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Abstract
The multi-dimensional electronic devices are so called memory circuit elements
(memristor or memcapacitor); such memory circuit elements usually rely on pre-
vious applied voltage, current, flux or charge based on memory capability with their
resistance, capacitance or inductance. In view of above fact, this manuscript investi-
gates the non-integer modeling of memristor–memcapacitor in discrete-time domain
through non-singular kernels of fractal fractional differentials and integrals opera-
tors. The governing equations of memristor–memcapacitor have been developed for
the sake of the dynamical characteristics of simple chaotic circuit. The fractal frac-
tional differentials and integrals operators have been invoked for non-integer modeling
of memristor–memcapacitor that can exhibit a combination of dynamical chaotic
phenomena. The numerical schemes, numerical simulations, stability analysis and
equilibrium points have been highlighted in detail. The comparative chaotic graphs
have been discussed in three ways (i) by keeping fractal component fixed and vary-
ing fractional component distinctly, (ii) by keeping fractional component fixed and
varying fractal component distinctly and (iii) by varying both fractal component and
fractional component distinctly. Our results suggest that fractal-fractional model of
memristor–memcapacitor retains the memory characteristics.
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1 Introduction

It is well established fact that the built-in memory-properties of mem-elements in the
circuit theory play significant role in the condensed matter and engineering instru-
ments based on promising potential applications. Dr. Chua extended his theory to all
circuit elements with memory namely memcapacitors, memristors, and meminduc-
tors [1–3]. Ventra et al. [4] considered pinched hysteretic loops in the two constitutive
variables for memristive system to capacitive and inductive elements. They focused
that the dynamical properties of electrons and ions depend on the history of the system
and time scales. Pershin and Ventra [5] examined the functional effects of memristors,
memcapacitors and meminductors (resistors, capacitors, inductors with memory). Wu
et al. [6] explored the nonlinear characteristics of the memristor the nonlinear charac-
teristics of the memristor from which a type of heart-shaped attractors was generated.
Additionally, they investigated dissipation and the stability of the equilibrium point
when the polarity of the memristor is changed. Xu et al. [7] examined meminduc-
tor model for exploring its characteristics based on complex nonlinear phenomena.
The complex nonlinear phenomena lied on two different kinds of chaotic transients,
coexisting attractors and coexisting bifurcationmodes. Ye et al. [8] presented two flux-
controlled memristors and a charge-controlled memristor within stable and unstable
regions in which they emphasized the 2D and 3D complexity characteristics with mul-
tiple varying parameters were analyzed. Nariman et al. [9] suggested fractionalized
order mem-capacitor and mem-inductor using different combinations. For the finding
the hysteresis loop area and the location of the pinched point through fractional tech-
nique, they envisaged to validate the theoretical findings. Nowadays, various types
of mathematical definitions of fractional calculus are utilized for physical modeling.
Due to this reason, fractional modeling of boundary value problems through theory
of fractional differentials and integrals have played significant role in science [10–13]
and engineering [14–16].

Rajagopal et al. [17] investigated adaptive sliding mode synchronization for frac-
tional order memristor with no equilibrium. Here they optimized fractional order PID
controllers as well. Pu and Yuan [18] discussed an interesting conceptual framework
of fractional-order memristor through interpolating characteristics. Such interpolat-
ing characteristics are non-volatility property of memory and nonlinear predictions
via numerical implementation. Liu and Yang [19] employed the powerful fractional
techniques for synchronization of uncertain fractional-order strict-feedback chaotic
system.Theirmajor emphasiswas the simulationof newlyproposed control scheme for
synchronization of fractional-order Duffing-Holmes system. Motivating by the above
discussion of fractional differential operators, we embedded here few recent attempts
of fractional singular and non-singular differential operators [20–23], fractal-fractional
local and non-local integrals [24–27], fractal singular and non-singular differential
operators [28–32], fractal-fractional differentials [33–39] and purely fractional inte-
gral based on local and non-local kernel [40–44] and differential operators based on
non-local and non-singular kernel [45–49] in scientific studies.

In brevity, this manuscript investigates the non-integer modeling of memris-
tor–memcapacitor in discrete-time domain through non-singular kernels of fractal
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fractional differentials and integrals operators. The governing equations of memris-
tor–memcapacitor have been developed for the sake of the dynamical characteristics
of simple chaotic circuit. The fractal fractional differentials and integrals operators
have been invoked for non-integer modeling of memristor–memcapacitor that can
exhibit a combination of dynamical chaotic phenomena. The numerical schemes,
numerical simulations, stability analysis and equilibrium points have been highlighted
in detail. The comparative chaotic graphs have been discussed in three ways (i) by
keeping fractal component fixed and varying fractional component distinctly, (ii) by
keeping fractional component fixed and varying fractal component distinctly and (iii)
by varying both fractal component and fractional component distinctly. Our results
suggest that fractal-fractional model of memristor–memcapacitor retains the memory
characteristics.

2 Fractal FractionalizedMemristor–Memcapacitor Chaotic Dynamical
System

2.1 Mathematical Definition of theMemristor

Chua and Kang summarized the definition of the memristor as expressed in Eqs. (1a,
1b) and the reciprocal expression of the memcapacitance consisting of ideal charge-
controlled memcapacitor is illustrated as:

x � G(x , y, t)y

ẏ � H(x , y, t)
, (1a)

iM � vM

(
ay2 − b

)
,

ẏ � ev2M y − dy − cvM
, (1b)

For Eqs. (1a) and (1b), x and y denote the memristor’s state variable and (x , y, t)
and H(x , y, t) are the functions of memristor’s state variable and time. Here, iM and
vM denote the current and voltage across the memristor and a, b, c, d and e are the
constants.

2.2 Mathematical Definition of theMemcapacitor

The reciprocal expression of the memcapacitance, based on the definition of ideal
charge-controlled memcapacitor, is defined

u(t) � q(t)C−1
M (σ )

C−1
M (σ ) � α + βσ

, (2a)

While for Eq. (2a), q(t) and u(t) are the charge and the corresponding voltage
of the memcapacitor at time t respectively. And α and β constant coefficient of the
memcapacitor, the charge q passes the memcapacitor by σ . For designing a chaotic
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Fig. 1 Configuration of chaotic
circuit

system based on a memristor, a voltage-controlled memristor and integral when the
charge q passes the memcapacitor can be presented respectively as

σ �
t∫

t0

q(τ )dτ , (2b)

Here the functional parameters are described for Eq. (2b) as: a, b, c, d and e are the
constants and iM and vM denotes the current and voltage across the memristor. In this
context, assuming the voltage of the memristor is a sinusoidal signal and supposing
that thememcapacitor’s charge is a sinusoidal signal in simple chaotic circuit as shown
in Fig. 1.

Figure 1 is the configuration of memristor–memcapacitor-based simple chaotic
circuit. The governing equations of the system based on variables q as a flux, δ as a
state variable memcapacitor, y as a state variable of memristor and iL as a current can
be written as:

diL
dt

� qα

L
+

σqβ

L
,
dq

dt
� −iL − q(α + βσ )(ay2 − b)

dy

dt
� yq2e(α + βσ )2 − dy − qc(α + βσ),

dσ

dt
� q

, (3)

Applying non-dimensional parameters η1 � iL , η2 � y, η3 � q, η4 � δ, F0 � r ,
F1 � α, F2 � β, F3 � c, F4 � d, F5 � e, F6 � a and F7 � b on Eq. (3). We
arrive at

dη1

dt
� F0F1 + F0F2η4η3

dη2

dt
� η2η3

2F5(F1 + F2η4)
2 − F4η2 − η3F3(F1 + F2η4)

dη3

dt
� −η1 − η3

(
F6 − F2η2

2
)
(F1 + F2η4)

dη4

dt
� η3

, (4)
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The functional numerical values for different embedded parameters of Eq. (4) are:
F0 � 0.01, F1 � 1, F2 � 1, F3 � 0.5, F4 � 3, F5 � 4, F6 � 0.001, F7 �
0.005. The step size is taken as 0.001 and the initial conditions are (0, 3.1, 1.31,
57). Equation (4) is the classical and evolutionary system of differential equation for
chaotic circuit based on memristor–memcapacitor that the dynamical characteristics
of simple chaotic circuit as depicted in Fig. 1. In order to develop the governing Eq. (4),
we invoke the newly defined fractal-fractional integral and differential operator as:

2.2.1 Caputo–Fabrizio Fractal-Fractional Differential and Integral Operators [50]

D
K1,K2
t ℊ(t) � M(K1)(1 − K1)

−1 d

dsK2

t∫

0

exp

{−K1(t − s)

1 − K1

}
ℊ(s)ds. (5)

IK1,K2
t ℊ(t) � K1K2M(K1)

t∫

0

sK1−1ℊ(s)ds +
ℊ(t)sK2−1(1 − K1)K1

M(K1)
. (6)

2.2.2 Atangana–Baleanu Fractal-Fractional Differential and Integral Operators [50]

D
K1,K2
t ℊ(t) � AB(K1)(1 − K1)

−1 d

dsK2

t∫

0

EK1

{
−K1(t − s)K1

1 − K1

}
ℊ(s)ds. (7)

IK1,K2
t ℊ(t) � K1K2

AB(K1)

t∫

0

sK2−1(t − s)K1−1ℊ(s)ds +
ℊ(t)tK2−1(1 − K1)K1

AB(K1)
. (8)

Applying Eqs. (5) and (7) on Eq. (4), we arrive at the fractal-fractionalized differ-
ential equation for chaotic circuit based on memristor–memcapacitor:

dK3,K4η1

dtK3,K4
� F0F1 + F0F2η4η3

dK3,K4η2

dtK3,K4
� η2η3

2F5(F1 + F2η4)
2 − F4η2 − η3F3(F1 + F2η4)

dK3,K4η3

dtK3,K4
� −η1 − η3

(
F6 − F2η2

2
)
(F1 + F2η4)

dK3,K4η4

dtK3,K4
� η3

, (9)
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dK5,K6η1

dtK5,K6
� F0F1 + F0F2η4η3

dK5,K6η2

dtK5,K6
η2η3

2F5(F1 + F2η4)
2 − F4η2 − η3F3(F1 + F2η4)

dK5,K6η3

dtK5,K6
− η1 − η3

(
F6 − F2η2

2
)
(F1 + F2η4)

dK5,K6η4

dtK5,K6
η3

. (10)

Equation (9) is the fractal-fractionalized differential equation for chaotic circuit
based on memristor–memcapacitor in term of Caputo–Fabrizio differential operator.
Equation (10) is the fractal-fractionalized differential equation for chaotic circuit based
on memristor–memcapacitor in term of Atangana–Baleanu differential operator.

3 Development of Non-Singular Numerical Scheme

3.1 Caputo–Fabrizio Fractal-Fractional Scheme

For the sake of numerical schemeofCaputo–Fabrizio fractal-fractionalized differential
equation, we write Eq. (9), we have

D
K3,K4
t η1(t) � K3tK3−1ℊ1(R0),

D
K3,K4
t η2(t) � K3tK3−1ℊ2(R0),

D
K3,K4
t η3(t) � K3tK3−1ℊ3(R0),

D
K3,K4
t η4(t) � K3tK3−1ℊ4(R0),

(11)

Equation (11) is developed by using Appendix (A1). Now using integral operator
of fractal-fractional for Caputo–Fabrizio, Eq. (11) is solved as

η1(t) � η1(0) +
K4tK4−1(1 − K3)

M(K3)
ℊ1(R0) +

K3

M(K3)

t∫

0

λK4−1ℊ1(R1)dλ,

η2(t) � η2(0) +
K4tK4−1(1 − K3)

M(K3)
ℊ2(R0) +

K3

M(K3)

t∫

0

λK4−1ℊ2(R1)dλ,

η3(t) � η3(0) +
K4tK4−1(1 − K3)

M(K3)
ℊ3(R0) +

K3

M(K3)

t∫

0

λK4−1ℊ3(R1)dλ,
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η4(t) � η4(0) +
K4tK4−1(1 − K3)

M(K3)
ℊ4(R0) +

K3

M(K3)

t∫

0

λK4−1ℊ4(R1)dλ, (12)

By the setting at tε1+1 in Eq. (12), we obtained the numerical scheme via Appendix
(A1, A2) as

η1ε1+1(t) � η10 +
K4t

K4−1
ε1 (1 − K3)

M(K3)
ℊ1(R2) +

K3K4

M(K3)

tε1+1∫

0

λK4−1ℊ1(R1)dλ,

η2ε1+1(t) � η20 +
K4t

K4−1
ε1 (1 − K3)

M(K3)
ℊ2(R2) +

K3K4

M(K3)

tε1+1∫

0

λK4−1ℊ2(R1)dλ,

η3ε1+1(t) � η30 +
K4t

K4−1
ε1 (1 − K3)

M(K3)
ℊ3(R2) +

K3K4

M(K3)

tε1+1∫

0

λK4−1ℊ3(R1)dλ,

η4ε1+1(t) � η40 +
K4t

K4−1
ε1 (1 − K3)

M(K3)
ℊ4(R2) +

K3K4

M(K3)

tε1+1∫

0

λK4−1ℊ4(R1)dλ,

(13)

Equation (13) is subjected to (A3). Applying the concept of difference between the
consecutive terms, we get simplified form of Eq. (13) as:

η1ε1+1(t) � η1ε1
+

K4(1 − K3)

t1−K4M(K3)
ℊ1(R2) − K4(1 − K3)

t1−K4
ε1−1 M(K3)

ℊ1(R3) +
K3K4

M(K3)

tε1+1∫

tε1

λK4−1ℊ1(R1)dλ,

η2ε1+1(t) � η2ε1
+

K4(1 − K3)

t1−K4M(K3)
ℊ2(R2) − K4(1 − K3)

t1−K4
ε1−1 M(K3)

ℊ2(R3) +
K3K4

M(K3)

tε1+1∫

tε1

λK4−1ℊ2(R1)dλ,

η3ε1+1(t) � η3ε1
+

K4(1 − K3)

t1−K4M(K3)
ℊ3(R2) − K4(1 − K3)

t1−K4
ε1−1 M(K3)

ℊ3(R3) +
K3K4

M(K3)

tε1+1∫

tε1

λK4−1ℊ3(R1)dλ,

η4ε1+1(t) � η4ε1
+

K4(1 − K3)

t1−K4M(K3)
ℊ4(R2) − K4(1 − K3)

t1−K4
ε1−1 M(K3)

ℊ4(R3) +
K3K4

M(K3)

tε1+1∫

tε1

λK4−1ℊ4(R1)dλ,

(14)

Integrating Eq. (14) and invoking Appendix (A2–A4). Using the Lagrange poly-
nomial piece-wise interpolation on Eq. (14), the resulting terms are:

η1ε1+1(t) � η1ε1
+
K4(1 − K3)ℊ1(R2)

t1−K4 M(K3)
− K4(1 − K3)ℊ1(R3)

t1−K4
ε1−1 M(K3)

+
K3K4

M(K3)

{
3h

2
tK4−1
ε1

ℊ1(R2) − h

2
tK4−1
ε1−1 ℊ1(R3)

}
,
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η2ε1+1(t) � η2ε1
+
K4(1 − K3)ℊ2(R2)

t1−K4 M(K3)
− K4(1 − K3)ℊ2(R3)

t1−K4
ε1−1 M(K3)

+
K3K4

M(K3)

{
3h

2
tK4−1
ε1

ℊ2(R2) − h

2
tK4−1
ε1−1 ℊ2(R3)

}
,

η3ε1+1(t) � η3ε1
+
K4(1 − K3)ℊ3(R2)

t1−K4 M(K3)
− K4(1 − K3)ℊ3(R3)

t1−K4
ε1−1 M(K3)

+
K3K4

M(K3)

{
3h

2
tK4−1
ε1

ℊ3(R2) − h

2
tK4−1
ε1−1 ℊ3(R3)

}
,

η4ε1+1(t) � η4ε1
+
K4(1 − K3)ℊ4(R2)

t1−K4 M(K3)
− K4(1 − K3)ℊ4(R3)

t1−K4
ε1−1 M(K3)

+
K3K4

M(K3)

{
3h

2
tK4−1
ε1

ℊ4(R2) − h

2
tK4−1
ε1−1 ℊ4(R3)

}
,

(15)

Equation (15) is simplified by means of Appendix (A3, A4). Now simplifying
Eq. (15), we investigated the numerical scheme for Caputo–Fabrizio fractal-fractional
operator by considering Appendix (A3, A4) as

η1ε1+1(t) � η1ε1
+K4t

K4−1
ε1

(
1 − K3

M(K3)
+

3K3h

2M(K3)

)
ℊ1(R2) − K4t

K4−1
ε1−1

(
1 − K3

M(K3)
+

K3h

2M(K3)

)
ℊ1(R3),

η2ε1+1(t) � η2ε1
+K4t

K4−1
ε1

(
1 − K3

M(K3)
+

3K3h

2M(K3)

)
ℊ2(R2) − K4t

K4−1
ε1−1

(
1 − K3

M(K3)
+

K3h

2M(K3)

)
ℊ2(R3),

η3ε1+1(t) � η3ε1
+K4t

K4−1
ε1

(
1 − K3

M(K3)
+

3K3h

2M(K3)

)
ℊ3(R2) − K4t

K4−1
ε1−1

(
1 − K3

M(K3)
+

K3h

2M(K3)

)
ℊ3(R3),

η4ε1+1(t) � η4ε1
+K4t

K4−1
ε1

(
1 − K3

M(K3)
+

3K3h

2M(K3)

)
ℊ4(R2) − K4t

K4−1
ε1−1

(
1 − K3

M(K3)
+

K3h

2M(K3)

)
ℊ4(R3).

(16)

3.2 Atangana–Baleanu Fractal-Fractional Scheme

For the sake of numerical scheme of Atangana–Baleanu fractal-fractionalized differ-
ential equation, we write Eq. (10), we have

D
K5,K6
t η1(t) � K5tK5−1ℊ1(R0),

D
K5,K6
t η2(t) � K5tK5−1ℊ2(R0),

D
K5,K6
t η3(t) � K5tK5−1ℊ3(R0),

D
K5,K6
t η4(t) � K5tK5−1ℊ4(R0),

(17)

Equation (17) is developed by means of Appendix (A1). Using integral operator of
fractal-fractional for Atangana-Baleanu, Eq. (17) is solved as

η1(t) � η1(0) +
K6tK6−1 (1 − K5)

AB(K5)
ℊ1(R0) +

K5K6

AB(K5)
(K5)

t∫

0

λK6−1(t − λ)K5−1ℊ1(R1)dλ,

η2(t) � η2(0) +
K6tK6−1 (1 − K5)

AB(K5)
ℊ2(R0) +

K5K6

AB(K5)
(K5)

t∫

0

λK6−1(t − λ)K5−1ℊ2(R1)dλ,
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η3(t) � η3(0) +
K6tK6−1 (1 − K5)

AB(K5)
ℊ3(R0) +

K5K6

AB(K5)
(K5)

t∫

0

λK6−1(t − λ)K5−1ℊ3(R1)dλ,

η4(t) � η4(0) +
K6tK6−1 (1 − K5)

AB(K5)
ℊ4(R0) +

K5K6

AB(K5)
(K5)

t∫

0

λK6−1(t − λ)K5−1ℊ4(R1)dλ,

(18)

Equation (18) is solved by invoking Appendix (A1, A2). By the setting at tn+1 in
Eq. (18), we obtained the numerical scheme with help of Appendix (A2, A3) as

η1+1 � η10 +
K6t

K6−1
ε1 (1 − K5)

AB(K5)
ℊ1(R2) +

K5K6

AB(K5)
(K5)

tε1+1∫

0

λK6−1(tε1+1 − λ
)K5−1ℊ1(R1)dλ,

η2+1 � η20 +
K6t

K6−1
ε1 (1 − K5)

AB(K5)
ℊ2(R2) +

K5K6

AB(K5)
(K5)

tε1+1∫

0

λK6−1(tε1+1 − λ
)K5−1ℊ2(R1)dλ,

η3+1 � η30 +
K6t

K6−1
ε1 (1 − K5)

AB(K5)
ℊ3(R2) +

K5K6

AB(K5)
(K5)

tε1+1∫

0

λK6−1(tε1+1 − λ
)K5−1ℊ3(R1)dλ,

η4+1 � η40 +
K6t

K6−1
ε1 (1 − K5)

AB(K5)
ℊ4(R2) +

K5K6

AB(K5)
(K5)

tε1+1∫

0

λK6−1(tε1+1 − λ
)K5−1ℊ4(R1)dλ,

(19)

Employing Appendix (A2, A5) and approximating Eq. (19) within the interval
[
tε2 ,

tε2+1
]
, the compact form of Eq. (19) is

η1ε1+1 � η10 +
K6(1 − K5)ℊ1(R4)

t1−K6
ε1 AB(K5)

+
K5K6

AB(K5)
(K5)

ε1∑
ε2�0

tε2+1∫

tε2

λK6−1(tε1+1 − λ
)K5−1ℊ1(R1)dλ,

η2ε1+1 � η20 +
K6(1 − K5)ℊ2(R4)

t1−K6
ε1 AB(K5)

+
K5K6

AB(K5)
(K5)

ε1∑
ε2�0

tε2+1∫

tε2

λK6−1(tε1+1 − λ
)K5−1ℊ2(R1)dλ,

η3ε1+1 � η30 +
K6(1 − K5)ℊ3(R4)

t1−K6
ε1 AB(K5)

+
K5K6

AB(K5)
(K5)

ε1∑
ε2�0

tε2+1∫

tε2

λK6−1(tε1+1 − λ
)K5−1ℊ3(R1)dλ,

η4ε1+1 � η40 +
K6(1 − K5)ℊ4(R4)

t1−K6
ε1 AB(K5)

+
K5K6

AB(K5)
(K5)

ε1∑
ε2�0

tε2+1∫

tε2

λK6−1(tε1+1 − λ
)K5−1ℊ4(R1)dλ,

(20)

After simplifying Eq. (20) via Appendix (A3, A5, A6), we investigated the numer-
ical scheme for Atangana–Baleanu fractal-fractional operator as
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η1ε1+1 � η10 +
K6t

K6−1
ε1 (1 − K5)ℊ1(R2)

AB(K5)
+

(K6t)K5K6

AB(K5)
(K5 + 2)

ε1∑
ε2�0

[
tK6−1
ε2

× ℊ1(R4)
{
(ε1 + 1 − ε2)

K5 (ε1 − ε2 + 2 +K5) − (ε1 − ε2)
K5 (ε1 − ε2 + 2 + 2K5)

}

−tK6−1
ε2−1 ℊ1(R5)(ε1 + 1 − ε2)

K5+1 − (ε1 − ε2)
K5 (ε1 − ε2 + 1 +K5)

]
,

η2ε1+1 � η20 +
K6t

K6−1
ε1 (1 − K5)ℊ2(R2)

AB(K5)
+

(K6t)K5K6

AB(K5)
(K5 + 2)

ε1∑
ε2�0

[
tK6−1
ε2

× ℊ2(R4)
{
(ε1 + 1 − ε2)

K5 (ε1 − ε2 + 2 +K5) − (ε1 − ε2)
K5 (ε1 − ε2 + 2 + 2K5)

}

−tK6−1
ε2−1 ℊ2(R5)(ε1 + 1 − ε2)

K5+1 − (ε1 − ε2)
K5 (ε1 − ε2 + 1 +K5)

]
,

η3ε1+1 � η30 +
K6t

K6−1
ε1 (1 − K5)ℊ3(R2)

AB(K5)
+

(K6t)K5K6

AB(K5)
(K5 + 2)

ε1∑
ε2�0

[
tK6−1
ε2

× ℊ3(R4)
{
(ε1 + 1 − ε2)

K5 (ε1 − ε2 + 2 +K5) − (ε1 − ε2)
K5 (ε1 − ε2 + 2 + 2K5)

}

−tK6−1
ε2−1 ℊ3(R5)(ε1 + 1 − ε2)

K5+1 − (ε1 − ε2)
K5 (ε1 − ε2 + 1 +K5)

]
,

η4ε1+1 � η40 +
K6t

K6−1
ε1 (1 − K5)ℊ4(R2)

AB(K5)
+

(K6t)K5K6

AB(K5)
(K5 + 2)

ε1∑
ε2�0

[
tK6−1
ε2

× ℊ4(R4)
{
(ε1 + 1 − ε2)

K5 (ε1 − ε2 + 2 +K5) − (ε1 − ε2)
K5 (ε1 − ε2 + 2 + 2K5)

}

−tK6−1
ε2−1 ℊ4(R5)(ε1 + 1 − ε2)

K5+1 − (ε1 − ε2)
K5 (ε1 − ε2 + 1 +K5)

]
. (21)

4 Stability Analysis and Equilibrium Points

It is established fact that performance and efficiency of fractal-fractionalized differ-
ential equation for chaotic circuit based on memristor–memcapacitor depends on the
stability criteria. The system of fractal-fractionalized differential equation for chaotic
circuit based on memristor–memcapacitor can be checked as dissipative system by
the divergence of fractal-fractionalized differential equation for chaotic circuit based
on memristor–memcapacitor. The divergence formula is:

∂

∂η1
η̇1 +

∂

∂η2
η̇2 +

∂

∂η3
η̇3 +

∂

∂η4
η̇4 � ∇V , (22)

∂

∂η1
η̇1 +

∂

∂η2
η̇2 +

∂

∂η3
η̇3 +

∂

∂η4
η̇4 � −F4 + F5(F1 + F2η4)η

2
3 −

(
F6η

2
2 − F7

)
(F1 + F2η4),

(23)

Invoking the rheological parameters F0 � 0.01, F1 � 1, F2 � 1, F6 � 0.001,
F7 � 0.005, F4 � 0.5, F4 � 2, F5 � 4 and initial conditions η1(0) � 0, η2
(0) � 3.1, η3(0) � 1.31, η4(0) � 57 in Eq. (23). After substituting such parameters
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in Eq. (23), we have result less than zero. This result represents that the system may
have chaotic attractors because the system is dissipative.

Now the set of equilibrium point for finding the eigenvalues depending upon Routh-
Hurwitz stability criterion canbe investigated through Jacobimatrix.Before discussing
Jacobi matrix, we set fractal-fractionalized differential equations for chaotic circuit

based on memristor–memcapacitor is equal to dK3,K4η1
dtK3,K4

� dK3,K4η2
dtK3,K4

� dK3,K4η3
dtK3,K4

�
dK3,K4η4
dtK3,K4

� 0. Such condition lead to

F0F1 + F0F2η4η3 � 0

η2η3
2F5(F1 + F2η4)

2 − F4η2 − η3F3(F1 + F2η4) � 0

− η1 − η3

(
F6 − F2η2

2
)
(F1 + F2η4) � 0

η3 � 0, (24)

Now the Jacobian matrix is obtained from Eq. (24),

J �

⎡
⎢⎢⎣

0 0 F0(F1 + F2η4) 0
0 −F4 −F3(F1 + F2η4) 0

−1 0 F7(F1 + F2η4) 0
0 0 1 0

⎤
⎥⎥⎦, (25)

Here the line equilibrium set is P(0, 0, 0, n); that indicates fractal-fractionalized
differential equations for chaotic circuit basedonmemristor–memcapacitor has infinite
equilibrium. Now computing the characteristic equation from Eq. (25), we arrive at:

λ4 + λ0λ
3 + λ1λ

2 + λ2λ � 0, (26)

Here, λ0 � F4 − F7(F1 + F2η4), λ1 � (F1 + F2η4)F0F4F7, λ2 � F0F4(F1 +
F2η4). Now evaluating non-linear algebraic Eq. (26) through synthetic division
method, it is concluded that fractal-fractionalized differential equations for chaotic
circuit based on memristor–memcapacitor has three nonzero eigenvalues and one zero
eigenvalue. This represents that system is stable and system will be likely to create
chaos.

5 Discussion of Results Through Chaotic Phenomenon

In this section, we describe complex dynamic behaviors for chaotic circuit based
on memristor–memcapacitor that contain chaos phenomenon, attractors, and differ-
ent chaotic states through fractal component fixed and varying fractional component,
keeping fractional component fixed and varying fractal component and varying both
fractal component and fractional components simultaneously. The numerical schemes
of Adams–Bashforth method, numerical simulations via MATLAB, stability analy-
sis and equilibrium points through Eigen values have been highlighted in detail. The
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Fig. 2 Fractional chaos of memristor–memcapacitor at K1 � 0.899 and K2 � 1 for η1 and η2 via CF and
AB methods

Fig. 3 Fractal chaos of memristor–memcapacitor at K1 � 1 and K2 � 0.787 for η1 and η2 via CF and AB
methods

Figs. 2, 3, 4, 5, and 6 are depicted for fractional chaos of memristor–memcapacitor
at K1 � 0.899 andK2 � 1 for current (η1) and state variable memristor (η2) via
Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) methods, fractal chaos of mem-
ristor–memcapacitor at K1 � 1 andK2 � 0.787 for current (η1) and state variable
memristor (η2) via CF and AB methods, fractal-fractional chaos of memristor–mem-
capacitor at K1 � 0.899andK2 � 0.787 for current (η1) and state variable memristor
(η2) via CF and AB methods, fractal-fractional chaos of memristor–memcapacitor
at K1 � 0.899 andK2 � 0.787 for flux (η3) and state variable memcapacitor (η4)
via CF and AB methods and fractal-fractional chaos of memristor–memcapacitor at
K1 � 0.899 andK2 � 0.787 for flux (η3) and state variable memcapacitor (η4) via CF
and AB methods. Additionally, initial condition for each parameter is the final value
of the trajectory in the previous parameter. In order to examine the deformation of
chaotic circuit based on memristor–memcapacitor, the outcomes have been discussed.
Figure 2 reflects the comparative analysis of CF and AB fractional differential opera-
tors for current (η1) and state variable memristor (η2) in which the pinched hysteresis
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Fig. 4 Fractal-fractional chaos of memristor–memcapacitor at K1 � 0.899 and K2 � 0.787 for η1 and η2
via CF and AB methods

Fig. 5 Fractal-fractional chaos of memristor–memcapacitor at K1 � 0.899 and K2 � 0.787 for η3 and η4
via CF and AB methods

Fig. 6 Fractal-fractional chaos of memristor–memcapacitor at K1 � 0.899 and K2 � 0.787 for η4 and η3
via CF and AB methods
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Fig. 7 Fractal-fractional chaos of memristor–memcapacitor at K1 � 0.899 and K2 � 0.787 for η1 and η2
via CF and AB methods at smaller interval of time

curves of the non-integer orders have shown the hysteresis curve of fractional order
memristor–memcapacitor under an excitation voltage. Such comparison lead that the
local passive (or active) characteristics occur in non-integer modeling of memris-
tor–memcapacitor for current (η1) and state variable memristor (η2). The CF and AB
fractal differential operators have been contrasted in Fig. 3 for current (η1) and state
variablememristor (η2). It is observed that chaotic states as seen in Fig. 3 are reciprocal
periodic orbits that appear as the initial value changes declaring that the system has
many different reciprocal coexisting attractors with respect to each fractal differential
operator. The discrimination of CF and AB fractal-fractional differential operators
for current (η1) and state variable memristor (η2) has been observed in Fig. 4 on the
basis of accuracy of numerical method. The trends of CF and AB fractal-fractional
differential operators are quite distinct; this is because they strongly depend on val-
ues of initial conditions and a memory ability manifested through a closed pinched
hysteresis loop in the characteristics. On the contrary, the similar trends CF and AB
fractal-fractional differential operators have been depicted for flux (η3) and state vari-
able memcapacitor (η4) in Fig. 5 and state variable memcapacitor (η4) and flux (η3)
in Fig. 6. Such trends reflect the dissimilarity information due to multidimensional
scaling and pattern visualization. Additionally, Fig. 7 presents fractal-fractional chaos
of memristor–memcapacitor at K1 � 0.899andK2 � 0.787 for η1 and η2 via CF
and AB methods at smaller interval of time. On the other hand, Fig. 8 is depicted for
Lyapunov exponent by means of CF and AB fractal-fractional differential operators,
in which it is observed that the system exhibits chaotic state because all of the phase
diagrams are extremely strong chaotic.

6 Conclusion

The new idea is proposed to develop the mathematical models of a memristor and
a memcapacitor based on fractal and fractional differential and integral operators.
The dynamical characteristics generated by fractal as well fractional operators are
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Fig. 8 Lyapunov exponent by means of CF and AB fractal-fractional differential operators

highly complex and sensitive as the circuit parameters vary. A chaotic circuit con-
taining a memristor and a memcapacitor is designed with different chaotic strange
attractors. The numerical schemes, numerical simulations, stability analysis and equi-
librium points have been highlighted in detail. The comparative chaotic graphs have
been discussed in three ways (i) by keeping fractal component fixed and varying frac-
tional component distinctly, (ii) by keeping fractional component fixed and varying
fractal component distinctly and (iii) by varying both fractal component and fractional
component distinctly. After above discussion and concluding remarks, the following
results have been accumulated as:

• The current and state variable memristor have pinched hysteresis curves at the
non-integer orders that show the hysteresis curve of fractional order memris-
tor–memcapacitor under an excitation voltage.

• The chaotic states are reciprocal and have periodic orbits that appear as the initial
value changes declaring that the system has many different reciprocal coexisting
attractors with respect to each fractal differential operator.

• The Caputo–Fabrizio fractal-fractional differential operator and Atangana–Baleanu
fractal-fractional differential operator have quite distinct chaotic trends depending
upon the values of initial conditions.

• The flux (η3) and state variable memcapacitor (η4) reflect the dissimilarity infor-
mation due to multidimensional scaling and pattern visualization.
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Appendix

R0 � η1, η2, η3, η4, t , (A1)

R1 � η1, η2, η3, η4, λ, (A2)

R2 � η1
ε1 , η2

ε1 , η3
ε1 , η4

ε1 , tε1 , (A3)

R3 � η1
ε1−1 , η2

ε1−1 , η3
ε1−1 , η4

ε1−1 , tε1−1 , (A4)

R4 � η1ε2
, η2ε2

, η3ε2
, η4ε2

, tε2 , (A5)

R5 � η1ε2−1, η2ε2−1, η3ε2−1, η4ε2−1, tε2−1 (A6)
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