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Abstract
In this paper, we establish a version of the central limit theorem for Markov–Feller
continuous time processes (with a Polish state space) that are exponentially ergodic in
the bounded-Lipschitz distance and enjoy a continuous form of the Foster–Lyapunov
condition. As an example, we verify the assumptions of our main result for a spe-
cific piecewise-deterministicMarkov process,whose deterministic component evolves
according to continuous semiflows, switched randomly at the jump times of a Poisson
process.

Keywords Markov process · Central limit theorem · Martingale method ·
Exponential ergodicity · Bounded-Lipschitz distance
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1 Introduction

We are concerned with the asymptotic behavior of the process
�g := {t−1/2

∫ t
0 g (�(s)) ds}t≥0, where � := {�(t)}t≥0 is a non-stationary, time-

homogeneous Markov process evolving on a Polish metric space E , with an arbitrary
transition semigroup {P(t)}t≥0, and g : E → R is a bounded Lipschitz continuous
observable. More specifically, our main goal is to provide some testable conditions
on {P(t)}t≥0 under which � has a unique invariant distribution, say μ∗, and �ḡ(t),
with ḡ := g − ∫E g dμ∗, converges in law (as t → ∞) to a centered normal random
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variable, or, in other words, under which the process {ḡ(�(t))}t≥0 obeys the central
limit theorem (CLT).

The CLT is definitely the fundamental one in probability theory and statistics. Ini-
tially formulated for independent and identically distributed random variables, it was
thereafter generalized to martingales (see [31]), which has constituted a background
for proving various versions of the CLT pertaining to Markov processes. First results
in this field deal with stationaryMarkov chains (with discrete time) for which the exis-
tence of a μ∗-square integrable solution to the Poisson equation is guaranteed (see,
e.g., [14, 17, 18]). During the later years, many attempts have been made to relax this
assumption. For instance, [26] refers to the so-called reversible Markov chains and
is based on approximating (in a certain sense) the solutions of the Poisson equation,
while [33] introduces a testable condition relying on the convergence of some series.
Another noteworthy article is [24], where, among others, the principal hypothesis of
[33] is reached by assuming a subgeometric rate of convergence of Markov chain’s
distribution to a stationary one in terms of the Wasserstein distance. Furthermore, it
should be mentioned that, over the years, the CLT has been also established for certain
stationary Markov processes with continuous time parameter; see e.g., [3, 35] and the
results of [22] for ergodic processes with normal generators (extending those of [18]).

In recent times, however, most attention has been paid to non-stationary Markov
processes. Some classical results on the CLT in this case can be found in [34]. They
involve positive Harris reccurent and aperiodic (discrete-time) Markov chains (or,
equivalently, those which are irreducible and ergodic in the total variation norm), for
which a drift condition towards petite sets is fulfilled (which guarantees the existence
of a suitable solution to the Poisson equation). Such requirements are, however, prac-
tically unattainable in non-locally compact state spaces. A version of the CLT for
a subclass of non-stationary Markov chains evolving on a general (Polish) metric
space, based on a kind of geometric ergodicity in the bounded-Lipschitz distance
and the ‘second order’ Foster-Lyapunov type condition (where a solution to the Pois-
son equation is not required) is established in [10]. In the context of processes with
continuous time parameter, probably the most general result of this kind to date, but
relying on the exponential ergodicity in theWasserstein distance (additionally, distinct
in nature from that assumed in [10] or [12]), is stated in [28]. An analogous result in
the discrete-time case can be found in [19].

The results established in this article are mainly inspired by [28]. A major motiva-
tion for the current study was the inability to directly apply the CLT established by
Komorowski and Walczuk [28] to some subclass of piecewise-deterministic Markov
processes (PDMPs), at least under (relatively natural) conditions imposed in [12,
Proposition 7.2] (see also [9, 13]).

The problem lies in accomplishing the exponential mixing in the sense of condition
(H1), employed in [28] (cf. also [19]), which requires a formof the Lipschitz continuity
of each P(t) with respect to the Wasserstein distance dW (see, e.g., [28, p. 5] for its
definition). More precisely, the authors assume the existence of γ > 0 and c < ∞
such that for any two Borel probability measures μ and ν (with finite first moments)
the following holds:

dW (μP(t), ν P(t)) ≤ ce−γ t dW (μ, ν) for any t ≥ 0. (1.1)
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We have therefore recognized the need to provide a new, somewhat more useful,
criterion that would involve a weaker form of the above requirement, similar to those
occuring, for instance, in [9, 12, 13, 25, 39] (cf. also [20]). More precisely, instead of
(1.1), we assume that there is γ > 0 such that, for any two Borel probability measures
μ and ν, there exist a continuous function V : E → [0,∞) and constants β > 0,
δ ∈ (0, 1), for which

dFM (μP(t), ν P(t)) ≤ βe−γ t
(∫

E
V d(μ + ν) + 1

)δ

for any t ≥ 0, (1.2)

where dFM stands for the bounded-Lipschitz distance, also known as the Fortet–
Mourier metric (cf., e.g., [30, p. 236] or [6, p. 192]). Besides, an additional advantage
of our approach is that this metric is weaker than the Wasserstein one, among others,
in a manner enabling the use of a coupling argument (introduced byM. Hairer in [20],
and further applied, e.g., in [9, 10, 12, 13, 25, 37, 39]) to reach an exponential mixing
property with respect to dFM, which fails while demanding it in terms of dW.

Hypotheses (H2) and (H3) used in [28] roughly ensure that the semigroup {P(t)}t≥0
preserves the finiteness of measure moments of a given, greater than 2, order. In the
present paper, they are both replaced by a strengthened version of the continuous
Lyapunov condition, from which, in practice, such properties are usually derived.

As mentioned above, the proof of our main result, that is, Theorem 3.1, is in many
places based on the reasoning presented in [28]. Nevertheless, it should be emphasized
that without a Lipschitz type assumption on the semigroup {P(t)}t≥0, such as (1.1)
(or its discrete-time analogue, employed, e.g., in [19]), proving the principal limit
theorems, like the central one or the law of the iterated logarithm, requires some more
subtle arguments, which is reflected, e.g., in [10, 11] or [27]. Most importantly, under
condition (1.2), the so-called corrector function χ : E → R, given by

χ(x) =
∫ ∞

0
P(t)ḡ(x) dt for any x ∈ E,

does not need to be Lipschitzian (which is a meaningful argument in the proof of
[28, Theorem 2.1]), but is only continuous. Another problem arising in our setting
is that the weak convergence of the process distribution (towards the stationary one),
guaranteedby (1.2), yields the convergenceof the corresponding integrals as long as the
integrands are (apart of being continuous) bounded, which is not required while using
the Wasserstein distance. This fact prevents, among others, a direct adaptation of the
final argument used in the proof of [28, Lemma 5.5]. We have overcome this obstacle
(see Lemma 4.9) by making the use of [6, Lemma8.4.3], which allows replacing the
boundedness of the integrand by its uniform integrability with respect to the family
of measures constituing the convergent sequence under consideration. Finally, let us
indicate that the key role in our proof is played by Lemma 4.5. In contrast, results of
this nature are not necessary in [28], since they are in some sense buid-in a priori in
hypotheses (H2) and (H3).

The article is organized as follows. In Sect. 2, we gather notation used throughout
the paper, as well as recall some basic definitions and facts in the field of measure
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theory and Markov semigroups. We also quote here a version of the CLT for mar-
tingales, crucial for the reasoning line presented in the paper. Section3 is devoted to
formulating assumptions and the main result, namely Theorem 3.1. In this part, it is
also shown that the assumptions employed imply the existence of a unique invariant
distribution of �. The proof of the main theorem, along with all auxiliary results,
is given in Sect. 4. Further, in Sect. 5, drawing on some ideas from [3], we provide
a concise representation of the variance of the limiting normal distribution (involved
in Theorem 3.1). Additionaly, in Sect. 6, we derive a straightforward conclusion from
[3, Theorem 2.1] concerning the functional CLT in the stationary case. Finally, in
Sect. 7, we demonstrate the usefulness of the main result by applying it to establish
the CLT for the PDMPs considered in [12].

2 Preliminaries

First of all, put N0 := N ∪ {0} and R+ = [0,∞). In what follows, we shall consider
a complete separable metric space (E, ρ), endowed with its Borel σ -field B(E). By
Bb(E) we will denote the Banach space of all real-valued, Borel measurable bounded
functions on E , equipped with the supremum norm ‖ · ‖∞. The subspaces of Bb(E)

consisting of all continuous functions and all Lipschitz continuous functions shall be
denoted by Cb(E) and Lipb(E), respectively. Throughout the paper, we will also refer
to a particular subset Lipb,1(E) of Lipb(E), defined as

Lipb,1(E) := { f ∈ Lipb(E) : ‖ f ‖BL ≤ 1
}
,

where the norm ‖ · ‖BL is given by

‖ f ‖BL := max

{

‖ f ‖∞, sup
x 
=y

| f (x) − f (y)|
ρ(x, y)

}

for any f ∈ Lipb(E).

Furthermore, we will write M(E) for the space of all finite non-negative Borel
measures on E . The subset of M(E) consisting of all probability measures will be,
in turn, denoted by M1(E). Moreover, for any given Borel measurable function V :
E → R+ and any r > 0, let us define the subset MV

1,r (E) of M1(E) consisting of
all measures with finite r -th moment with respect to V , that is,

MV
1,r (E) :=

{

μ ∈ M1(E) :
∫

E
V r (x)μ(dx) < ∞

}

.

Clearly, for any s ∈ (0, 2], we have MV
1,2(E) ⊂ MV

1,s(E), since
∫

E V s dμ ≤
(
∫

E V 2 dμ)s/2 for every μ ∈ M1(E), due to the Hölder inequality. Also worth noting
here is that, for every r > 0, MV

1,r (E) contains all Dirac measures δx , x ∈ E , and,
when V is continuous, all compactly supported Borel probability measures on E .
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For brevity, we will often write 〈 f , μ〉 for the Lebesgue integral ∫E f dμ of a Borel
measurable function f : E → R with respect to a signed Borel measure μ, provided
that it exists.

To evaluate the distance between measures, we will use the Fortet–Mourier metric
(equivalent to the one induced by the Dudley norm), which onM(E) is given by

dFM,ρ(μ, ν) := sup
f ∈Lipb,1(E)

|〈 f , μ − ν〉| for any μ, ν ∈ M(E).

Let us recall that a sequence {μn}n∈N0 ⊂ M(E) of measures is called weakly

convergent to a measure μ ∈ M(E), which is denoted by μn
w→ μ, if for any

f ∈ Cb(E) we have limn→∞〈 f , μn〉 = 〈 f , μ〉. It is well-known (see, e.g., [15,
Theorems 8 and 9]) that, if (E, ρ) is Polish (which is the case here), then the weak
convergence of any sequence of probability measures is equivalent to its convergence
in the Fortet–Mourier distance, and also the space (M1(E), dFM,ρ) is complete.

In fact, according to [6,Lemma8.4.3], theweakconvergenceμn
w→ μof probability

measures ensures the convergence of the corresponding integrals even in the case of
continuous but not necessarily bounded functions, provided that they are uniformly
integrable with respect to {μn}n∈N0 . An easily verifiable condition guaranteeing this
property, and thus also the above indicated statement, is presented in the following
result:

Lemma 2.1 Let {μn}n∈N0 ⊂ M1(E) be weakly convergent to some μ ∈ M1(E).
Then, for every continuous function h : E → R satisfying supn∈N0

〈|h|q , μn〉 < ∞
with some q > 1, we have limn→∞ 〈h, μn〉 = 〈h, μ〉.
Proof Let h : E →R be a continuous function such that M :=supn∈N0

〈|h|q , μn〉<∞
with some q > 1. Then, for every R > 0, we have

∫

{|h|≥R}
|h(x)| μn(dx) = 1

Rq−1

∫

{|h|≥R}
Rq−1|h(x)| μn(dx)

≤ 1

Rq−1

∫

{|h|≥R}
|h(x)|q μn(dx)

≤ 1

Rq−1

〈|h|q , μn
〉 ≤ M

Rq−1 for all n ∈ N0.

Keeping in mind that q > 1, we therefore see that

lim
R→∞ sup

n∈N0

∫

{|h|≥R}
|h(x)| μn(dx) = 0,

but this, according to [6, Lemma 8.4.3], already implies the assertion of the lemma. ��

2.1 Markov Semigroups

Let us now recall some basic concepts from the theory of Markov operators, to be
employed in the remainder of the paper.
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Afunction P : E×B(E) → [0, 1] is called a stochastic kernel if E � x �→ P(x, A)

is a Borel measurable map for each A ∈ B(E), and B(E) � A �→ P(x, A) is a Borel
probability measure for each x ∈ E . The composition of any two such kernels, say P
and Q, is defined by

P Q(x, A) =
∫

E
Q(y, A) P(x, dy) for any x ∈ E and any A ∈ B(E). (2.1)

Given a stochastic kernel P , we can define two corresponding operators (here
denoted by the same symbol, according to the convention employed, e.g., in [34, 35]);
one acting on M(E), defined by

μP(A) :=
∫

E
P(x, A) μ(dx) for μ ∈ M(E) and A ∈ B(E), (2.2)

and the second one acting on Bb(E), given by

P f (x) :=
∫

E
f (y) P(x, dy) for f ∈ Bb(E) and x ∈ E . (2.3)

These operators are related to each other so that

〈 f , μP〉 = 〈P f , μ〉 for any f ∈ Bb(E) and any μ ∈ M(E). (2.4)

The operator (·)P : M(E) → M(E), given by (2.2), is called a (regular) Markov
operator, and P(·) : Bb(E) → Bb(E), defined by (2.3), is said to be its dual operator.
Obviously, the Markov operator (resp. its dual) corresponding to the composition of
two given kernels in the sense of (2.1) is just the usual composition of the Markov
operators (resp. their duals) induced by these kernels. Let us also highlight that the
right-hand sides of (2.3) and (2.4), in fact, make sense for all Borel measurable,
bounded below functions, and we will often write P f also for such functions f (obvi-
ously, in that case, P f takes values in R ∪ {∞}).

Let T ∈ {R+,N0}. A family of stochastic kernels {P(t)}t∈T (or the induced family
of Markov operators) is called a (regular) Markov semigroup whenever

P(s)P(t) = P(s + t) for any s, t ∈ T, P(0)(x, ·) = δx for every x ∈ E,

and, if T = R+, the map R+ × E � (t, x) �→ P(t)(x, A) is B(R+ ×
E)/B(R)-measurable for any A ∈ B(E) (cf. the definition of transition function in
[16, p. 156]).

We call a Markov semigroup {P(t)}t∈T Feller if, for each t ∈ T, the dual opera-
tor P(t)(·) preserves continuity of bounded functions, i.e., P(t)(Cb(E)) ⊂ Cb(E).
A measure μ∗ ∈ M(E) is said to be invariant for such a semigroup {P(t)}t∈T when-
ever μ∗ P(t) = μ∗ for every t ∈ T. Obviously, these concepts can be also referred to
a single Markov operator.

Given aMarkov semigroup {P(t)}t∈T of stochastic kernels on E ×B(E), by a time-
homogeneous Markov process with transition semigroup {P(t)}t∈T we mean a family
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of E-valued random variables � := {�(t)}t∈T on some probability space (�,F ,P)

such that, for any s, t ∈ T, A ∈ B(E), and x ∈ E ,

P (�(s + t) ∈ A |F(s)) = P (�(s + t) ∈ A | �(s)) a.s.,

P(�(s + t) ∈ A | �(s) = x) = P(t)(x, A),
(2.5)

where {F(s)}s∈T is the natural filtration of �. Obviously, � can also be regarded as
a process on the probability space (�,F∞,P|F∞) with F∞ := σ ({�(t) : t ∈ T}).
The distribution of �(0) is referred to as the initial one. If T = N0 and P(n) = P(1)n

(i.e., P(n) is the nth iteration of P(1)) for every n ∈ N, then � satisfying (2.5) is
usually called a Markov chain (rather than a process), and the kernel P(1) is then said
to be the one-step transition law of this chain. Let us also note that, letting μ(t) be the
distribution of �(t) for every t ∈ T, we have μ(s + t) = μ(s)P(t) for any s, t ∈ T,
and thus it is indeed reasonable to call {P(t)}t∈T a transition semigroup.

Let us also recall that a continuous-time stochastic process � = {�(t)}t∈R+ ,
adapted to a filtration {F(t)}t∈R+ , is called jointly (resp. progressively) measurable
if the map R+ × � � (t, ω) �→ �(t)(ω) ∈ E (resp. its restriction to [0, t] × �) is
B(R+) ⊗F∞/B(E)-measurable (resp. B([0, t]) ⊗F(t)/B(E)-measurable for every
t > 0). As is well known, every adapted process with right- or left-continuous sample
paths is progressively measurable, and thus also jointly measurable.

Throughout the paper, for a givenMarkov process� = {�(t)}t∈T, we shall use the
so-called Dynkin set-up (see, e.g., [36, p. 7]), which brings a family {Px : x ∈ E} of
probability measures onF such that, for every x ∈ E , one has Px (�(0) = x) = 1 and
(2.5) is fulfilled with Px in place of P. Obviously, Px might be then thought of as the
conditional distribution ofP, given the initial state x of�, i.e.,Px (·) :=P(· | �(0)= x).
Within this framework, for each μ ∈ M1(E), one can define

Pμ(F) :=
∫

E
Px (F) μ(dx) for any F ∈ F , (2.6)

and check that � has the Markov property in the sense of (2.5) relative to Pμ, with
the given transition semigroup and initial law μ. For any μ ∈ M1(E) and x ∈ E ,
the expectation operators w.r.t. Pμ and Px (= Pδx ) will be denoted by Eμ and Ex ,
respectively. It is easy to see that, given anyBorelmeasurable, bounded below function
f : E → R, we then have

P(t) f (x) = Ex ( f (�(t))) for all x ∈ E, t ∈ T, (2.7)

and thus it follows from (2.5) that

Eμ ( f (�(s + t)) |F(s)) = P(t) f (�(s)) = E�(s) ( f (�(t)))

for all μ ∈ M1(E), s, t ∈ T.

In practice, it will be convenient to work in the following canonical setting. Given
a Markov process �, we put �̃ := {�(·)(ω) : ω ∈ �} ⊂ ET, and, for every t ∈ T,
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we define the projection �̃(t) : �̃ → E by �̃(t)(ω̃) := ω̃(t) for any ω̃ ∈ �̃, as well
as the σ -fields

F̃(t) := σ
({

�̃(s) : s ∈ [0, t] ∩ T
})

and F̃∞ := σ
({

�̃(s) : s ∈ T
})

.

Further, we introduce the map π : � → �̃ given by π(ω)(t) := �(t)(ω) for all
ω ∈ � and t ∈ T. Then �̃(t) ◦ π = �(t) for every t ∈ T and it follows easily that
π is both F∞/F̃∞ and F(t)/F̃(t)-measurable for each t ∈ T. Now, let us define
P̃μ(F̃) := Pμ(π−1(F̃)) for any F̃ ∈ F̃∞ and μ ∈ M1(E). Then, for each μ ∈
M1(E), P̃μ is a probability measure on F̃∞, and the processes �̃ and � have the
same finite dimensional distributions under Pμ and P̃μ, respectively, i.e.,

P̃μ

(
�̃(t0) ∈ A0, . . . , �̃(tn) ∈ An

) = Pμ (�(t0) ∈ A0, . . . , �(tn) ∈ An)

for all n ∈ N0, t0 ≤ t1 ≤ . . . ≤ tn in T, and A0, . . . , An ∈ B(E). In particular, �̃

is then a Markov process w.r.t. {F̃(t)}t∈T with the transition semigroup such as that
of � (cf. the proof of [5, Theorem 4.3]). Moreover, it is not hard to check that, if �

(with T = R+) is jointly (resp. progressively) measurable, then �̃ is jointly (resp.
progressively) measurable as well. One important advantage of this canonical setting
is that we can consider the shift operators �t : �̃ → �̃, t ∈ T, defined by

�t (ω̃)(s) := ω̃(s + t) for ω̃ ∈ �̃, s ∈ T, (2.8)

which allows one to write �̃(s)◦�t = �̃(s + t) for any s, t ∈ T. This, among others,
enables the use of the Birkhoff ergodic theorem in terms of the Markov process under
consideration.

2.2 AVersion of the CLT for Martingales

While proving the main result of this article, we will refer to [28, Theorem 5.1], which
is quoted below for the convenience of the reader.

Let (�, {Fn}n∈N0 ,F ,P) be a filtrated probability space with trivial F0, and con-
sider a square integrable martingale {mn}n∈N0 , as well as the sequence {zn}n∈N of its
increments, given by zn = mn − mn−1 for n ∈ N. Further, define 〈m〉n , n ∈ N, as

〈m〉n :=
n∑

i=1

E

(
z2i |Fi−1

)
. (2.9)

Theorem 2.1 ([28, Theorem 5.1]) Suppose that the following conditions hold:

(M1) For every ε > 0 we have

lim
n→∞

1

n

n−1∑

i=0

E

(
z2i+11{|zi+1|≥ε

√
n}
)

= 0
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(M2) We have supn≥1 E
(
z2n
)

< ∞ and there exists σ ∈ [0,∞) such that

lim
k→∞ lim sup

l→∞
1

l

l∑

j=1

E

∣
∣
∣
∣
1

k
E
(〈m〉 jk − 〈m〉( j−1)k |F( j−1)k

)− σ 2
∣
∣
∣
∣ = 0.

(M3) For every ε > 0 we have

lim
k→∞ lim sup

l→∞
1

kl

l∑

j=1

jk−1∑

i=( j−1)k

E

((
1 + z2i+1

)
1{|mi −m( j−1)k|≥ε

√
kl
}

)

= 0.

Then

lim
n→∞

E〈m〉n

n
= σ 2, (2.10)

and {mn}n∈N0 obeys the CLT, i.e.,

lim
n→∞P

(
1√
n

n−1∑

i=0

mi ≤ u

)

= �σ (u),

where �σ is the distribution function of a centered normal law with variance σ 2.

Obviously, the centered normal distribution with zero variance (i.e., σ 2 = 0) is viewed
as the Dirac measure at 0.

Remark 2.1 Basically, almost all known central convergence criteria for martingales
rely on [7, Theorem 2] of Brown, which, in turn, is based on the celebrated Lindeberg
condition. In the result above, this condition is stated as hypothesis (M1) and is also
reflected in assumption (M3). The Lindeberg condition originates from [4, Theorem
27.2] (see also [32, pp. 292–294]), that is, the Lindeberg-Feller CLT, which concerns
independent, but not necessarily identically distributed, random variables. The Brown
result, apart from this condition, involves the assumption that

〈m〉n

E〈m〉n
→ 1 in probability. (2.11)

This requirement is, however, relatively hard to verify in practice, and thus it is often
replaced with other assumptions. For instance, the martingale CLT given in [34, The-
orem D.6.4] requires instead that

lim
n→∞

1

n

n∑

i=1

E

(
z2i |Fi−1

)
= σ 2 a.s. for some σ 2 ∈ (0,∞), (2.12)

which can be simply written as limn→∞〈m〉n/n = σ 2 a.s. This assumption, together
with the Lindeberg condition, enables one to derive (2.10), which then yields (2.11).
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Hypotheses (M2) and (M3), adapted here from [28], although more technical, prove
to be less restrictive than (2.12). As emphasized by the authors, [28, Theorem 5.1]
was inspired by the proof of [35, Theorem 2.1], concerning martingales with sta-
tionary increments, where the only assumption is limn→∞ E|〈m〉n/n − σ 2| → 0.
Conditions (M1)–(M3) therefore constitute, in some way, a substitute of this assump-
tion and the stationarity, expressed in the spirit of Lindeberg-type conditions and the
aforementioned hypothesis (2.12) from [34].

3 Assumptions and Formulation of theMain Result

Let � = {�(t)}t∈R+ be a jointly measurable, E-valued time-homogeneous Markov
process with transition semigroup {P(t)}t∈R+ . We assume that the process is given in
the Dynkin setup with a suitable family {Pμ : μ ∈ M1(E)} of probability measures.
Furthermore, for analysis purposes, we will identify � with the canonical (and also
jointly measurable) process �̃, defined in Sect. 2.1, simultaneously, dropping all the
tildes used in the definition of the latter.

To state themain result of this paper,we need to employ several conditions regarding
the semigroup {P(t)}t∈R+ . Firstly, we assume that

(A1) {P(t)}t∈R+ has the Feller property;

and, secondly, we require the existence of a continuous function V : E → R+ such
that the following holds:

(A2) {P(t)}t∈R+ is V -exponentially mixing in the metric dFM,ρ , in the sense that
there exist constants γ > 0 and β > 0 such that

dFM,ρ(μP(t), ν P(t)) ≤ β(〈V , μ〉 + 〈V , ν〉 + 1)1/2e−γ t

for all μ, ν ∈ MV
1,1(E), t ∈ R+.

(A3) there exist A, B ≥ 0 and � > 0 such that

P(t)V 2(x) ≤ Ae−�t V 2(x) + B for all x ∈ E, t ∈ R+.

Remark 3.1 Assumption (A3) is a strengthened form of the Lyapunov condition (see,
e.g., [8, Definition 2.1]) and, among others, it ensures that the semigroup {P(t)}t∈R+
leaves the setMV

1,2(E) invariant.We can say evenmore, namely, for anyμ ∈ MV
1,2(E)

we have supt∈R+
〈
V 2, μP(t)

〉
< ∞, since

〈
V 2, μP(t)

〉
=
〈
P(t)V 2, μ

〉
≤ A

〈
V 2, μ

〉
+ B < ∞ for all t ∈ R+.

In Sect. 4.1, we will derive (in Lemma 4.2) a variant of (A3) concerning P(t)C p for
p ∈ (0, 4] and C = κ(V + 1)1/2 (with some constant κ), which leads to a conclusion
analogous to that above (see Corollary 4.1). These observations will be essential for
proving Lemma 4.5, which, in turn, plays a key role in verifying the hypotheses of
Theorem 2.1 for a suitable martingale (defined in Sect. 4.2).
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We will now show that the conjunction of the above-stated conditions implies that
the semigroup {P(t)}t∈R+ is, in fact, V -exponentially ergodic in dFM,ρ .

Lemma 3.1 If conditions (A1)–(A3) hold with some continuous function V : E →
R+, then {P(t)}t∈R+ possesses a unique invariant probability measure μ∗, and
μ∗ ∈ MV

1,2(E). Moreover, if such a measure exists, condition (A2) is equivalent
to the following one: there exist γ > 0 and κ > 0 such that

dFM,ρ(μP(t), μ∗) ≤ κ(〈V , μ〉 + 1)1/2e−γ t for every μ ∈ MV
1,1(E). (3.1)

Proof Let x0 ∈ E . Then from hypotheses (A2), (A3) and the inequality
PV ≤ (PV 2)1/2 it follows that, for any s, t ≥ 0,

dFM,ρ

(
δx0 P(t), δx0 P(t + s)

) ≤ β (V (x0) + P(s)V (x0) + 1)1/2 e−γ t

≤ W (x0) e−γ t , (3.2)

where W (x0) := β(V (x0) + (AV 2(x0) + B)1/2 + 1)1/2. Hence, for every t ≥ 0 and
any n, m ∈ N, we have

dFM,ρ

(
δx0 P(t + n), δx0 P(t + n + m)

) ≤ W (x0) e−γ (t+n).

This shows that {δx0 P(t + n)}n∈N is a Cauchy sequence w.r.t. dFM,ρ for every t ≥ 0.
Consequently, since the space (M1(E), dFM,ρ) is complete, each of such sequences
is convergent in this space. On the other hand, (3.2) also implies that

dFM,ρ

(
δx0 P(s + n), δx0 P(t + n)

) ≤ W (x0)e
−γ ((s∧t)+n) for any s, t ≥ 0, n ∈ N,

which, in turn, guarantees that, all the sequences {δx0 P(t + n)}n∈N, t ≥ 0, have the

same limit, say μ∗ ∈ M1(E). Obviously, this is equivalent to that δx0 P(t + n)
w→ μ∗

for all t ≥ 0.
Now, using (A1) we can conclude that μ∗ is invariant for {P(t)}t∈R+ . Indeed, for

any t ≥ 0 and f ∈ Cb(E), we get

〈 f , μ∗ P(t)〉 = 〈P(t) f , μ∗〉 = lim
n→∞

〈
P(t) f , δx0 P(n)

〉

= lim
n→∞

〈
f , δx0 P(t + n)

〉 = 〈 f , μ∗〉 ,

which proves that μ∗ P(t) = μ∗ for all t ≥ 0. Moreover, (A2) yields that
δx P(t)

w→ μ∗, as t → ∞, for every x ∈ E , and thus, using Lebesgue’s domi-
nated convergence theorem, one can deduce that, in fact, μP(t)

w→ μ∗ for every
μ ∈ M1(X). This implies that μ∗ has to be the unique invariant probability measure
of {P(t)}t∈R+ .

Further, observe that μ∗ ∈ MV
1,2(E). To see this, let Vk := min{V 2, k} for k ∈ N.

Since δx0 P(t)
w→ μ∗ as t → ∞ and {Vk}k∈N ⊂ Cb(E), applying (A3), we get

〈Vk, μ∗〉 = lim
t→∞

〈
Vk, δx0 P(t)

〉 = lim
t→∞ P(t)Vk(x0) ≤ B for all k ∈ N.



7 Page 12 of 46 D. Czapla et al.

Obviously Vk(x) ↑ V 2(x) for any x ∈ E . Hence, we can use the Lebesgue monotone
convergence theorem to conclude that

〈
V 2, μ∗

〉 = limk→∞ 〈Vk, μ∗〉 ≤ B < ∞,
which is the desired claim.

To prove the second statement of the lemma, let μ∗ ∈ MV
1,2(E) be an invariant

measure of {P(t)}t∈R+ . Then (A2) implies that, for every μ ∈ MV
1,1(E),

dFM,ρ(μP(t), μ∗) = dFM,ρ(μP(t), μ∗ P(t)) ≤ β(〈V , μ∗〉 + 〈V , μ〉 + 1)1/2e−γ t

≤ β(〈V , μ∗〉 + 1)1/2(〈V , μ〉 + 1)1/2e−γ t ,

whence (3.1) holds with κ := β(〈V , μ∗〉+ 1)1/2. Conversely, if (3.1) is fulfilled, then

dFM,ρ(μP(t), ν P(t)) ≤ dFM,ρ(μP(t), μ∗) + dFM,ρ(μ∗, ν P(t))

≤ κ
(
(〈V , μ〉 + 1)1/2 + (〈V , ν〉 + 1)1/2

)
e−γ t

≤ 2κ(〈V , μ〉 + 〈V , ν〉 + 1)1/2e−γ t ,

for any μ, ν ∈ MV
1,1(E), which means that (A2) holds with β := 2κ . ��

Throughout the rest of the paper, upon assuming (A1)–(A3), the unique invariant
probability measure of {P(t)}t∈R+ (which belongs to MV

1,2(E)) will be denoted by
μ∗. Moreover, we define

C(x) := κ(V (x) + 1)1/2 for x ∈ E, (3.3)

where κ is the constant featured in (3.1). Then, Lemma 3.1 yields that

dFM,ρ(δx P(t), μ∗) ≤ C(x)e−γ t for every x ∈ E . (3.4)

The main result of this paper reads as follows:

Theorem 3.1 Suppose that the transition semigroup {P(t)}t∈R+ of � satisfies
hypotheses (A1)–(A3) with some continuous function V : E → R+. Then it possesses
a unique invariant probability measure μ∗, which belongs to MV

1,2(E), and, for every
g ∈ Lipb(E), the CLT holds for the process {ḡ(�(t))}t∈R+ with ḡ := g − 〈g, μ∗〉,
independently of the initial distribution μ ∈ M1(E) of �, that is,

lim
t→∞Pμ

(
1√
t

∫ t

0
ḡ (�(s)) ds ≤ u

)

= �σ (u) for all u ∈ R, (3.5)

where �σ is the distribution function of a centered normal law with the variance
σ 2 < ∞ of the form

σ 2 = Eμ∗

((∫ ∞

0
P(t)ḡ(�(1)) dt −

∫ ∞

0
P(t)ḡ(�(0)) dt +

∫ 1

0
ḡ(�(s)) ds

)2
)

.

(3.6)
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Remark 3.2 In fact, our main result remains valid (with almost the same proof, except
for some obviousminor changes) under slightlyweaker conditions than (A2) and (A3).

Firstly, the exponent 1/2 on the right-hand of the inequality in (A2) can be replaced
by any other number δ ∈ (0, 1). Then (3.1) holds with δ in place of 1/2, and thus one
may consider C := κ(V + 1)δ instead of (3.3). Upcoming Lemma 4.2, Corollary 4.1
and Lemma 4.5 can be then established for p ∈ (0, 2δ−1] (rather that p ∈ (0, 4]),
which is sufficient to prove the main result.

Secondly, (A3) can be somewhat relaxed by assuming instead that

P(t)V 2(x) ≤ Ae−�t V r (x) + B for all x ∈ E, t ∈ R+ (3.7)

with some r ≥ 2 (instead of r = 2). Clearly, for r ∈ (0, 2), condition (3.7) implies (A3)
(with 2A and 2A + B in places of A and B, respectively). Moreover, considering (3.7)
with t = 0 shows that V has to be bounded in this case. Hence, if r < 2, then
every probability measure has finite all moments w.r.t. V , and thus the assertion of
Corollary 4.1 is trivially satisfied. Nevertheless, since V usually occurs in the form
V = ρ(·, x∗) (with an arbitrary x∗ ∈ E), such a case is essentially tantamount to
assuming the boundedness of the state space, which is a very restrictive requirement.

Regardless of the above, we will stick with the initial version of the assumptions,
with δ = 1/2 and r = 2, to make the proofs easier to follow.

4 Proof of theMain Result

4.1 Some Auxiliary Facts

First of all, let us note that, due to the boundedness of g, it suffices to prove the CLT
for {ḡ(�(t))}t∈R+ along the integers.

Lemma 4.1 Let μ ∈ M1(E). Then, for any g ∈ Bb(E) and

I (t) :=
∫ t

0
g(�(s)) ds, t ≥ 0,

the process {I (t)/
√

t}t>0 converges in law (to some R-valued random variable)
under Pμ (as t → ∞) whenever the sequence {I (n)/

√
n}n∈N does.

Proof Fix an arbitrary ε > 0 and choose n0 ∈ N such that n−1/2
0 < ε/(2‖g‖∞). Then,

taking into account the boundedness of g, for any n ≥ n0 and any t ∈ [n, n + 1), we
get

∣
∣
∣
∣

I (t)√
t

− I (n)√
n

∣
∣
∣
∣ ≤

|I (t) − I (n)|√
n

+ |I (n)|
(

1√
n

− 1√
t

)

≤ ‖g‖∞√
n

+ |I (n)|
(

1√
n

− 1√
n + 1

)
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<
ε

2
+ |I (n)|

(
1√
n

− 1√
n + 1

)

,

which yields that

Pμ

(

sup
t∈[n,n+1)

∣
∣
∣
∣

I (t)√
t

− I (n)√
n

∣
∣
∣
∣ ≥ ε

)

≤ Pμ

(

|I (n)|
(

1√
n

− 1√
n + 1

)

≥ ε

2

)

= Pμ

(

|I (n)| ≥ ε

2
(
n−1/2 − (n + 1)−1/2

)

)

.

Finally, using the Chebyshev inequality and the fact that n−1/2−(n+1)−1/2 ≤ n−3/2,
we infer that, for very n ≥ n0,

Pμ

(

sup
t∈[n,n+1)

∣
∣
∣
∣

I (t)√
t

− I (n)√
n

∣
∣
∣
∣ ≥ ε

)

≤ 4Eμ

(
I 2(n)

)

n3ε2
≤ 4(‖g‖∞n)2

n3ε2
= 4‖g‖2∞

nε2
.

Consequently,

lim
n→∞Pμ

(

sup
t∈[n,n+1)

∣
∣
∣
∣

I (t)√
t

− I (n)√
n

∣
∣
∣
∣ ≥ ε

)

= 0,

which implies the desired claim. ��
Additionally, as is evident from the following remark, we may assume without loss

of generality that the initial distribution μ of � belongs toMV
1,2(E).

Remark 4.1 If (3.5) holds for allμ ∈ {δx : x ∈ E}, then it is valid for allμ ∈ M1(E).
This follows directly from (2.6) by applying the Lebesgue dominated convergence
theorem.

Another simple observation, to be used later, is expressing the Lyapunov condition
assumed in (A3) using the function C : E → R+, given by (3.3).

Lemma 4.2 If {P(t)}t∈R+ enjoys hypothesis (A3) with some Borel measurable function
V : E → R+, then, for any p ∈ (0, 4], there exist constants Ap, Bp ≥ 0 and �p > 0
such that the map C : E → R+ given by (3.3) satisfies

P(t)C p (x) ≤ Ape−�pt V p/2(x) + Bp for any x ∈ E and any t ∈ R+.

Proof Let x ∈ E , t ∈ R+. Using the fact that, for any r > 0, there exists a positive
constant ζ (precisely, ζ = 1 for r ≤ 1 or ζ = 2r−1 for r > 1) such that

|a1 + a2|r ≤ ζ(|a1|r + |a2|r ) for any a1, a2 ∈ R, (4.1)

we obtain C p = κ p(V + 1)p/2 ≤ κ pζ(V p/2 + 1) with some ζ > 0.
Further, the Hölder inequality (used with exponent 4/p) yields that
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P(t)V p/2(x) ≤ (P(t)V 2(x))p/4. Consequently, applying hypothesis (A3) and again
inequality (4.1) (with r = p/4 ∈ (0, 1]), we can conclude that

P(t)C p (x) ≤ κ pζ

((
P(t)V 2(x)

)p/4 + 1

)

≤ κ pζ

((
Ae−�t V 2(x) + B

)p/4 + 1

)

≤ κ pζ
(

Ap/4e− p�
4 t V p/2(x) + B p/4 + 1

)
= Ape−�pt V p/2(x) + Bp,

where Ap := κ pζ Ap/4, Bp := κ pζ(B p/4 + 1) and �p := (p�)/4. The proof is now
complete. ��

As a straightforward consequence of Lemma 4.2, we can deduce that, for any initial
measure ν with finite second moment w.r.t. V , the fourth moment of the distribution
of � w.r.t. C, is uniformly bounded over t .

Corollary 4.1 Suppose that {P(t)}t∈R+ fulfills hypotheses (A1)–(A3) with some con-
tinuous V : E → R+. Then, for every p ∈ (0, 4] and the function C : E → R+ given
by (3.3), we have

sup
t∈R+

〈C p, μP(t)
〉
< ∞ whenever μ ∈ MV

1,2(E), and
〈C p, μ∗

〉
< ∞.

Proof Let p ∈ (0, 4]. Taking constants Ap, Bp ≥ 0 and �p > 0 for which the
assertion of Lemma 4.2 is valid, we get

〈C p, μP(t)
〉 = 〈P(t)C p, μ

〉 ≤ Ap

〈
V p/2, μ

〉
+ Bp < ∞ (4.2)

for any t ≥ 0 and μ ∈ MV
1,2(E). Since μ∗ ∈ MV

1,2(E) due to Lemma 3.1, applying
the same estimation with μ = μ∗ also gives 〈C p, μ∗〉 < ∞. ��

4.2 AMartingale-Based Decomposition for the GivenMarkov Process

Suppose that the transiton semigroup {P(t)}t∈R+ of � fulfills hypotheses (A1)–
(A3) with some continuous function V : E → R+ (and therefore it is V -
exponentially ergodic by Lemma 3.1). Further, fix an arbitrary g ∈ Lipb,1(E), and let
ḡ := g − 〈g, μ∗〉. Then, by (3.4), we have

|P(t)ḡ(x)| = | 〈ḡ, δx P(t)〉 | = | 〈g, δx P(t)〉 − 〈g, μ∗〉 |
≤ ‖g‖BLdFM,ρ (δx P(t), μ∗) ≤ ‖g‖BLC(x)e−γ t (4.3)

for every x ∈ E , t ≥ 0 and some γ > 0, whence

∫ ∞

0
|P(t)ḡ(x)| dt ≤ ‖g‖BLC(x)

∫ ∞

0
e−γ t dt = ‖g‖BL

γ
C(x) for any x ∈ E .

(4.4)
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This, in turn, allows us to define the corrector function χ : E → R as

χ(x) :=
∫ ∞

0
P(t)ḡ(x)dt for any x ∈ E . (4.5)

Remark 4.2 The function χ is continuous. Indeed, let x0 ∈ E . From (4.3) and the
continuity of C it follows that there exists δ > 0 such that, for all t ≥ 0 and any x ∈ E
with ρ(x0, x) < δ, we have

|P(t)ḡ(x)| ≤ ‖g‖BLC(x)e−γ t ≤ ‖g‖BL (C (x0) + 1) e−γ t .

This, in turn, allows one to apply the Lebesgue dominated convergence theorem,
which, together with (A1), gives limx→x0 χ(x) = χ(x0).

Remark 4.3 Note that (4.4) implies that, given p > 0 and μ ∈ M1(E), we have

Eμ

(|χ(�(t))|p) ≤
∫

E

(∫ ∞

0
|P(s)ḡ(x)| ds

)p

(μP(t))(dx)

≤
(‖g‖BL

γ

)p 〈C p, μP(t)
〉

for all t ≥ 0.

Remark 4.4 It is also worth paying attention to certain consequences of Fubini’s the-
orem:

(i) Since the map R+ × � � (t, ω) �→ �(t)(ω) is B(R+) ⊗ F∞/B(E)-measurable,
it follows that, for any μ ∈ M1(E) and any T > 0, we have

Eμ

(∫ T

0
ḡ(�(t)) dt

)

=
∫ T

0
Eμ (ḡ(�(t))) dt .

(ii) The assumed product measurability of the map R+ × E � (u, y) �→ P(u)1A(y)

with any A ∈ B(E) (see Sect. 2.1) easily implies the measurability of
(u, y) �→ P(u)ḡ(y), which, in turn, ensures that R+ × � � (u, ω) �→
P(u)ḡ(�(t)(ω)) is B(R+) ⊗ F(t)/B(R)-measurable for any t ≥ 0. Moreover, it
follows from (4.3) and Lemma 4.2 that the latter is also integrable with respect to
du ⊗ Px (dω) for every x ∈ E . Hence, using (2.7), for any x ∈ E and t ≥ 0, we
have

P(t)χ(x) = Ex (χ(�(t))) = Ex

(∫ ∞

0
P(u)ḡ(�(t)) du

)

=
∫ ∞

0
Ex (P(u)ḡ(�(t))) du =

∫ ∞

0
P(t + u)ḡ(x)du.

Let us now define the processes

M(t) : = χ(�(t)) − χ(�(0)) +
∫ t

0
ḡ(�(s))ds for t ≥ 0, (4.6)
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R(t) : = 1√
t
(χ(�(0)) − χ(�(t))) for t > 0, (4.7)

and observe that

1√
t

∫ t

0
ḡ (�(s)) ds = M(t)√

t
+ R(t) for all t > 0. (4.8)

Moreover, let {Z(n)}n∈N0 stand for the sequence of the increments of {M(n)}n∈N0 ,
that is,

Z(0) := M(0) = 0,

Z(n) := M(n) − M(n − 1) = χ (�(n)) − χ (�(n − 1))

+
∫ n

n−1
ḡ (�(s)) ds, n ∈ N.

(4.9)

It is worth noting here that σ 2, defined by (3.6), can be now expressed as

σ 2 = Eμ∗
(

M2(1)
)

= Eμ∗
(

Z2(1)
)

. (4.10)

It is well-known that {M(t)}t∈R+ is a martingale; see, e.g., [28, Proposition 5.2].
Nevertheless, for the convenience of a reader, we provide a somewhat more detailed
proof of this fact below, demonstrating the finiteness of σ 2 at the same time.

Lemma 4.3 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some contin-
uous function V : E → R+. Then, for every μ ∈ MV

1,2(E), the process {M(t)}t∈R+ ,

given by (4.6), is a martingale in L4(Pμ) w.r.t. to the natural filtration {F(t)}t∈R+ of
�. In particular, the variance σ 2, specified by (4.10), is then finite.

Proof Let μ ∈ MV
1,2(E) and t ≥ 0. Using twice inequality (4.1) with r = 4 and

ζ = 23, we have

|M(t)|4 ≤ ζ 2
(
|χ(�(t))|4 + |χ(�(0))|4

)
+ ζ(‖ḡ‖∞ t)4.

Hence, according to Remark 4.3, it follows that

Eμ

(
|M(t)|4

)
≤ ζ 2

(
Eμ

(
|χ(�(t))|4

)
+ Eμ

(
|χ(�(0))|4

))
+ ζ(‖ḡ‖∞ t)4

≤
(

ζ 1/2‖g‖BL
γ

)4 (〈
C4, μP(t)

〉
+
〈
C4, μ

〉)
+ ζ(‖ḡ‖∞ t)4, (4.11)

which shows thatEμ

(|M(t)|4) < ∞ due to Corollary 4.1 (applied for p = 4). Clearly,
since μ∗ ∈ MV

1,2(E) (according to Lemma 3.1), this also yields the finiteness of σ 2.
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Now, let s, t ∈ R+ be such that s < t . Keeping in mind Remark 4.4(i), we can
write

Eμ (M(t)|F(s)) = Eμ (χ(�(t))|F(s)) − χ(�(0)) +
∫ s

0
Eμ (ḡ(�(u)) |F(s)) du

+
∫ t

s
Eμ (ḡ(�(u)) |F(s)) du

= Eμ (χ(�(t))|F(s)) − χ(�(0)) +
∫ s

0
ḡ(�(u))du

+
∫ ∞

s
Eμ (ḡ(�(u)) |F(s)) du −

∫ ∞

t
Eμ (ḡ(�(u)) |F(s)) du.

(4.12)

Then, applying the Markov property and (2.7), we see that

Eμ (χ(�(t))|F(s)) = E�(s) (χ(�(t − s))) = P(t − s)χ(�(s)),
∫ ∞

s
Eμ (ḡ(�(u)) |F(s)) du =

∫ ∞

0
E�(s) (ḡ(�(u))) du

=
∫ ∞

0
P(u)ḡ(�(s))du = χ(�(s)),

∫ ∞

t
Eμ (ḡ(�(u)) |F(s)) du =

∫ ∞

t−s
E�(s) (ḡ(�(u))) du

=
∫ ∞

0
P(u + t − s)ḡ(�(s))du

= P(t − s)χ(�(s)),

where the last equality follows fromRemark 4.4(ii). Consequently, returning to (4.12),
we finally infer that Eμ (M(t)|F(s)) = M(s), which completes the proof. ��

Obviously, identity (4.8), combined with Lemma 4.1, reduces the proof of our main
result to showing the CLT for the martingale {M(n)}n∈N0 , provided that {R(n)}n∈N
converges in law to 0. This, in turn, follows from the following observation:

Lemma 4.4 Suppose that {P(t)}t∈R+ hypotheses (A1)–(A3) with some continuous
function V : E → R+. Then, for {R(t)}t>0 given by (4.7) and any μ ∈ MV

1,2(E), we

have R(t) → 0 in L1(Pμ) as t → ∞.

Proof Taking into account Remark 4.3, we see that

Eμ|R(t)| ≤ ‖g‖BL
γ
√

t
(〈C, μ〉 + 〈C, μP(t)〉) ≤ ‖g‖BL

γ
√

t

(

〈C, μ〉 + sup
s∈R+

〈C, μP(s)〉
)

.

which, in conjunction with Corollary 4.1, gives the desired claim. ��
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4.3 Verification of the Hypotheses of Theorem 2.1

The aim of this section is to show that themartingale {M(n)}n∈N0 , determined by (4.6),
fulfills the hypotheses (M1)–(M3) of Theorem 2.1, and thus obeys the CLT. Before
we proceed to verify these conditions, let us make the following crucial observation:

Lemma 4.5 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some con-
tinuous V : E → R+, and let {Z(n)}n∈N be given by (4.9). Then, for every p ∈ (0, 4],
there exists �p > 0 such that, for any μ ∈ MV

1,2(E) and certain constants Ãp, B̃p ≥ 0
(depending on μ), we have

∫

E
Ex
(|Z(i)|p) (μP(t))(dx) ≤ Ã pe−�p(i+t) + B̃p for all i ∈ N

and all t ∈ R+, (4.13)

and, in particular,

sup
i∈N

Eμ∗
(|Z(i)|p) < ∞. (4.14)

Proof Let p ∈ (0, 4], i ∈ N and t ∈ R+. Using inequality (4.1) we can choose ζ > 0
so that, for every x ∈ E ,

Ex
(|Z(i)|p) ≤ ζEx

(|χ(�(i)) − χ(�(i − 1))|p)+ ζEx

(∣
∣
∣
∣

∫ i

i−1
ḡ(�(s))ds

∣
∣
∣
∣

p
)

≤ ζEx
(|χ(�(i)) − χ(�(i − 1))|p)+ ζ‖ḡ‖p∞,

(4.15)

and also

Ex
(|χ(�(i)) − χ(�(i − 1))|p) ≤ ζ

(
Ex
(|χ(�(i))|p)+ Ex

(|χ(�(i − 1))|p)) .

Consequently, appealing to Remark 4.3, for any x ∈ E , we get

Ex
(|χ(�(i)) − χ(�(i − 1))|p) ≤ ζ

(‖g‖BL
γ

)p (〈C p, δx P(i)
〉+ 〈C p, δx P(i − 1)

〉)

= ζ

(‖g‖BL
γ

)p (
P(i)C p(x) + P(i − 1)C p(x)

)
.

(4.16)
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Now, take any constants�p > 0 and Ap, Bp ≥ 0 forwhich the assertion of Lemma 4.2
is valid, and let μ ∈ MV

1,2(E). Then

∫

E
Ex
∣
∣χ(�(i)) − χ(�(i − 1))

∣
∣p (μP(t))(dx)

≤ ζ

(‖g‖BL
γ

)p 〈
P(i)C p + P(i − 1)C p, μP(t)

〉

= ζ

(‖g‖BL
γ

)p 〈
P(i + t)C p + P(i + t − 1)C p, μ

〉

≤ ζ

(‖g‖BL
γ

)p (
Ap

(
e−�p(i+t) + e−�p(i+t−1)

) 〈
V p/2, μ

〉
+ 2Bp

)

= ζ

(‖g‖BL
γ

)p (
Ap
(
1 + e�p

)
e−�p(i+t)

〈
V p/2, μ

〉
+ 2Bp

)
. (4.17)

As a consequence of (4.15) and (4.17), we obtain

∫

E
Ex
(|Z(i)|p) (μP(t))(dx) ≤ ζ 2

(‖g‖BL
γ

)p

×
(

Ap
(
1 + e�p

)
e−�p(i+t)

〈
V p/2, μ

〉
+ 2Bp

)

+ ζ‖ḡ‖p∞,

and, since
〈
V p/2, μ

〉
< ∞, we can finally deduce that (4.13) holds with

Ã p := ζ 2
(‖g‖BL

γ

)p

Ap(1 + e�p )〈V p/2, μ〉 and

B̃p := 2ζ 2
(‖g‖BL

γ

)p

Bp + ζ‖ḡ‖p∞.

Obviously, (4.14) follows directly from (4.13) (applied with μ = μ∗), since
μ∗ ∈ MV

1,2(E) by virtue of Lemma 3.1. ��
While proving that condition (M2) holds, we will also need the continuity of the

maps E � x �→ Ex
(
M2(t)

)
(for every t ∈ R+), which is shown in the following two

lemmas.

Lemma 4.6 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some con-
tinuous V : E → R+. Then the map E � x �→ Ex (χ(�(t))) is also continuous for
any t ∈ R+.

Proof Let t ∈ R+, x0 ∈ E , and observe that (4.3) gives

|P(t + s)ḡ(x)| = |P(t) (P(s)ḡ) (x)|
≤ ‖g‖BLP(t)C(x)e−γ s for any x ∈ E, s ∈ R+.
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Hence, referring to Lemma 4.2 and using the continuity of V 1/2, we can choose
constants A1, B1 ≥ 0 and �1 > 0, as well as δ > 0, so that, for any u, v ∈ R+ and all
x ∈ E satisfying ρ(x0, x) < δ,

|P(t + s)ḡ(x)| ≤ ‖g‖BL
(

A1e−�1t
(

V 1/2 (x0) + 1
)

+ B1

)
e−γ s .

Consequently, having in mind Remark 4.4(ii) and (2.7), we can apply the Lebesgue
dominated convergence theorem to conclude that, for any x0 ∈ E ,

lim
x→x0

Ex (χ (�(t))) =
∫ ∞

0
lim

x→x0
P(t + s)ḡ(x) ds

=
∫ ∞

0
P(t + s)ḡ(x0) ds = Ex0 (χ (�(t))) ,

where the second equality follows from (A1). The proof is now completed. ��
Lemma 4.7 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some con-
tinuous V : E → R+. Then, for every t ∈ R+, the map E � x �→ Ex (M2(t)), with
M(t) given by (4.6), is continuous.

Proof Let t ∈ R+ and observe that, for any x ∈ E , we have

Ex

(
M2(t)

)
= Ex

((

χ (�(t)) − χ (�(0)) +
∫ t

0
ḡ (�(s)) ds

)2
)

= Ex

(
χ2 (�(t))

)
+ χ2 (x) + Ex

((∫ t

0
ḡ (�(s)) ds

)2
)

− 2χ (x)Ex (χ (�(t))) + 2Ex

(

χ (�(t))
∫ t

0
ḡ (�(s)) ds

)

− 2χ (x)Ex

(∫ t

0
ḡ (�(s)) ds

)

.

Consequently, in view of Lemma 4.6 and the continuity of χ (demonstrated in
Remark 4.2), it suffices to show the continuity of the following maps:

x �→ Ex

(
χ2 (�(t))

)
, x �→ Ex

((∫ t

0
ḡ (�(s)) ds

)2
)

,

x �→ Ex

(

χ (�(t))
∫ t

0
ḡ (�(s)) ds

)

.

According to (4.3) we have

| (P(u)ḡ · P(v)ḡ) (x)| ≤ ‖g‖2BLe−γ u−γ vC2(x) for any u, v ∈ R+, x ∈ E .
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Hence, using the Fubini theorem in a manner similar to that in Remark 4.4(ii) gives

Ex

(
χ2 (�(t))

)
= Ex

(∫ ∞

0

∫ ∞

0
P(u)ḡ(�(t)) · P(v)ḡ(�(t)) du dv

)

=
∫ ∞

0

∫ ∞

0
Ex ((P(u)ḡ · P(v)ḡ)(�(t))) du dv

=
∫ ∞

0

∫ ∞

0
P(t) (P(u)ḡ · P(v)ḡ) (x) du dv for all x ∈ E .

Let us now fix an arbitrary x0 ∈ E . Taking any constants A2, B2 ≥ 0 (and �2 > 0)
for which the assertion of Lemma 4.2 is valid with p = 2, and having in mind the
continuity of V , we can choose δ > 0 such that, for any u, v ∈ R+ and all x ∈ E with
ρ(x0, x) < δ,

|P(t) (P(u)ḡ · P(v)ḡ) (x) | ≤ ‖g‖2BLe−γ (u+v) (A2(V (x0) + 1) + B2) .

Applying the Lebesgue dominated convergence theorem we can therefore conclude
that

lim
x→x0

Ex

(
χ2 (�(t))

)
=
∫ ∞

0

∫ ∞

0
lim

x→x0
P(t) (P(u)ḡ · P(v)ḡ) (x) du dv

=
∫ ∞

0

∫ ∞

0
P(t) (P(u)ḡ · P(v)ḡ) (x0) du dv

= Ex0

(
χ2 (�(t))

)
,

where the penultimate equality follows from (A1). Hence x �→ Ex
(
χ2 (�(t))

)
is

continuous at x0, and thus in any x ∈ E .
To prove the continuity of the remaining two maps, let us first note that a direct

application of Fubini’s theorem yields that, for any t ∈ R+ and every integrable
f : [0, t] → R,

(∫ t

0
f (s) ds

)2

= 2
∫ t

0

∫ v

0
f (u) f (v) du dv.

As a consequence, arguing analogously as in Remark 4.4(i), we get

Ex

((∫ t

0
ḡ (�(s)) ds

)2
)

= 2Ex

(∫ t

0

∫ v

0
ḡ (�(u)) ḡ (�(v)) du dv

)

= 2
∫ t

0

∫ v

0
Ex (ḡ (�(u)) ḡ (�(v))) du dv

for any x ∈ E .
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Further, referring to the properties of conditional expectation, the Markov property
and identity (2.7), we obtain

Ex

((∫ t

0
ḡ (�(s)) ds

)2
)

= 2
∫ t

0

∫ v

0
Ex

(
ḡ (�(u))Ex (ḡ (�(v)) |F(u))

)
du dv

= 2
∫ t

0

∫ v

0
Ex

(
ḡ (�(u))E�(u) (ḡ(�(v − u)))

)
du dv

= 2
∫ t

0

∫ v

0
Ex

(
(ḡ · P(v − u)ḡ) (�(u))

)
du dv

= 2
∫ t

0

∫ v

0
P(u) (ḡ · P(v − u)ḡ) (x) du dv

for every x ∈ E .

Let x0 ∈ E . Proceeding analogously as before, we can now use (4.3) and then refer
to Lemma 4.2 and the continuity of V 1/2 to finally conclude that there exist constants
A1, B1 ≥ 0 and some δ > 0 such that, for any u, v ∈ R+ and all x ∈ E satisfying
ρ(x0, x) < δ,

|P(u) (ḡ P(v − u)ḡ) (x) | ≤ ‖g‖2BLe−γ (v−u)
(

A1(V 1/2(x0) + 1) + B1

)
. (4.18)

This enables us to apply the Lebesgue dominated convergence theorem, which yields
that

lim
x→x0

Ex

((∫ t

0
ḡ (�(s)) ds

)2
)

= 2
∫ t

0

∫ v

0
lim

x→x0
P(u) (ḡ P(v − u)ḡ) (x) du dv

= 2
∫ t

0

∫ v

0
P(u) (ḡ P(v − u)ḡ) (x0) du dv

= Ex0

((∫ t

0
ḡ (�(s)) ds

)2
)

,

where the penultimate equality follows from (A1). In view of arbitrariness of x0, we
have thus shown that the map x �→ Ex ((

∫ t
0 ḡ(�(s)) ds)2) is continuous.

Finally, taking into account that

|ḡ(�(u)) · P(v)ḡ(x)| ≤ ‖g‖2BL C(x)e−γ t for any u, v ∈ R+, x ∈ E,

due to (4.3), and reasoning similarly as in Remark 4.4, we see that, for any x ∈ E ,

Ex

(

χ (�(t))
∫ t

0
ḡ (�(s)) ds

)

= Ex

(∫ ∞

0

∫ t

0
ḡ(�(u)) · P(v)ḡ(�(t)) du dv

)
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=
∫ ∞

0

∫ t

0
Ex (ḡ(�(u)) · P(v)ḡ(�(t))) du dv

=
∫ ∞

0

∫ t

0
Ex (ḡ(�(u))Ex (P(v)ḡ(�(t)) |F(u))) du dv

=
∫ ∞

0

∫ t

0
Ex
(
ḡ(�(u))E�(u) (P(v)ḡ(�(t − u)))

)
du dv

=
∫ ∞

0

∫ t

0
P(u) (ḡ P(t − u + v)ḡ) (x) du dv.

Hence, again, fixing x0 ∈ E and referring sequentially to (4.3), Lemma 4.2 and the
continuity of V 1/2, we can estimate the integrand on the right-hand similarly as in
(4.18) (with t + v in place of v). This, analogously as before, enables the use of the
Lebesgue theorem to deduce the continuity of x �→ Ex (χ(�(t))

∫ t
0 ḡ(�(s)) ds). The

proof is now complete. ��
We can now proceed to verifying hypothesis (M1)–(M3).

Lemma 4.8 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some con-
tinuous V : E → R+, and that μ ∈ MV

1,2(E). Then, the sequence {Z(n)}n∈N of
martingale increments, given by (4.9), fulfills property (M1) with E = Eμ.

Proof Let ε > 0 and N ∈ N. By the Markov property, for every n ∈ N0,

Eμ

(

Z2(n + 1)1{
Z(n+1)≥ε

√
N
}|F(n)

)

= E�(n)

(

Z2(1)1{
Z(1)≥ε

√
N
}

)

,

whence, using the properties of the conditional expectation, we get

Eμ

(

Z2(n + 1)1{
Z(n+1)≥ε

√
N
}

)

= Eμ

(

Eμ

(

Z2(n + 1)1{
Z(n+1)≥ε

√
N
}|F(n)

))

= Eμ

(

E�(n)

(

Z2(1)1{
Z(1)≥ε

√
N
}

))

=
∫

E
Ex

(

Z2(1)1{
Z(1)≥ε

√
N
}

)

(μP(n))(dx).

This allows us to write

1

N

N−1∑

n=0

Eμ

(

Z2(n + 1)1{|Z(n+1)|≥ε
√

N
}

)

= 〈G N , μUN 〉 , (4.19)

where

G N (x) := Ex

(

Z2(1)1{|Z(1)|≥ε
√

N
}

)

and μUN := 1

N

N−1∑

n=0

μP(n) for x ∈ E .
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Now, let δ ∈ (0, 2].Using subsequently theHölder inequality (with exponent (2+δ)/2)
and the Markov inequality, we obtain

G N (x) = Ex

(

Z2(1)1{|Z(1)|≥ε
√

N
}

)

≤ (Ex
(|Z(1)|2+δ

))2/(2+δ)
Px

(
|Z(1)| ≥ ε

√
N
)δ/(2+δ)

≤ (Ex
(|Z(1)|2+δ

))2/(2+δ)
((

ε
√

N
)−(2+δ)

Ex
(|Z(1)|2+δ

)
)δ/(2+δ)

=
(
ε
√

N
)−δ

Ex
(|Z(1)|2+δ

)

for all x ∈ E , which, in turn, implies that

〈G N , μUN 〉 ≤
(
ε
√

N
)−δ

∫

E
Ex

(
|Z(1)|2+δ

)
μUN (dx).

On the other hand, Lemma 4.5 guarantees that supN∈N
∫

E Ex
(|Z(1)|2+δ

)

μUN (dx) < ∞. Hence limN→∞ 〈G N , μUN 〉 = 0, which, due to (4.19), gives the
desired claim. ��

Lemma 4.9 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some con-
tinuous V : E → R+, and that μ ∈ MV

1,2(E). Then, the sequence {Z(n)}n∈N of

martingale increments, given by (4.9), fulfills property (M2) with σ 2 specified by
(4.10), and E = Eμ.

Proof Obviously, thefirst part of condition (M2), including thefiniteness ofσ 2, follows
directly from Lemma 4.5.

Keeping in mind (2.9) and using the properties of the conditional expectation, as
well as the Markov property, for any j, k ∈ N, we obtain

Eμ

∣
∣
∣
∣
1

k
Eμ

(〈M〉 jk − 〈M〉( j−1)k
∣
∣F(( j − 1)k)

)− σ 2
∣
∣
∣
∣

= Eμ

∣
∣
∣
∣
∣
∣

1

k

jk∑

i=( j−1)k+1

Eμ

(
Z2(i)|F(( j − 1)k)

)
− σ 2

∣
∣
∣
∣
∣
∣

= Eμ

∣
∣
∣
∣
∣
∣

1

k

jk∑

i=( j−1)k+1

E�(( j−1)k)

(
Z2(i − ( j − 1)k)

)
− σ 2

∣
∣
∣
∣
∣
∣

= Eμ

∣
∣
∣
∣
∣
1

k

k∑

i=1

E�(( j−1)k)

(
Z2(i)

)
− σ 2

∣
∣
∣
∣
∣
=
∫

E

∣
∣
∣
∣
∣
Ex

(
1

k

k∑

i=1

Z2(i)

)

−σ 2
∣
∣
∣ (μP(( j − 1)k))(dx).
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Hence, for any given l, k ∈ N, we may write

1

l

l∑

j=1

Eμ

∣
∣
∣
∣
1

k
Eμ

(〈M〉 jk − 〈M〉( j−1)k
∣
∣F(( j − 1)k)

)− σ 2
∣
∣
∣
∣

=
〈

|Hk | , 1
l

l∑

j=1

μP(( j − 1)k)

〉

, (4.20)

where

Hk(x) = Ex

(
1

k

k∑

i=1

Z2(i)

)

− σ 2 = 1

k
Ex

(
M2(k)

)
− σ 2 for every x ∈ E .

(4.21)

Therefore, it now suffices to show that

lim
k→∞ lim sup

l→∞

〈

|Hk | , 1
l

l∑

j=1

μP(( j − 1)k)

〉

= 0. (4.22)

To do this, we will use Lemma 2.1 and the Birkhoff ergodic theorem.
Let us first observe that, according to Lemma 4.7, Hk is continuous for every k ∈ N.

Further, fix k ∈ N, q ∈ (1, 2], and let �2q > 0 and Ã2q , B̃2q ≥ 0 be the constants for
which assertion (4.13) of Lemma 4.5 is valid with the given μ. Then, using (4.1) with
r = q and ζ = 2q−1, as well as the Jensen inequality, for every l ∈ N, we obtain

〈
|Hk |q ,

1

l

l∑

j=1

μP(( j − 1)k)
〉

≤ ζ

l

l∑

j=1

∫

E

⎛

⎝

(

Ex

(
1

k

k∑

i=1

Z2(i)

))q

+ σ 2q

⎞

⎠μP(( j − 1)k)(dx)

≤ ζ

⎛

⎝1

l

l∑

j=1

∫

E
Ex

(
1

k

k∑

i=1

Z2q(i)

)

μP(( j − 1)k)(dx) + σ 2q

⎞

⎠

= ζ

⎛

⎝ 1

lk

l∑

j=1

k∑

i=1

∫

E
Ex

(
Z2q(i)

)
μP(( j − 1)k)(dx) + σ 2q

⎞

⎠

≤ ζ( Ã2q + B̃2q + σ 2q) < ∞.

Moreover, referring to the V -ergodicity of {P(t)}t∈R+ (established in Lemma 3.1),
as well as the Cesáro mean convergence theorem, we see that
{l−1∑l

j=1 μP(( j − 1)k)}l∈N converges weakly to μ∗. This observation, together
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with the above estimate and the continuity of Hk , enables us to use Lemma 2.1, which
gives

lim
l→∞

〈

|Hk |, 1

l

l∑

j=1

μP(( j − 1)k)

〉

= 〈|Hk |, μ∗〉 . (4.23)

In view of the above, it remains to prove that limk→∞ 〈|Hk |, μ∗〉 = 0. For this
aim, consider the subfamily {�k}k∈N0 of the shift operators, defined according to
(2.8), and note that �k = �k

1 for every n ∈ N0. Since μ∗ is the unique invariant
distribution of �, it follows that �1 is an (F∞-measurable) ergodic transformation
preserving the measure Pμ∗ , i.e., Pμ∗(�

−1
1 (F)) = Pμ∗(F) for every F ∈ F∞, and

Pμ∗(F) ∈ {0, 1}whenever F ∈ F∞ satisfies�−1
1 (F) = F . Moreover, it is easily seen

that Z2(k) = Z2(1)◦�k−1 = Z2(1)◦�k−1
1 for any k ∈ N, and byLemma4.5we know

that Z2(1) ∈ L1(Pμ∗). Consequently, the vonNeumannmean ergodic theoremadapted
to Lp spaces (see [38, Corollary 1.14.1] or [29, Theorem 1.4] and the discussion
after it), together with [29, Proposition 1.6], ensures that

lim
k→∞

1

k

k∑

i=1

Z2(i) = lim
k→∞

1

k

k−1∑

i=0

Z2(1) ◦ �i
1 = Eμ∗ [Z2(1)] = σ 2 in L1(Pμ∗).

Finally, taking into account that

0 ≤ 〈|Hk |, μ∗〉 ≤
∫

E
Ex

∣
∣
∣
∣
∣
1

k

k∑

i=1

Z2(i) − σ 2

∣
∣
∣
∣
∣
μ∗(dx) = Eμ∗

∣
∣
∣
∣
∣
1

k

k∑

i=1

Z2(i) − σ 2

∣
∣
∣
∣
∣
,

for every k ∈ N, we get limk→∞ 〈|Hk |, μ∗〉 = 0. Obviously, in view of (4.23), we can
now conclude that (4.22) holds, which completes the proof. ��
Lemma 4.10 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some con-
tinuous V : E → R+, and that μ ∈ MV

1,2(E). Then, the sequence {Z(n)}n∈N of
martingale increments, given by (4.9), enjoys property (M3) with E = Eμ.

Proof Let ε > 0 and fix k, l, j ∈ N, n ≥ ( j − 1)k arbitrarily. The Markov property
yields that

Eμ

((
1 + Z2(n + 1)

)
1{|M(n)−M(( j−1)k)|≥ε

√
kl
}|F(( j − 1)k)

)

= Eμ

((
1 + Z2(n + 1)

)
1{|Z(( j−1)k+1)+...+Z(n)|≥ε

√
kl
}|F(( j − 1)k)

)

= E�(( j−1)k)

((
1 + Z2(n + 1 − ( j − 1)k)

)
1{|Z(1)+...+Z(n−( j−1)k)|≥ε

√
kl
}

)

= E�(( j−1)k)

((
1 + Z2(n + 1 − ( j − 1)k)

)
1{|M(n−( j−1)k)|≥ε

√
kl
}

)

.
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Thus, taking the expectation of both sides we get

Eμ

(
(
1 + Z2(n + 1)

)
1{|M(n)−M(( j−1)k)|≥ε

√
kl
}

)

=
∫

E
Ex

(
(
1 + Z2(n + 1 − ( j − 1)k)

)
1{|M(n−( j−1)k)|≥ε

√
kl
}

)

(μP(( j − 1)k)) (dx).

Now, summing up the above equality over all n = ( j − 1)k, . . . , jk − 1, and then
over all j = 1, . . . l, and finally dividing both sides of the resulting identity by kl, we
obtain

1

kl

l∑

j=1

jk−1∑

n=( j−1)k

Eμ

( (
1 + Z2(n + 1)

)
1{|M(n)−M(( j−1)k)|≥ε

√
kl
}
)

= 1

kl

l∑

j=1

k−1∑

n=0

〈
Gk,l,n, μP(( j − 1)k)

〉
,

where

Gk,l,n(x) = Ex

((
1 + Z2(n + 1)

)
1{|M(n)|≥ε

√
kl
}

)

for x ∈ E .

It is now clear that, to end the proof, we need to show that

lim
k→∞ lim sup

l→∞
1

kl

l∑

j=1

k−1∑

n=0

〈Gk,l,n, μP(( j − 1)k)〉 = 0.

From the Hölder inequality it follows that, for any x ∈ E , k, l ∈ N and n ∈ N0, we
have

Gk,l,n(x) ≤
(

Ex

((
1 + Z2(n + 1)

)2))1/2

Px

(
|M(n)| ≥ ε

√
kl
)1/2

=
(
1 + 2Ex

(
Z2(n + 1)

)
+ Ex

(
Z4(n + 1)

))1/2
Px

(
|M(n)| ≥ ε

√
kl
)1/2

,

which (again by the Hölder inequality) yields that, for any k, l ∈ N,

1

kl

l∑

j=1

k−1∑

n=0

〈
Gk,l,n, μP(( j − 1)k)

〉

≤ 1

kl

l∑

j=1

k−1∑

n=0

(∫

E

(
1 + 2Ex

(
Z2(n + 1)

)+ Ex
(
Z4(n + 1)

))
(μP(( j − 1)k))(dx)

)1/2

×
(∫

E
Px

(
|M(n)| ≥ ε

√
kl
)

(μP(( j − 1)k))(dx)

)1/2

. (4.24)
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Now, fix k, l, j ∈ N and n ∈ N0. Taking, for p ∈ {2, 4}, any constants �p > 0 and
Ã p, B̃p ≥ 0 for which assertion (4.13) of Lemma 4.5 is valid with p, we see that the
first integral on the right hand-side of (4.24) can be estimated by

∫

E

(
1 + 2Ex

(
Z2(n + 1)

)
+ Ex

(
Z4(n + 1)

))
(μP(( j − 1)k))(dx)

≤ 1 + 2( Ã2 + B̃2) + Ã4 + B̃4 =: D.

(4.25)

Further, applying the Markov inequality and referring to Remark 4.3, as well as to the
definition of M(t) (given in (4.6)), we obtain

∫

E
Px

(
|M(n)| ≥ ε

√
kl
)

(μP(( j − 1)k)(dx) ≤ EμP(( j−1)k)|M(n)|
ε
√

kl

≤ ‖g‖BL
γ ε

√
kl

(〈C, μP(( j − 1)k + n)〉 + 〈C, μP(( j − 1)k)〉) + ‖ḡ‖∞
ε
√

kl
n

= ‖g‖BL
γ ε

√
kl

(〈P(( j − 1)k + n)C, μ〉 + 〈P(( j − 1)k)C, μ〉) + ‖ḡ‖∞
ε
√

kl
n.

Then, choosing A1, B1 ≥ 0 (and �1 > 0) so that the assertion of Lemma 4.2 is valid,
we can estimate the second integral as follows:

∫

E
Px

(
|M(n)| ≥ ε

√
kl
)

(μP(( j − 1)k)(dx)

≤ 2‖g‖BL
γ ε

√
kl

(
A1

〈
V 1/2, μ

〉
+ B1

)
+ ‖ḡ‖∞

ε
√

kl
n = 1√

kl

(
Â + B̂n

)
, (4.26)

where Â = 2‖g‖BL(γ ε)−1(A1〈V 1/2, μ〉+B1) and B̂ = ‖ḡ‖∞ε−1. Finally, combining
(4.24) with (4.25) and (4.26) gives

1

kl

l∑

j=1

k−1∑

n=0

〈
Gk,l,n, μP(( j − 1)k)

〉 ≤ 1

kl

k−1∑

n=0

l∑

j=1

D1/2
(

1√
kl

(
Â + B̂n

))1/2

≤ (kl)−1/4 D1/2
(

Â + B̂(k − 1)
)1/2

for any k, l ∈ N. This, in turn, implies that

lim
k→∞ lim sup

l→∞
1

kl

l∑

j=1

k−1∑

n=0

〈
Gk,l,n, μP(( j − 1)k)

〉 = 0,

which completes the proof. ��
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4.4 Finalization of the Proof

Armed with the results obtained in the previous subsections, we are now in a position
to finalize the proof of the main theorem.

Proof (Proof of Theorem 3.1) First of all, according to Lemma 3.1, {P(t)}t∈R+ admits
a unique probability measure μ∗, which belongs to MV

1,2(E). Further, taking into
account identity (4.8) and Lemma 4.4, along with insights from Lemma 4.1 and
Remark 4.1, it suffices to prove that the CLT holds (with σ 2 given by (3.6)) for
the sequence {M(n)}n∈N0 , determined by (4.6), whenever the initial distribution μ

of � belongs to MV
1,2(E). Since, due to Lemma 4.3, {M(n)}n∈N0 is a martingale

and σ 2 < ∞, the proof of that reduces to verifying conditions (M1)–(M3) of Theo-
rem 2.1 (with P = Pμ). This, in turn, has been done in Lemmas 4.8–4.10, respectively.
The proof of Theorem 3.1 is therefore complete.

5 A Representation of �2

In this section, we provide a relatively simple representation of the variance σ 2,
involved in Theorem 3.1. The line of the reasoning presented below draws heavily
from ideas of [3].

Suppose that the semigroup {P(t)}t∈R+ enjoys conditions (A1)–(A3) with a con-
tinuous function V : E → R+, and let μ∗ denote its unique invariant probability
measure. Further, consider the space L := L2(μ∗) of all Borel measurable and
μ∗-square integrable functions from E to R (precisely, the corresponding quotient
space under the relation of μ∗-a.e. equality), endowed with the norm

‖ f ‖2 :=
〈

f 2, μ∗
〉1/2

for f ∈ L.

Since, given p ∈ {1, 2}, f ∈ L, and t ∈ R+, we have 〈P(t)(| f |p), μ∗〉 =
〈| f |p, μ∗〉 < ∞, it follows that 〈| f |p, δx P(t)〉 = P(t)(| f |p)(x) < ∞ for μ∗-a.e.
x ∈ E . Thus, bearing in mind (2.3), we can identify P(t) f p as a real-valued Borel
measurable function that coincides with the map x �→ 〈 f p, δx P(t)〉 on some Borel
set of full measureμ∗ where P(t)(| f |p) < ∞), and is zero outside this set. Moreover,
accounting for this identification and the fact that

〈
(P(t) f )2, μ∗

〉
≤
〈
P(t) f 2, μ∗

〉
=
〈

f 2, μ∗
〉
< ∞,

we see that P(t) f ∈ L and ‖P(t) f ‖2 ≤ ‖ f ‖2. Consequently, {P(t)}t∈R+ can be
viewed as a contraction semigroup on L.

Now, let L0 denote the center of the semigroup {P(t)}t∈R+ on L, that is

L0 :=
{

f ∈ L : lim
t→0+ ‖P(t) f − f ‖2 = 0

}

.
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Then, the infinitesimal generator A of {P(t)}t∈R+ can be defined on the domain

DA :=
{

f ∈ L0 : lim
t→0+

∥
∥
∥
∥

P(t) f − f

t
− f̂

∥
∥
∥
∥
2

= 0 for some f̂ ∈ L0

}

by

A f := lim
t→0+

P(t) f − f

t
in ‖·‖2 for f ∈ D(A).

Before we state the main result of this section, let us observe that the corrector
function χ , given by (4.5), belongs to L. To see this, it suffices to note that Remark 4.3
(applied with μ = μ∗), together with Corollary 4.1, yields that

〈
χ2, μ∗

〉
= Eμ∗

(
χ2(�(0))

)
≤
(‖g‖BL

γ

)2 〈
C2, μ∗

〉
< ∞.

Having established this, we can now prove the following:

Theorem 5.1 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some
continuous V : E → R+. Then σ 2, given by (4.10), takes the form

σ 2 = −2 〈χ Aχ,μ∗〉 = 2 〈χ ḡ, μ∗〉 , (5.1)

whenever g ∈ Lipb(E), involved in (4.5), is such that, for every x ∈ E, the map
t �→ P(t)g(x) is continuous at t = 0.

Proof First of all, observe that χ ∈ DA and Aχ = −ḡ. To show this, note that

∥
∥
∥
∥

P(t)χ − χ

t
− (−ḡ)

∥
∥
∥
∥

2

2

=
∫

E

(
1

t

(∫ ∞

t
P(s)ḡ(x) ds −

∫ ∞

0
P(s)ḡ(x) ds

)

+ ḡ(x)

)2

μ∗(dx)

=
∫

E

(

ḡ(x) − 1

t

∫ t

0
P(s)ḡ(x) ds

)2

μ∗(dx) for all t > 0.

In view of the continuity at 0 of P(·)g(x), x ∈ E , we have (see, e.g., [21, Lemma
5.5.1])

lim
t→0+

1

t

∫ t

0
P(s)ḡ(x) ds = ḡ(x) for any x ∈ E .

Hence, using the Lebesgue dominated convergence theorem, we can conclude that

lim
t→0+

∥
∥
∥
∥

P(t)χ − χ

t
− (−ḡ)

∥
∥
∥
∥

2

2
= 0,
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which implies the desired claim.
Now, for each n ∈ N, consider the sequence {Zn(k)}k≤n of the increments of

{M(k/n)}k≤n , defined by

Zn(k) := M

(
k

n

)

− M

(
k − 1

n

)

for k ∈ {1, . . . , n}.

Let n ∈ N be arbitrarily fixed. Since {M(t)}t∈R+ is amartingale with respect to the nat-
ural filtration of �, and μ∗ is an invariant distribution of �, it follows that {Zn(k)}k≤n

forms a sequence of pairwise orthogonal and identically distributed random variables
on (�,F∞,Pμ∗) with mean 0. In view of this, we have

σ 2 = Eμ∗
(

M2(1)
)

=
n∑

k=1

Eμ∗
(

Z2
n(k)

)
= nEμ∗

(
Z2

n(1)
)

= nEμ∗

(

M2
(
1

n

))

,

(5.2)

and the expectation on the right-hand side can be expressed as

Eμ∗

(

M2
(
1

n

))

= Eμ∗
(
(χ(�(1/n)) − χ(�(0)))2

)
+ Eμ∗

⎛

⎝

(∫ 1/n

0
ḡ(�(s))ds

)2
⎞

⎠

+ 2Eμ∗

(

(χ(�(1/n)) − χ(�(0)))
∫ 1/n

0
ḡ(�(s))ds

)

.

(5.3)

Let us define

εn := Aχ − P(1/n) χ − χ

1/n
.

Then, keeping in mind (2.7) and taking into account that

P(1/n)χ = χ + 1

n
Aχ − 1

n
εn,

we can write

Ex

(
(χ(�(1/n)) − χ(�(0)))2

)
= P(1/n)χ2(x) + χ2(x) − 2χ(x)P(1/n)χ(x)

= P(1/n)χ2(x) + χ2(x) − 2χ(x)

(

χ(x) + 1

n
Aχ(x) − 1

n
εn(x)

)

= P(1/n)χ2(x) − χ2(x) − 2

n
χ(x)Aχ(x) + 2

n
χ(x)εn(x)
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for μ∗-a.e. x ∈ E . This, together with the invariance of μ∗, shows that the first term
on the right-hand side of (5.3) can be expressed as

Eμ∗
(
(χ(�(1/n)) − χ(�(0)))2

)
= −2

n
(〈χ Aχ,μ∗〉 − 〈χεn, μ∗〉) . (5.4)

Hence, putting

δn := Eμ∗

((∫ 1/n

0
ḡ(�(s))ds

)2
)

,

�n := Eμ∗

(

(χ(�(1/n)) − χ(�(0)))
∫ 1/n

0
ḡ(�(s))ds

)

,

we can write (5.3) as

Eμ∗

(

M2
(
1

n

))

= −2

n
(〈χ Aχ,μ∗〉 − 〈χεn, μ∗〉) + δn + 2�n .

Consequently, (5.2) then takes the form

σ 2 = −2 (〈χ Aχ,μ∗〉 − 〈χεn, μ∗〉) + nδn + 2n�n .

Since χ, εn ∈ L for every n ∈ N, we can apply the Cauchy-Schwarz inequality to
obtain

| 〈χεn, μ∗〉 | ≤ ‖χ‖2 ‖εn‖2 for any n ∈ N,

which, together with the fact that limn→∞ ‖εn‖2 = 0, yields that

lim
n→∞ 〈χεn, μ∗〉 = 0. (5.5)

What is now left is to prove that also the sequences (nδn)n∈N and (n�n)n∈N tend
to 0 as n → ∞. Note that, for every n ∈ N, we have

δn ≤ 1

n2
‖ḡ‖2∞ , (5.6)

which means that 0 ≤ nδn ≤ n−1 ‖ḡ‖2∞ for all n ∈ N, whence nδn → 0 as n → ∞.
Moreover, using sequentially the Cauchy-Schwarz inequality, (5.4) and (5.6), we can
conclude that, for each n ∈ N,

|�n| ≤
(
Eμ∗

(
(χ(�(1/n)) − χ(�(0)))2

))1/2
(

Eμ∗

((∫ 1/n

0
ḡ(�(s))ds

)2
))1/2

=
(

−2

n
(〈χ Aχ,μ∗〉 − 〈χεn, μ∗〉)

)1/2

δ
1/2
n
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≤
√
2 ‖ḡ‖∞
n3/2 (−〈χ Aχ,μ∗〉 + 〈χεn, μ∗〉)1/2 ,

which gives

|n�n| ≤
√
2 ‖ḡ‖∞
n1/2 (−〈χ Aχ,μ∗〉 + 〈χεn, μ∗〉)1/2 for all n ∈ N.

This, in conjunction with (5.5), shows that n�n → 0 as n → ∞, and therefore the
proof is complete. ��

6 A Note on the Functional CLT in the Stationary Case

Although investigating the functional central limit theorem (FCLT), also known as
Donsker’s invariance principle, is not the primary focus of this paper, it is worth to
note that, under the employed assumptions, [3, Theorem 2.1] implies the validity of
such a theorem in the case where � is stationary.

To present a relevant result, upon assumingμ∗ to be the unique invariant probability
measure of {P(t)}t∈R+ , and given g ∈ Lipb(E), consider the sequence

{
�

(n)
g
}

n∈N of
stochastic processes defined by

�
(n)
ḡ (t) := 1√

n

∫ nt

0
ḡ(�(s)) ds for t ≥ 0, n ∈ N,

with ḡ = g − 〈g, μ∗〉. Further, let C0(R+) be the space of all real-valued continuous
functions on R+ starting at zero, endowed with the topology of uniform convergence
on compact sets. Since g is bounded, it is easily seen that the processes �

(n)
ḡ , n ∈ N,

can be regarded as random variables with values in C0(R+). Apart from that, let Wσ

stand for the Wiener measure on (the Borel σ -field of) C0(R+) with zero drift and
variance σ 2.

When μ is the initial distribution of �, the process {ḡ(�(t))}t∈R+ is said to obey

the FCLT if, for some σ ≥ 0, the distributions of �(n)
ḡ on C0(R+) (under Pμ) converge

weakly to the Wiener measure Wσ , i.e.,

lim
n→∞Eμ h

(
�

(n)
ḡ

)
=
∫

C0(R+)
h dWσ for any bounded continuous h : C0(R+) → R.

(6.1)

Proposition 6.1 Suppose that {P(t)}t∈R+ satisfies hypotheses (A1)–(A3) with some
continuous V : E → R+, and that t �→ P(t)g(x) is continuous at t = 0 for every
x ∈ E. Furthermore, assume that � is progressively measurable and stationary, i.e.,
its initial distribution is the (unique) invariant one μ∗. Then, for every g ∈ Lipb(E),
the process {ḡ(�(t))}t∈R+ obeys the FCLT with σ 2 given by (5.1), that is, (6.1) holds
with μ = μ∗.
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Proof First of all, by Lemma 3.1, the semigroup {P(t)}t∈R+ admits a unique invari-
ant measure μ∗ ∈ M1(E) and, therefore, � is ergodic in the sense of [3]; i.e.,
Pμ∗(F) ∈ {0, 1} for every F ∈ F∞ satisfying �−1

t (F) = F for all t > 0. Fur-
ther, let A : DA → L0 be the infinitesimal generator of {P(t)}t∈R+ defined in Sect. 5,
and let χ denote the corrector function, specified by (4.5). From the first step of the
proof of Theorem 5.1 it follows that −χ ∈ DA and ḡ = A(−χ). This, in particular,
means that ḡ is in the range of A. Hence, we now see that the assertion follows directly
from [3, Theorem 2.1]. ��

7 An Example of Application to Some PDMPs

We shall end this paper by applying our main result, i.e., Theorem 3.1 (and Proposi-
tion 6.1) to establish the CLT (and the FCLT in the stationary case) for the PDMPs
considered in [12]. More specifically, we will be concerned with a process involving
a deterministic motion governed by a finite number of semiflows, which is punctu-
ated by random jumps, occurring in independent and exponentially distributed time
intervals �τn with the same rate λ. The state right after a jump will depend randomly
on the one immediately preceding this jump, and its probability distribution will be
governed by an arbitrary transition law J .

Let (Y , ρY ) be a complete separable metric space, and let I be a finite set, endowed
with the discrete metric d, i.e., d(i, j) = 1 for i 
= j and d(i, j) = 0 otherwise.
Moreover, put X := Y × I , X̄ := X ×R+, and let ρX ,c denote the metric in X defined
by

ρX ,c(x1, x2) = ρY (y1, y2) + c d(i1, i2) for x1 = (y1, i1), x2 = (y2, i2) ∈ X ,

(7.1)

where c is a given positive constant.
Further, suppose that we are given an arbitrary stochastic kernel J on Y ×B(Y ) and

some constant λ > 0. In addition to that, consider a stochastic matrix {πi j }i, j∈I ⊂ R+
such that mini∈I πi j0 > 0 for some j0 ∈ I and a collection {Si }i∈I of (jointly)
continuous semiflows from R+ × Y to Y . By saying that Si is a semiflow we mean as
usual that

Si (s, Si (t, y)) = Si (s + t, y) and Si (0, y) = y for any s, t ∈ R+, y ∈ Y .

Obviously, in practical applications, one usually deals with semiflows generated by
unique solutions to certain particular Cauchy problems for autonomous differential
equations (see, e.g., [12, Examples 7.2, 7.3]), and their properties are investigated
through the operators involved in these equations (such as, e.g., smooth vector fields
on Rd in [2, §5] or [1, §4]).

We shall investigate a stochastic process � := {(Y (t), ξ(t))}t∈R+ , evolving on the
space (X , ρX ,c) in such a way that

Y (t) = Sξ(τn)(t − τn, Y (τn)) and ξ(t) = ξ(τn) for t ∈ [τn, τn+1), n ∈ N0,

(7.2)
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and �̄ := {(Y (τn), ξ(τn), τn)}n∈N0 = {(�(τn), τn)}n∈N0 is an X̄ -valued time-
homogeneous Markov chain with one-step transition law P̄ : X̄ × B(X̄) → [0, 1]
given by

P̄((y, i, s), Ā) =
∑

j∈I

πi j

∫ ∞

0
λe−λt

∫

Y
1 Ā(u, j, t + s) J (Si (t, y), du) dt (7.3)

for any y ∈ Y , i ∈ I , s ∈ R+ and Ā ∈ B(X̄).
Obviously, � := {�(τn)}n∈N0 , {ξ(τn)}n∈N0 and {τn}n∈N0 are then also Markov

chains w.r.t. their own natural filtrations, and, for every n ∈ N0, their transition laws
satisfy

Pμ̄(�(τn+1) ∈ A | �(τn) = x)

= P̄ ((x, 0), A × R+) for x ∈ X , A ∈ B(X),

Pμ̄(ξ(τn+1) = j | ξ(τn) = i) = πi j for i, j ∈ I ,

Pμ̄(τn+1 ≤ t | τn = s) = 1[s,∞)(t)
(
1 − e−λ(t−s)

)

for s, t ∈ R+, (7.4)

where μ̄ = μ ⊗ δ0, and μ ∈ M1(X) stands for the initial measure of � (and thus of
�). Importantly, (7.4) implies that the increments �τn := τn − τn−1, n ∈ N, form
a sequence of independent and exponentially distributed random variables with the
same rate λ, and therefore τn ↑ ∞, as n → ∞, Pμ̄-a.s. (which, in turn, yields that
(7.2) is well-defined).

It is not hard to check that �, defined as above, is a (piecewise-deterministic) time-
homogeneous Markov process. Clearly, such a process is progressively measurable,
as it has right-continuous sample paths. In the remainder of the paper, {P(t)}t∈R+
will stand for the transition semigroup of this process. Let us emphasize here that,
since {P(t)}t∈R+ is stochastically continuous (at t = 0) by [12, Lemma 5.1 (iii)], it
indeed satisfies also the last condition required in the definition of transition semigroup
adopted in this paper, i.e., the map (t, x) �→ P(t)(x, A) is B(R+ × E)/B(R)-
measurable (see [40, Proposition 3.4.5]).

In [12], we have proposed conditions (J1), (J2) on the kernel J and (S1)-(S3) on
the semiflows Si under which {P(t)}t∈R+ enjoys hypothesis (A2) with ρ = ρX ,c,
specified by (7.1), and V given by

V (x) := ρY (y, y∗) for any x := (y, i) ∈ X , (7.5)

with some arbitrarily fixed y∗ ∈ Y , provided that the constants involved in [12, (J1)
and (S2)] are interrelated by inequality [12, (4.8)], and that c is sufficiently large.More
precisely, this follows from [12, Lemma 6.2], applied together with [12, Proposition
7.1]. Moreover, statement (i) of [12, Lemma 5.1] yields that, if J is Feller, then so is
{P(t)}t∈R+ , i.e., (A1) holds.
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To applyTheorem3.1 (andProposition 6.1), it therefore suffices to verifywhen (A3)
is met. We will show that this hypothesis does hold upon assuming the following
conditions:

(J1’) There exist a, b ≥ 0 for which

Jρ2
Y (·, y∗)(y) ≤ aρ2

Y (y, y∗) + b for y ∈ Y ,

(S0) There exist R, M ≥ 0 and N ∈ N such that

ρY (Si (t, y), y∗) ≤ R ρY (y, y∗) + M
(

t N + 1
)

for y ∈ Y , t ≥ 0, i ∈ I ;

with 2a R2 < 1. Obviously, [12, (J1)] can be derived from (J1’) by using the Hölder
inequality, which shows that the former holds with ã := √

a and b̃ := √
b. At the end

of this section, we will also demonstrate how to link (S0) with the aforementioned
hypotheses [12, (S1)-(S3)].

Lemma 7.1 Suppose that (J1’) and (S0) hold with a, R ≥ 0 such that 2a R2 < 1. Then
there exist constants � > 0 and C ≥ 0 such that, for every t0 ≥ 0 and the function
Ut0 : X̄ → R+ given by

Ut0(x, t) := e−λ(t0−t)V 2(x)1[0,t0](t) for x ∈ X , t ≥ 0, (7.6)

we have

∞∑

n=0

P̄nUt0(x, 0) ≤ e−�t0V 2(x) + C for all x ∈ X .

Proof Fix t0 ≥ 0, and define η := 2a R2 < 1 andm := 2N with N given in (S0). Then,
using sequentially (J1’), (S0) and (4.1), we infer that, for any (y, i) ∈ X and t ≥ 0,

Jρ2
Y (·, y∗)(Si (t, y)) ≤ aρ2

Y (Si (t, y), y∗) + b ≤ 2a
(

R2ρ2
Y (y, y∗) + 2M2

(
t2N + 1

))
+ b

= 2a R2ρ2
Y (y, y∗) + 4aM2tm + (4aM2 + b)

≤ ηρ2
Y (y, y∗) + D

(
tm

m! + 1

)

with D := 4aM2m! + b ≥ 0.

(7.7)

In what follows, we will show inductively that for every n ∈ N

P̄nUt0(y, i, s) ≤ λneλ(t0−s)

((

ηnρ2
Y (y, y∗) + D

n−1∑

k=0

ηk

)
(t0 − s)n

n!

+D

(
n−1∑

k=0

ηk

)
(t0 − s)m+n

(m + n)!

)

1[0,t0](s) for all (y, i, s) ∈ X̄ .

(7.8)
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For n = 1 and any (y, i, s) ∈ X̄ we get

P̄Ut0(y, i, s) =
∑

j∈I

πi j

∫ ∞

0
λe−λt

∫

Y
Ut0(u, j, s + t) J (Si (t, y), du) dt

=
∫ ∞

0
λe−λt

∫

Y
e−λ(t0−s−t)ρ2

Y (u, y∗)1[0,t0](s + t)J (Si (t, y), du) dt

= λe−λ(t0−s)
∫ ∞

0
Jρ2

Y (·, y∗)(Si (t, y))1[0,t0](s + t) dt,

and therefore from (7.7) it follows that, for s ≤ t0,

P̄Ut0(y, i, s) ≤ λe−λ(t0−s)
∫ t0−s

0

(

ηρ2
Y (y, y∗) + D

(
tm

m! + 1

))

dt

= λe−λ(t0−s)
(

ηρ2
Y (y, y∗)(t0 − s) + D

(t0 − s)m+1

(m + 1)! + D(t0 − s)

)

= λe−λ(t0−s)
((

ηρ2
Y (y, y∗) + D

)
(t0 − s) + D

(t0 − s)m+1

(m + 1)!
)

,

and P̄Ut0(y, i, s) = 0 for s > t0. Hence (7.8) holds with n = 1. Now, sup-
pose that (7.8) is fulfilled with some arbitrarily fixed n ∈ N. Then, by identity
P̄n+1Ut0 = P̄(P̄nUt0) and the induction hypothesis, we obtain

P̄n+1Ut0(y, i, s)

≤
∫ ∞

0
λe−λt

∫

Y
λne−λ(t0−s−t)

((

ηnρ2
Y (u, y∗) + D

n−1∑

k=0

ηk

)
(t0 − s − t)n

n!

+D

(
n−1∑

k=0

ηk

)
(t0 − s − t)m+n

(m + n)!

)

1[0,t0](s + t)J (Si (t, y), du) dt

= λn+1e−λ(t0−s)
∫ ∞

0

((

ηn Jρ2
Y (·, y∗)(Si (t, y)) + D

n−1∑

k=0

ηk

)

(t0 − s − t)n

n! + D

(
n−1∑

k=0

ηk

)
(t0 − s − t)m+n

(m + n)!

)

1[0,t0](s + t) dt .

Consequently, using again (7.7), for s ≤ t0, we get

P̄n+1Ut0(y, i, s)

≤ λn+1e−λ(t0−s)
∫ t0−s

0

((

ηn
(

ηρ2
Y (y, y∗) + D

(
tm

m! + 1

))

+ D
n−1∑

k=0

ηk

)
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× (t0 − s − t)n

n! + D

(
n−1∑

k=0

ηk

)
(t0 − s − t)m+n

(m + n)!

)

dt

= λn+1e−λ(t0−s)

((

ηn+1ρ2
Y (y, y∗) + D

n∑

k=0

ηk

)
1

n!
∫ t0−s

0
(t0 − s − t)n dt

+ Dηn

m! n!
∫ t0−s

0
tm(t0 − s − t)n dt + D

(
n−1∑

k=0

ηk

)

1

(m + n)!
∫ t0−s

0
(t0 − s − t)m+n dt

)

.

Further, taking into account that

∫ T

0
tk(T − t)l dt = k! l! T k+l+1

(k + l + 1)! for all k, l ∈ N0, T > 0,

we can finalize the above estimation (in the case where s ≤ t0) as follows:

P̄n+1Ut0(y, i, s) ≤ λn+1e−λ(t0−s)

((

ηn+1ρ2
Y (y, y∗) + D

n∑

k=0

ηk

)
(t0 − s)n+1

(n + 1)!

+ Dηn(t0 − s)m+n+1

(m + n + 1)! + D

(
n−1∑

k=0

ηk

)
(t0 − s)m+n+1

(m + n + 1)!

)

= λn+1e−λ(t0−s)

((

ηn+1ρ2
Y (y, y∗) + D

n∑

k=0

ηk

)
(t0 − s)n+1

(n + 1)!

+D

(
n∑

k=0

ηk

)
(t0 − s)m+n+1

(m + n + 1)!

)

.

Obviously, P̄n+1Ut0(y, i, s) = 0 for s > t0. According to the induction principle, we
can therefore conclude that (7.8) indeed holds for all n ∈ N.

Now, observe that inequality (7.8) applied with s = 0 gives

P̄nUt0(y, i, 0) ≤ λne−λt0

((

ηnρ2
Y (y, y∗)+D

n−1∑

k=0

ηk

)
tn
0

n!+D

(
n−1∑

k=0

ηk

)
tm+n
0

(m+n)!

)

≤ e−λt0

(
(ηλt0)n

n! ρ2
Y (y, y∗) + D

1 − η

(
(λt0)n

n! + 1

λm
· (λt0)m+n

(m + n)!
))

for all (y, i) ∈ X and n ∈ N0 (for n = 0, this follows trivially from the definition of
Ut0 ). Finally, we obtain
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∞∑

n=0

P̄nUt0(y, i, 0) ≤ e−λt0

( ∞∑

n=0

(ηλt0)n

n! ρ2
Y (y, y∗) + D

1 − η

(

1 + 1

λm

) ∞∑

n=0

(λt0)n

n!

)

= e−λt0

(

eηλt0ρ2
Y (y, y∗) + D

1 − η

(

1 + 1

λm

)

eλt0

)

= e−�t0ρ2
Y (y, y∗) + C = e−�t0V 2(y, i) + C

for all (y, i) ∈ X ,

where � := (1 − η)λ > 0 and C := D(1 − η)−1
(
1 + λ−m

) ≥ 0, which completes
the proof. ��
Proposition 7.1 Suppose that (J1’) and (S0) hold with a, R ≥ 0 such that 2a R2 < 1.
Then {P(t)}t∈R+ enjoys hypothesis (A3) with V given by (7.5).

Proof Let � > 0 and C ≥ 0 be the constants for which the assertion of Lemma 7.1 is
valid. Further, fix t ≥ 0, x = (y, i) ∈ X , and put x̄ := (x, 0). Then, we can write

P(t)V 2(x) = Ex̄

(
V 2(�(t))

)
=

∞∑

n=0

Ex̄

(
V 2(�(t))1{τn≤t<τn+1}

)
. (7.9)

Now, let {Fn}n∈N0 denote the natural filtration of the chain �, and fix an arbitrary
n ∈ N0. Taking into account that Px̄ (τn+1 > t |Fn) = Px (τn+1 > t | τn) = e−λ(t−τn)

on the set {τn ≤ t} (which follows from (7.4)), we get

Ex̄

(
V 2(�(t))1{τn≤t<τn+1} |Fn

)
= Ex̄

(
ρ2

Y

(
Sξn (t − τn, Yn), y∗)1{τn≤t<τn+1} |Fn

)

= Px̄ (τn+1 > t |Fn) ρ2
Y

(
Sξn (t − τn, Yn), y∗)1{τn≤t}

= e−λ(t−τn)ρ2
Y

(
Sξn (t − τn, Yn), y∗)1{τn≤t}.

Further, letting m := 2N , and using (S0) and (4.1), we can conclude that

Ex̄

(
V 2(�(t))1{τn≤t<τn+1} |Fn

)

≤ 2e−λ(t−τn)
(

R2ρ2
Y (Yn, y∗) + 2M2

(
(t − τn)2N + 1

))
1{τn≤t}

≤ 2R2e−λ(t−τn)ρ2
Y (Yn, y∗)1[0,t](τn) + 4M2e−λ(t−τn)

(
(t − τn)m + 1

)
1[0,t](τn).

Taking the expectation of both sides of this inequality gives

Ex̄

(
V 2(�(t))1{τn≤t<τn+1}

)
≤ 2R2

Ex̄

(
e−λ(t−τn)ρ2

Y (Yn, y∗)1[0,t](τn)
)

+ 4M2
Ex̄

(
e−λ(t−τn)

(
(t − τn)m + 1

)
1[0,t](τn)

)
.

(7.10)
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If we now sum up both sides of (7.10) over all n ∈ N0, then, returning to (7.9), we
can deduce that

P(t)V 2(x) ≤ 2R2
∞∑

n=0

Ex̄

(
e−λ(t−τn)ρ2

Y (Yn, y∗)1[0,t](τn)
)

+4M2

( ∞∑

n=1

Ex̄

(
e−λ(t−τn)

(
(t−τn)m+1

)
1[0,t](τn)

)
+e−λt (tm+1

)
)

.

(7.11)

On the other hand, it follows from Lemma 7.1 that

∞∑

n=0

Ex̄

(
e−λ(t−τn)ρ2

Y (Yn, y∗)1[0,t](τn)
)

=
∞∑

n=0

Ex̄ (Ut (�n, τn)) =
∞∑

n=0

P̄nUt (x̄)

≤ e−�t V 2(x) + C,

(7.12)

where Ut : X̄ → R+ is given by (7.6) (with t in place of t0). Moreover, having in
mind that τn has the Erlang distribution, we get

∞∑

n=1

Ex̄

(
e−λ(t−τn)

(
(t − τn)m + 1

)
1[0,t](τn)

)

=
∞∑

n=1

∫ t

0
e−λ(t−s) ((t − s)m + 1

)
e−λs λnsn−1

(n − 1)! ds

= λe−λt
∫ t

0
eλs ((t − s)m + 1

)
ds = λe−λt

∫ t

0
eλ(t−u)

(
um + 1

)
du

= λ

∫ t

0
e−λu (um + 1

)
du ≤ λ

∫ ∞

0
e−λu (um + 1

)
du = m!

λm
+ 1 < ∞.

(7.13)

Finally, applying (7.11)–(7.13), we infer that

P(t)V 2(x) ≤ 2R2
(

e−�t V 2(x) + C
)

+ 4M2
(

m!
λm

+ 1 + e−λt (tm + 1
)
)

≤ Ae−�t V 2(x) + B

with A = 2R2 and B := 2
(
R2C + 2 M2

(
m!λ−m + 1

)+ 2 M2 supt≥0 e−λt (tm + 1)
)
.

��
Let us now consider two conditions constituting strengthened forms of [12, (S1)],

namely:
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(S1∗) There exist M ≥ 0 and N ∈ N such that

max
i∈I

sup
y∈Y

ρY (Si (t, y), y) ≤ M
(

t N + 1
)

for t ≥ 0;

(S1’) There exist M ≥ 0 and N ∈ N such that

max
i∈I

ρY (Si (t, y∗), y∗) ≤ M
(

t N + 1
)

for t ≥ 0.

In addition to that, recall condition [12, (S2)]:

(S2) There exist L ≥ 1 and α < λ such that

ρY (Si (t, y1), Si (t, y2)) ≤ LeαtρY (y1, y2) for t ≥ 0, y1, y2 ∈ Y , i ∈ I .

Remark 7.1 Using the triangle inequality, it is easy to verify the following implica-
tions:

[12, (S1) ∧ (S3)]

(S1∗) (S1′)∧ [(S2) with α ≤ 0],

(S0)

ϕ(t)=ϕ1(t)L(y)=L1(y)

R=1

ϕ(t)=ϕ2(t)L(y)=L2(y)

R=L

where [12, (S3)] is obtained (depending on the assumptions) with

ϕ1(t) := 2M(t N + 1), L1(y) = 1, or ϕ2(t) = 2(Leαt + M(t N + 1)),

L2(y) = ρY (y, y∗) + 1.

It is worth stressing here that conditions (S1’) and (S2) with α ≤ 0 and L = 1
are met, e.g., by the semiflows genereted by a wide class of dissipative differential
equations in Hilbert spaces. If the operators involved in such equations are bounded,
then even (S1∗) holds. This is explained in detail in [12, Remark 4.3], which, in turn,
is based on [23, Chapter 5.2].

Formulating themain result of this section, apart from hypotheses (S1∗), (S1’), (S2)
and (J1’), we shall also use condition [12, (J2)], which ensures the existence of
a Markovian coupling of J with certain specific properties. Let us quote it to make our
result self-contained. Below, a substochastic kernel will mean a map defined similarly
to a stochastic kernel (see Sect. 2.1), but allowed to be a subprobability measure with
respect to the second variable.

(J2) There exists a substochastic kernel Q J : Y 2 × B(Y 2) → [0, 1] satisfying

Q J ((y1, y2), B × Y ) ≤ J (y1, B) and Q J ((y1, y2), Y × B) ≤ J (y2, B)
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for any y1, y2 ∈ Y and B ∈ B(Y ) such that, for certain constants ã, l ≥ 0, we
have

∫
Y 2 ρY (u1, u2) Q J ((y1, y2), du1 × du2) ≤ ãρY (y1, y2) for any y1, y2 ∈ Y ,

inf(y1,y2)∈Y Q J ((y1, y2), {(u1, u2) ∈ Y 2 : ρY
(
u1, u2) ≤ ãρY (y1, y2)}

)
> 0,

Q J ((y1, y2), Y 2) ≥ 1 − lρY (y1, y2) for any y1, y2 ∈ Y .

We can now state the announced central convergence criterion for the PDMP under
consideration.

Theorem 7.1 Suppose that the kernel J is Feller, (J1’) holds (with certain a, b ≥ 0),
and that (J2) is satisfied with ã := √

a. Moreover, assume that one of the following
statements is fulfilled:

(i) (S1∗) and (S2) hold with α < λ and L ≥ 1 such that
a < min{L−2(1 − αλ−1)2, 2−1},

(ii) (S1’) and (S2) is satisfied with α ≤ 0 and L ≥ 1 such that a < (2 L2)−1.

Then the assertions of both Theorem 3.1 and Proposition 6.1 are valid for the semigroup
{P(t)}t∈R+ determined by (7.2) and (7.3), with V given by (7.5) and σ 2 satisfying (5.1),
provided that the constant c, involved in (7.1), is sufficiently large.

Proof As mentioned earlier, (J1’) implies [12, (J1)] with ã = √
a, and (J2) is just

assumed. Further, according to Remark 7.1, each of hypotheses (i), (ii) guarantees
that [12, (S1)-(S3)] hold with α, L satisfying the inequality ãL + α/λ < 1, which
coincides with that assumed in [12, (4.8)]. As has already been said, this, together with
the Feller property of J , suffices for hypotheses (A1) and (A2) to hold. On the other
hand, appealing again to Remark 7.1, we also know that (S0) is satisfied with R = 1 in
case (i) or with R = L in case (ii), and 2a R2 < 1 in each of these cases. Consequently,
Proposition 7.1 yields that hypothesis (A3) holds aswell.Hence, Theorem3.1 is indeed
valid for the semigroup being considered.

Furthermore, since {P(t)}t∈R+ is stochastically continuous (at t = 0) by state-
ment (iii) of [12, Lemma 5.1], it follows that σ 2 can be represented as indicated in
Theorem 5.1, and that Proposition 6.1 is also applicable to the given semigroup. ��
Remark 7.2 By saying that c should be sufficiently large we mean that it supposed to
be grater than some specific value dependent on the constants and functions involved
in conditions (J1’), (S2) and [12, (S3)] (which ensures that [12, Proposition 7.1] is
valid). To be more precise, letting ϕ : R+ → R+ and L : Y → R+ be the functions
for which (S3) holds (see Remark 7.1), one may require that

c ≥ λ − α

L

(

MLKϕ + MLMϕ

λ

)

+ 1,

where Kϕ := ∫∞
0 ϕ(t)e−λt dt , Mϕ := supt∈T ϕ(t) with T ⊂ [0,∞) being an arbi-

trary bounded interval of positive length for which supt∈T eαt ≤ λ(λ − α)−1, and
ML := supρY (y∗,y)<r L(y) with r := 4b(1 − a)−1 and
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ā :=
√

aλL

λ − α
, b̄ = √

aλ

(
M N !
λN+1 + 1

λ

)

+ √
b.

An important example of the PDMPs under consideration are those with J defined
as the transition law of a random iterated function system. In this case J takes the
form

J (y, B) =
∫

�

1B(wθ (y)) pθ (y) ϑ(dθ) for y ∈ Y , B ∈ B(Y ),

where {wθ : θ ∈ �} is an arbitrary family of continuous transformations from Y
to itself, indexed by the elements of some topological measure space (�, ϑ), and
{pθ : θ ∈ �} is an associated family of state-dependent densities with respect to ϑ .
In [12, Proposition 7.2], we have provided a set of conditions guaranteeing that J of
this form satisfies hypotheses [12, (J1) and (J2)] with Q J given by

Q J ((y1, y2), C) :=
∫

�

1C (wθ (y1), wθ (y2))min{pθ (y1), pθ (y2)} ϑ(dθ)

for any y1, y2 ∈ Y and C ∈ B(Y 2). These conditions can be easily modified to also
ensure (J1’), as required in Theorem 7.1. The details are left to the reader.
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