.
Assume that

(i) f is continuous at (t, t) where t ∈ T
κ with t > a.

(ii) f �1(t, ·) is rd-continuous on [a, σ (t)]T, where ·�1 denotes the derivative with
respect to the first component.

(iii) for every ε ∈ R
+, there exists a neighborhood Ut of t , independent of r ∈

[a, σ (t)]T, such that

| f (σ (t), r)− f (s, r)− f �1(t, r)(σ (t)−s) |≤ ε | σ(t)−s | quadfor all s ∈ Ut .

Then

g�(t) =
∫ t

a
f �1(t, ξ)�ξ + f (σ (t), t), where g(t) =

∫ t

a
f (t, ξ)�ξ.

Theorem 6 ([8, Theorem 3.2] Change of Integration Order) Let a ∈ T
κ , b ∈ T and

f : {(t, s) ∈ T×T : a ≤ s ≤ t ≤ b} → R be an rd-continuous function. Let a ∈ T
κ ,

b ∈ T and f : {(t, s) ∈ T × T
κ : a ≤ s ≤ t ≤ b} → R. Assume that

(i) f is bounded function,
(ii) f (·, ·), ∫ b

· f (ξ, ·)�ξ and
∫ ·
a f (·, η)�η are rd-continuous on [a, b]Tκ ,

(iii) for every ε ∈ R
+, there exists a neighborhoodUt of t , independent of r ∈ [a, b]T

with r ≤ s ≤ t , such that

| f (t, r) − f (s, r) | < ε for all s ∈ Ut .

Then, ∫ b

a

∫ b

η

f (ξ, η)�ξ�η =
∫ b

a

∫ σ(ξ)

b
f (ξ, η)�η�ξ.
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