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Abstract
The paper deals with some properties of solutions of differential inclusions driven
by set-valued integrals of a Young type. The existence of solutions, boundedness,
closedness of the set of solutions and continuous dependence type results are con-
sidered. These inclusions contain as a particular case set-valued stochastic inclusions
with respect to a fractional Brownian motion (fBm), and therefore, their properties
are crucial for investigation the properties of solutions of fBm stochastic differential
inclusions.

Mathematics Subject Classification 34A08 · 26E25 · 34A60 · 28B20 · 26A33 · 60G22

1 Introduction

Control and optimal control problems inspired on intensive expansion of the differ-
ential and stochastic differential inclusions theory [1, 15, 16] and [28]. Set-valued
Aumann or Itô type integrals are necessary tools in the investigation of properties
of solutions of differential or stochastic differential inclusions [13, 17]. Controlled
differential equations driven by Young integrals were initiated by T. Lions in [21].
A more advanced approach to controlled differential equations was developed in [7,
10, 11] and [20]. Thus it seems reasonable to investigate differential inclusions driven
by set-valued Young type integrals. To the best of our knowledge, such integrals
were introduced and investigated in [8, 22] and [23] only. Moreover, in [4] and [8]
the authors considered Young type differential inclusions with solutions understood
as Young integrals of appropriately regular selections of set-valued right-hand side.
Motivated by this, the aim of this work is to investigate the properties of set-valued
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Young integrals and study Young differential inclusions driven by such Young type
integrals.

Set-valued Young integrals considered in the paper concern the class of set-valued
functions having Hukuhara derivatives. We investigate differential inclusions driven
by such set-valued integrals. We prove that the set of solutions of such an inclusion
is nonempty, closed and bounded in the space of α-Hölder continuous functions. We
also consider the problem of continuous dependence of solutions from the right-hand
side of the inclusion.

Such an inclusion contains as a particular case a stochastic differential inclusion
driven by a fractional Brownianmotion. Therefore, in our opinion, the results obtained
herein are useful for investigating the existence of solutions of stochastic inclusions
driven by fBm and their properties.

The paper is organized as follows. In Sect. 2, we define a space of β-Hölder
set-valued functions. Section3 deals with properties of sets of appropriately regular
selections of set-valued functions togetherwith definitions ofAumann and a set-valued
Young integrals. In Sect. 4 we investigate properties of set-valued Young integral and
Young differential inclusions driven by set-valued integrals of anAumann and aYoung
type. We prove the existence of solutions to such a differential inclusion and some
properties of the set of its solutions.

2 Hölder Continuous Set-Valued Functions

Let (Rn, | · |) be an Euclidean space. The absolute value norm in R1 is denoted by
| · | instead of | · |. Denote by Comp(Rn) and Conv(Rn) the families of all nonempty
and compact, and nonempty compact and convex subsets of Rn , respectively. The
Hausdorff metric H in Comp(Rn) is defined by

H(B,C) = max{H(B,C), H(C, B)},

where H(B,C) = supb∈B dist(b,C) = supb∈B infc∈C | c − b |. The space
(Comp(Rn), H) is a Polish metric space and (Conv(Rn), H) is its closed subspace.
For B,C, D, E ∈ Comp(Rn) we have,

H(B + C, D + E) ≤ H(B, D) + H(C, E) (1)

where B + C := {b + c : b ∈ B, c ∈ C} denotes the Minkowski sum of B and C .
Moreover, for B,C, D ∈ Conv(Rn) the equality

H(B + D,C + D) = H(B,C), (2)

holds, see e.g., [19] for details.
We use the notation

‖A‖ := H(A, {0}) = sup
a∈A

| a | for A ∈ Conv(Rn).
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Let β ∈ (0, 1]. For every function f : Rn ⊃ [a, b]n → Rn we define

‖ f ‖∞ = sup
x∈[a,b]n

| f (x) | and Mβ( f ) = sup
x �=y∈[a,b]n

| f (x) − f (y) |
| x − y |β .

By Cβ([a, b]n, Rn)we denote the space of β-Hölder-continuous functions with a finite
norm

‖ f ‖β := ‖ f ‖∞ + Mβ( f ).

It can be shown that Cβ([a, b]n, Rn) is a Banach space.
Similarly, for a set-valued function F : [a, b]n → Conv(Rn) let

‖F‖β := ‖F‖∞ + Mβ(F)

where

‖F‖∞ = sup
x∈[a,b]n

‖F(x)‖ and Mβ(F) = sup
x �=y∈[a,b]n

H(F(x), F(y))

| x − y |β .

A set-valued function F is said to be β-Hölder if ‖F‖β < ∞. The space of β-
Hölder set-valued functions having compact and convex values will be denoted by
Cβ

([a, b]n,Conv(Rn)
)
. We say that F : Rn → Conv(Rn) is locally β-Hölder if for

every [a, b]n ⊂ Rn a set-valued function F|[a,b]n with its domain restricted to a cube
[a, b]n belongs to Cβ([a, b]n,Conv(Rn)). If F : [0, T ] × Rn → Conv(Rn) then we
say that F(t, x) ∈ Cβ×γ ([0, T ] × Rn,Conv(Rn)) if F is β-Hölder in t and γ -Hölder
in x .

Let A, B ∈Conv(Rn). The setC ∈Conv(Rn) is said to be the Hukuhara difference
A ÷ B if A = B + C .

Definition 1 Consider a set-valued mapping G : Rn → Conv(Rn). For k = 1, . . . n,

let ek = (e1k , . . . e
n
k ) be the vector such that e

j
k = 0 for k �= j and ekk = 1.

We say that G admits a Hukuhara derivative at x0 ∈ Rn , if there exists a set
DHk(G)(x0) such that the limits

lim
h→0+

G(x0 + hek) ÷ G(x0)

h

and

lim
h→0+

G(x0) ÷ G(x0 − hek)

h

exist with respect to a Hausdorff metric in Conv(Rn) and are equal to the set
DHk(G)(x0), k = 1, . . . , n, (see e.g., [6]).
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We define a set DH(G)(x0) by the formula

y ∈ DH(G)(x0) if and only if y = (y1, y2, . . . , yn), where yk ∈ DHk(G)(x0),

k = 1, . . . , n.
If G = {g} is a single-valued function then

DH(G)(x0) = g′(x0) = (g′
1(x0), g

′
2(x0), . . . , g

′
d(x0)) =

(
∂g(x0)

∂x10
, . . . ,

∂g(x0)

∂xn0

)

is a gradient of a function g at point x0. A set-valued function G has a locally bounded
Hukuhara derivative if for every [a, b]n ⊂ Rn there exists Na,b > 0 such that
supx∈[a,b]n supk=1,...,n ‖DHk(G)(x)‖ < Na,b.

Proposition 1 Let G : Rn → Conv(Rd) be a set-valued function. If G has a locally
bounded Hukuhara derivative then G is locally β-Hölder (i.e., for every [a, b]n ⊂ Rn,
G|[a,b]n belongs to Cβ([a, b]n,Conv(Rd))) for every β ∈ (0, 1]. Moreover,

‖G|[a,b]n‖β = ‖G|[a,b]n‖∞ + Mβ(G|[a,b]n ) ≤ ‖G(a)‖ + nNa,b
(
(b − a) + (b − a)1−β

)
,

where a = (a, . . . , a) ∈ Rn.

Proof Let [a, b]n ⊂ Rn be fixed and such that there exists Na,b > 0 satisfying
supx∈[a,b]n supi=1,...,n ‖DHi (G)(x)‖ < Na,b. For every i = 1, . . . , n and a ≤ t0 ≤
t ≤ b we have

G(x1, . . . xi−1, t, xi+1, . . . xn)

= G(x1, . . . xi−1, t0, xi+1, . . . xn) +
∫ t

t0
DHi (G)(x1, . . . xi−1, τ, xi+1, . . . xn)dτ

by [19].

Therefore, using formula (2), we obtain for every a ≤ t0 ≤ s ≤ t ≤ b

H
(
G(x1, . . . xi−1, t, . . . , xn),G(x1, . . . xi−1, s, . . . , xn)

)

= H

(∫ t

t0
DHi (G)(x1, . . . xi−1, τ, . . . , xn)dτ,

∫ s

t0
DHi (G)(x1, . . . xi−1, τ, . . . , xn)dτ

)

= H

(∫ t

s
DHi (G)(x1, . . . xi−1, τ, . . . , xn)dτ, {0}

)
≤ Na,b(t − s).

Dividing both sides of the above inequality by (t − s)β we obtain

Mi
β(G|[a,b]n ) ≤ Na,b(b − a)1−β. (3)

Moreover, for every x, y ∈ [a, b]n we get
H

(
G(x),G(y)

) = H
(
G(x1, . . . , xn),G(y1, . . . , yn)

)

≤ H
(
G(x1, . . . , xn),G(y1, x2, . . . , xn)

)

+H
(
G(y1, x2, . . . , xn),G(y1, y2, x3, . . . , xn)

)

+ . . . + H
(
G(y1, y2, . . . yn−1, xn),G(y1, y2, . . . , yn−1, yn)

)
.
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Since | x − y |β≥| xi − yi |β then we have

Mβ(G|[a,b]n ) = sup
x �=y∈[a,b]n

H(G(x),G(y))

| x − y |β

≤
n∑

i=1

Mi
β(G|[a,b]n ) ≤ nNa,b(b − a)1−β < ∞ (4)

by formula (3).
Now we calculate the upper bound for ‖G|[a,b]n‖∞ = supx∈[a,b]n ‖G(x)‖.
Let us note that for every x ∈ [a, b]n we have

G(x) = G(x1, . . . , xn) = G(a, x2, . . . , xn) +
∫ x1

a
DH1(G)(τ, x2, . . . , xn)dτ

= G(a, a, x3, . . . , xn) +
∫ x2

a
DH2(G)(a, τ, x3, . . . , xn)dτ

+
∫ x1

a
DH1(G)(τ, x2, . . . , xn)dτ

= . . . = G(a, a, . . . , a) +
n∑

i=1

∫ xi

a
DHi (G)(a, a, . . . , τ, xi+1, . . . , xn)dτ.

Therefore,

sup
x∈[a,b]n

‖G(x)‖ ≤ ‖G(a)‖ +
n∑

i=1

Na,b(xi − a) ≤ ‖G(a)‖ + nNa,b(b − a) < ∞,

(5)

what together with (4) proves the desired inequality. �
Remark 1 In the proof of formula (5) one can take any point x0 ∈ [a, b]n instead of a
point a to obtain the inequality

sup
x∈[a,b]n

‖G|[a,b]n‖β ≤ ‖G(x0)‖ + nNa,b

(
(b − a) + (b − a)1−β

)
.

For a detailed discussion of the properties and applications of Hukuhara differen-
tiable set-valued functions we refer the reader to [19].

3 Hölder Set-Valued Functions and Set-Valued Young Integrals

We recall the notion of a Young integral in a single valued case introduced by L.S.
Young in [29]. For details see also [10]. Let f : R1 → Rd andw : R1 → R1 be given
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functions. For the partition �m : a = t0 < t1 < . . . < tm = b of the interval [a, b]
we consider the Riemann sum of f with respect to w

S( f , w,�m) :=
m∑

i=1

f (ti−1)(w(ti ) − w(ti−1)).

Let | �m |:= max{ti − ti−1 : 1 ≤ i ≤ m − 1}. Then the following result holds (see
e.g., [11] and [26]).

Proposition 2 Let f|[a,b] ∈ Cβ([a, b], Rd) and w|[a,b] ∈ Cα([a, b], R1) where α, β ∈
(0, 1], β + α > 1. Then the limit

lim|�m |→0
S( f|[a,b], w,�m) =:

∫ b

a
f (τ )dwτ

exists and the inequality

∣∣∣∣

∫ t

s
f (τ )dwτ − f (s)(w(t) − w(s))

∣∣∣∣ ≤ C(α, β)Mβ( f )Mα(w)(t − s)α+β (6)

holds for every a ≤ s < t ≤ b, where the constant C(α, β) depends only on β and α.

In the case f|[a,b] ∈ Cβ([a, b], Rd), w|[a,b] ∈ Cα([a, b], R1) and α, β ∈ (0, 1] with
α + β > 1, one can express the Young integral by fractional derivatives. Namely, let

fa+(t) = ( f (t) − f (a+))I(a,b)(t) and fb−(t) = ( f (t) − f (b−))I(a,b)(t),

where I(a,b)(·) denotes the characteristic function of the interval (a, b). The right-sided
and left-sided fractional derivatives of order 0 < ρ < 1 for the function f|[a,b] are
defined by

Dρ
a+ f (t) = 1

	(1 − ρ)

(
f (t)

(t − a)ρ
+ ρ

∫ t

a

f (t) − f (s)

(t − s)ρ+1 ds

)

and

Dρ
b− f (t) = (−1)ρ

	(1 − ρ)

(
f (t)

(b − t)ρ
+ ρ

∫ b

t

f (t) − f (s)

(s − t)ρ+1 ds

)
.

Then we get by [26]

∫ b

a
fτdwτ = (−1)ρ

∫ b

a
Dρ
a+ fa+(t)D1−ρ

b− wb−(t)dt + f (a)(w(b) − w(a))

for every ρ ∈ (1 − α, β).
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Let F : Rn → Conv(Rd) be a measurable set-valued function. For 1 ≤ p < ∞,
define the set

SL p (F) = { f ∈ L p : f (x) ∈ F(x) for a.e. x ∈ Rn},

where L p = L p(Rn, Rd). Elements of the set SL p (F) are called integrable selections
of F . Since values of F are closed in Rd then SL p (F) is a closed subset of L p (see
e.g., [14], formula (1.1)). It is nonempty if F is p-integrably bounded i.e., if there
exists h ∈ L p such that ‖F(x)‖ ≤ h(x) for a.e. x ∈ Rn ([14], Theorem 3.2).

A set-valued Aumann integral of F over the measurable set A ⊂ Rn was defined
in [3] by the formula

∫

A
F(x) dμ =

{∫

A
f (x) dμ : f ∈ SL1(F)

}
.

For properties of measurable set-valued functions and their measurable selections see
e.g., [2].

Let G : R1 → Conv(Rd) be a Hukuhara differentiable set-valued function
with p-integrably bounded Hukuhara derivative DH(G). Assume that G belongs
to Cβ(R1,Conv(Rd)) locally. By Sβ(G) we denote the set of all locally β-Hölder
selections of G, i.e.,

Sβ(G) = {g : g|[a,b] ∈ Cβ([a, b], Rd) for every a < b, g(t) ∈ G(t) for t ∈ R1}

Definition 2 We define the set

IS(G) = {g : g ∈ Sβ(G) and g′ ∈ SL p (DH(G))} (7)

and a set-valued Young integral of a locally β-Hölder and Hukuhara differentiable
set-valued function G with respect to a function w ∈ Cα(R1, R1), β + α > 1, by the
formula

(IS)

∫ b

a
G(τ )dwτ :=

{∫ b

a
g(τ )dwτ : g ∈ IS(G)

}
. (8)

The above definition of set-valued integral is proper if the set IS(G) is nonempty.
Conditions assuring the nonemptiness of this set can be found in [23].

By Proposition 2 we obtain

‖(IS)

∫ t

s
G(τ )dwτ‖ ≤ Mα(w)‖G‖β(1 + C(α, β)(b − a)β)(t − s)α

for a ≤ s ≤ t ≤ b. Since G and DH (G) take on convex values then the sets Sβ(G)

and SL p (DH (G)) are convex and therefore, IS(G) and (IS)
∫ t
s G(τ )dwτ for every
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s, t ∈ [a, b], s < t , are convex subsets of Cβ([a, b], Rd) and Rd , respectively. It
was proved in [23] Theorem 7 that the set (IS)

∫ b
a G(τ )dwτ is bounded in Rd and

(IS)
∫ ·
a G(τ )dwτ is a bounded set in Cα(R1,ConvRd).

The following result is a variant of Lemma 1 from [22].

Lemma 3 Let w ∈ Cα(R1, R1) locally. Then, for every ρ ∈ (1 − α, β), a, b ∈ R1,
a < b, there exists a positive constant C(ρ) such that for every g1, g2 ∈ Cβ(R1, Rd)

locally and θ ∈ (0, 1] the inequality
∣∣∣∣

∫ b

a
g1(τ )dwτ −

∫ b

a
g2(τ )dwτ

∣∣∣∣

≤ C(ρ)
[
‖g1 − g2‖∞ + (Mβ(g1|[a,b]) + Mβ(g2|[a,b]))θβ

]
θ−ρ

+ | g1(a) − g2(a) | · | w(b) − w(a) |

holds.

4 Young Differential Inclusion, Existence and Properties of Solutions

Letα ∈ (0, 1],β > 1−α and γ > 1−α
α

be given. Letw : [0, T ] → Rm be anα-Hölder
function while F : [0, T ] × Rd → Conv(Rd) and G : [0, T ] × Rd → Conv(Rd×m)

be set-valued functions. Assume the following hypotheses on set-valued functions F
and G:

(H1) F is a Carathéodory set-valued function, i.e., product measurable in (t, x)
and lower semicontinuous in x .

(H2) There exists a function b ∈ L
1

1−α ([0, T ]) and a constant L > 0 such that for
every (t, x) ∈ [0, T ] × Rd

‖ F(t, x) ‖ ≤ L | x | +b(t).

(H3) G is measurable in (t, u) and G has locally bounded Hukuhara derivative
DH(G), i.e., if for every [[0, T ] × [a, b]n ⊂ Rn+1 there exists Na,b > 0 such that
sup(t,u)∈[0,T ]×[a,b]n ‖DH(G)(t, u)‖ < Na,b.

We define the set

IS(G)={g ∈ Cβ×γ ([0, T ] × Rd , Rd×m) :g(t, x)∈G(t, x), g′ ∈ SL p (DH(G))}

Definition 3 ([23]) For every x ∈ Cα([0, T ], Rd) and a set-valued function G from
Cβ×γ ([0, T ]× Rd ,Conv(Rd×m)) and being Hukuhara differentiable we define a set-
valued Young integral of G ◦ x with respect to a function w ∈ Cα([0, T ], Rm) by the
formula

(IS)

∫ t

s
G(τ, x(τ ))dwτ :=

{∫ t

s
g(τ, x(τ ))dwτ : g ∈ IS(G)

}
(9)
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for every 0 ≤ s < t ≤ T .

This integral is nonempty under condition (H3) above.

Proposition 4 Let G1,G2 : [0, T ] × Rd → Conv(Rd×m) be set-valued func-
tions with locally bounded Hukuhara derivatives. Let w ∈ Cα([0, T ], Rm) while
x ∈ Cα([0, T ], Rd), x(0) = x0. Then, for every δ ∈ (0, 1), ρ ∈ (1 − α, δ), there exist
positive constants C(ρ), PT ,x,ε(x) such that for every θ ∈ (0, 1], 0 ≤ s < t ≤ T the
inequality

H

(
(IS)

∫ t

s
G1(τ, x(τ ))dw(τ), (IS)

∫ t

s
G2(τ, x(τ ))dw(τ/)

)

≤ C(ρ)

{

2(d + 1)(ε(x) ∨ T ) sup
(τ,v)∈A(x)

H̄

(
DH(G1)(τ, v), DH(G2)(τ, v)

)

+(T + T 1−δ)PT ,x,ε(x)

(

sup
(t,u)∈A(x)

‖DH(G1)(t, u)‖+ sup
(t,u)∈A(x)

‖DH(G2)(t, u)‖
)

θδ

+H(G1(0, x0),G2(0, x0))

}

θ−ρ

+Mα(w)T α(2dε(x) + T ) sup
(τ,v)∈A(x)

H̄

(
DH(G1)(τ, v), DH(G2)(τ, v)

)

+H(G1(0, x0),G2(0, x0)) (10)

holds, where A(x) = [0, T ] × [−ε(x), ε(x)]d is such that x(t) ∈ [−ε(x), ε(x)]d for
every t ∈ [0, T ].
Proof Since x ∈ Cα([0, T ], Rd) then there exists ε(x) > 0 such that | x(t) |< ε(x)
for t ∈ [0, T ] and therefore, the set A(x) exists. Moreover, there exists Nε(x) > 0
such that ‖DH(G)(t, u)‖ ≤ Nε(x) for every (t, u) ∈ A(x) by (H3). Then, for every
δ ∈ (0, 1), G|A(x) is δ-Hölder with a Hölder constant dependent only on ε(x) and

‖G|A(x)‖δ ≤‖G(0, x0)‖+Nε(x)(T+T 1−δ)+dNε(x)
(
2ε(x)+(2ε(x))1−δ

)
<∞

by Proposition 1. Let (IS)(Gi ) ◦ x = {g ◦ x : g ∈ (IS)(Gi )} for i = 1, 2.
Using Lemma 3 we get

H̄

(
(IS)

∫ t

s
G1(τ, x(τ ))dw(τ), (IS)

∫ t

s
G2(τ, x(τ ))dw(τ)

)

≤ C(ρ)[H̄∞
(

(IS)(G1) ◦ x, (IS)(G2) ◦ x

)
θ−ρ

+
(

sup
g1∈IS(G1)

Mσ (g1 ◦ x) + sup
g2∈IS(G2)

Mσ (g2 ◦ x)

)
θσ θ−ρ]

+Mα(w)(t − s)α H̄∞
(

(IS)(G1) ◦ x, (IS)(G2) ◦ x

)
(11)
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for every 0 ≤ s < t ≤ T . First we will establish the estimation of H̄∞
(
(IS)(G1) ◦

x, (IS)(G2) ◦ x
)
. For simplicity of notation let us denote the variable t as a “zero”

variable i.e., let g(t, x(t)) = g(x0(t), x1(t), . . . , xd(t)), where x0(t) = t, x(t) =
(x1(t), . . . , xd(t)), x0(0) = 0 ∈ R1, x(0) = x0 = (x1(0), . . . , xd(0)) ∈ Rd .

Let us note that for every differentiable function f : Rd+1 → Rd with f ′ ∈ L p,
the following formula

f (z0, z1, . . . , zd) = f (y0, y1, . . . , yd) +
∫ z0

y0
f ′
0(s0, z1, . . . , zd)ds0

+
d∑

i=1

∫ zi

yi
f ′
i (y0, . . . , yi−1, si , zi+1, . . . , zd)dsi (12)

holds.
Let us take an arbitrary g1 ∈ (IS)(G1) and g2 ∈ (IS)(G2). Then (g1)′i ∈

SL p (DHi (G1)) while (g2)′i ∈ SL p (DHi (G2)) for i = 0, 1, . . . , d. Since (t, x(t)) ∈
A(x) then taking u = (u1, . . . ud) we get by formula (12)

inf
g2∈IS(G2)

sup
t∈[0,T ]

| g1(t, x(t)) − g2(t, x(t)) |
≤ inf

g2∈IS(G2)
sup

(t,u)∈A(x)
| g1(t, u) − g2(t, u) |

= inf
g2∈IS(G2)

sup
(t,u)∈A(x)

| (g1 − g2)(0, x(0)) +
∫ t

x0(0)
(g1 − g2)

′
0(s0, u1, . . . , ud)ds0

+
d∑

i=1

∫ ui

xi (0)
(g1 − g2)

′
i (x0(0), . . . , xi−1(0), si , ui+1, . . . , ud)dsi | .

Since the formula y(u) = y(u0) + ∫ u
u0

y′(s)ds uniquely determines the function y
then infg2∈IS(G2) is the same as infg′

2∈SL p (DH(G2))
inf ȳ0∈G2(0,x(0)), where ȳ0 means

g2(0, x(0)). Therefore,

inf
g2∈IS(G2)

sup
(t,u)∈A(x)

| g1(t, u) − g2(t, u) |

≤ inf
g′
2∈SL p (DH(G2))

inf
ȳ0∈G2(0,x(0))

sup
(t,u)∈A(x)

∣
∣∣∣ g1(0, x(0)) − ȳ0

+
∫ t

x0(0)
(g1 − g2)

′
0(s0, u1, . . . , ud)ds0

+
d∑

i=1

∫ ui

xi (0)
(g1 − g2)

′
i (x0(0), . . . , xi−1(0), si , ui+1, . . . , ud)dsi

∣∣
∣∣

≤ inf
g′
2∈SL p (DH(G2))

inf
ȳ0∈G2(0,x(0))

sup
(t,u)∈A(x)

{

| g1(0, x(0)) − ȳ0 |
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+
∫ T

0
| (g1 − g2)

′
0(s0, u1, . . . , ud) | ds0

+
d∑

i=1

∫ ε(x)

−ε(x)
| (g1 − g2)

′
i (x0(0), . . . , xi−1(0), si , ui+1, . . . , ud) | dsi

}

≤ inf
ȳ0∈G2(0,x(0))

| g1(0, x(0)) − ȳ0 |
+ inf

(g2)′0∈SL p (DH0(G2))
sup

(t,u)∈A(x)
sup

s0∈[0,T ]
| (g1 − g2)

′
0(s0, u1, . . . , ud) | ·T

+
d∑

i=1

inf
(g2)′i∈SL p (DHi (G2))

sup
(t,u)∈A(x)

sup
si∈[−ε(x),ε(x)]

| (g1 − g2)
′
i (x0(0), . . . , si , ui+1, . . . , ud) | ·2ε(x)

≤ distRd

(
g1(0, x(0)),G2(0, x(0))

)

+T inf
(g2)′0∈SL p (DH0(G2))

sup
(t,u)∈A(x)

| (g1)
′
0(t, u) − (g2)

′
0(t, u) |

+2ε(x)
d∑

i=1

inf
(g2)′i∈SL p (DHi (G2))

sup
(t,u)∈A(x)

| (g1)
′
i (t, u) − (g2)

′
i (t, u) |

≤ distRd

(
g1(0, x(0)),G2(0, x(0))

) + Tdist∞
(
(g1)

′
0, DH0(G2)

)

+2ε(x)
d∑

i=1

dist∞
(
(g1)

′
i , DHi (G2)

)

≤ H̄
(
G1(0, x(0)),G2(0, x(0))

) + T H̄∞
(
DH0(G1), DH0(G2)

)

+2ε(x)
d∑

i=1

H̄∞
(
DHi (G1), DHi (G2)

)

≤ H̄
(
G1(0, x(0)),G2(0, x(0))

) + (2dε(x) + T )H̄∞
(
DH(G1), DH(G2)

)

because (g1) and (g1)′i are arbitrary elements from G1 and DHi (G1), respectively.
Hence

H̄∞
(
(IS)(G1) ◦ x, (IS)(G2) ◦ x

) ≤ H̄
(
G1(0, x(0)),G2(0, x(0))

)

+(2dε(x) + T )H̄∞
(
DH(G1), DH(G2)

)
.

(13)

By formula (19) we have

sup
gi∈IS(Gi )

Mσ (gi ◦ x) ≤ PT ,x,ε(x) for i = 1, 2,

where PT ,x,ε(x) = NT ,ε(x)
(
T 1−δ +d(2ε(x))1−δ

)(
T 1−α +Mα(x)δ). Then by (13) and

(11) we obtain desired inequality (10). �
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Corollary 5 Let G : [0, T ] × Rd → Conv(Rd×m) be a set-valued function with
locally bounded Hukuhara derivative. Let w, x ∈ Cα([0, T ], Rd), x(0) = x0. Then,
(IS)

∫ t
s G(τ, x(τ ))dw(τ) is a bounded set in Rd for every 0 ≤ s < t ≤ T .

Proof Let G1 := G, G2 := {0} ⊂ Rd×m and 0 ≤ s ≤ t ≤ T . Then by Proposition 4
we get

∥∥∥∥(IS)

∫ t

s
G(τ, x(τ ))dw(τ)

∥∥∥∥

≤ C(ρ)

{

2(d + 1)(ε(x) ∨ T ) sup
(τ,v)∈A(x)

‖DH(G)(τ, v)‖ +
(
T + T 1−δ

)
PT ,x,ε(x)

· sup
(τ,v)∈A(x)

‖DH(G)(τ, v)‖ θδ + ‖G(0, x0)‖
}

θ−ρ

+Mα(w)T α (2dε(x) + T ) sup
(τ,v)∈A(x)

‖DH(G)(τ, v)‖ + ‖G(0, x0)‖ ,

where ε(x), A(x) = [0, T ] × [−ε(x), ε(x)]d , δ ∈ (0, 1), α + δ > 1, ρ ∈ (1 − α, δ)

and θ ∈ (0, 1] are the same as in Proposition 4. Since G has compact values
in Rd×m , then ‖G(0, x0)‖ < ∞. Moreover, since it has also a locally bounded
Hukuhara derivative, then sup(τ,v)∈A(x) ‖DH(G)(τ, v)‖ < ∞. Hence it follows

that
∥∥∥(IS)

∫ t
s G(τ, x(τ ))dw(τ)

∥∥∥ < ∞ what proves boundedness of Young integral

(IS)
∫ t
s G(τ, x(τ ))dw(τ) in Rd . �

Corollary 6 Let w, x ∈ Cα([0, T ], Rd), x(0) = x0 and A(x) be the same as in Propo-
sition 4. Let Gn,G : [0, T ]×Rd → Conv(Rd×m) be set-valued functions with locally
bounded Hukuhara derivatives satisfying

H(Gn(0, x0),G(0, x0)) → 0 as n → ∞

and

sup
(t,v)∈[0,T ]×A(x)

H(DH(Gn)(t, v), DH(G)(t, v)) → 0 as n → ∞.

Then,

sup
0≤s<t≤T

H
(
(IS)

∫ t

s
Gn(s, x(s))dw(s), (IS)

∫ t

s
G(s, x(s))dw(s)

) → 0 (14)

as n → ∞.

Proof Let us note that for every n ≥ 1 we have

∣∣∣
∣ sup
(t,v)∈[0,T ]×A(x)

‖DH(Gn)(t, v)‖ − sup
(t,v)∈[0,T ]×A(x)

‖DH(G)(t, v)‖
∣∣∣
∣
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≤ sup
(t,v)∈[0,T ]×A(x)

H(DH(Gn)(t, v), DH(G)(t, v)).

Thus,

sup
(t,v)∈[0,T ]×A(x)

‖DH(Gn)(t, v)‖ → sup
(t,v)∈[0,T ]×A(x)

‖DH(G)(t, v)‖ as n → ∞.

Therefore, the sequence (sup(t,v)∈[0,T ]×A(x) ‖DH(Gn)(t, v)‖)n≥1 is bounded. Hence
we get by Proposition 4

lim sup
n

sup
0≤s<t≤T

H

(
(IS)

∫ t

s
Gn(s, x(s))dw(s), (IS)

∫ t

s
G(s, x(s))dw(s)

)

≤ C(ρ)(T + T 1−δ)PT ,x,ε(x)

(

sup
n

sup
(t,v)∈[0,T ]×A(x)

‖DH(Gn)(t, v)‖

+ sup
(t,v)∈[0,T ]×A(x)

‖DH(G)(t, v)‖
)

θδ−ρ .

Since δ > ρ and θ ∈ (0, 1] is arbitrarily taken, we obtain formula (14). �
Consider the Young differential inclusion:

(Y DI ) x(t) − x(s) ∈
∫ t

s
F(τ, x(τ ))dτ + (IS)

∫ t

s
G(τ, x(τ ))dwτ , x(0) = x0

for every 0 ≤ s ≤ t < T .
An α-Hölder function x : [0, T ] → Rd is called a solution to inclusion (Y DI ) if

x(0) = x0 and

x(t) − x(s) ∈
∫ t

s
F(τ, x(τ ))dτ + (IS)

∫ t

s
G(τ, x(τ ))dwτ

for every 0 ≤ s ≤ t < T .

Theorem 7 Under conditions (H1) − (H3) the Young differential inclusion (YDI)
admits solutions.

Proof Since F satisfies (H1) then there exist selections f : [0, T ] × Rd → Rd

of F which are of a Carathéodory type (i.e., measurable in (t, x) and continu-
ous in x). Moreover, for every (t, x) ∈ [0, T ] × Rd F(t, x) = clRd { f (t, x) :
f are Carathéodory selections of F} by [12]. For every continuous function x :
[0, T ] → Rd we have

| f (t, x(t)) |≤ ‖F(t, x(t))‖ ≤ L | x(t) | +b(t) ≤ L‖x‖∞ + b(t).
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It means that every f (·, x(·)) is 1/(1− α)-integrably bounded and therefore, f ◦ x ∈
SL1(F ◦ x). From this we deduce that the Aumann integral

∫ t
s F(u, x(u))du is a

nonempty set for every 0 ≤ s < t ≤ T .

Let C ∈ Conv(Rd×m) and let σC (p) := σ(C, p) := supy∈C < p, y >∈ R1 ∪
{+∞}. The function σC : Rd×m → R1 ∪ {+∞} is a support function of C . Let �

denote the unit sphere in Rd×m and let V denote a Lebesgue measure of a closed unit
ball B(0, 1) in Rd×m , i.e., V = πdm/2/	(1 + dm/2)with 	 being the Euler function.
Let pV be a normalized Lebesgue measure on B(0, 1), i.e., dpV = dp/V . Let

M =
{
μ : μ is a probability measure on B(0, 1) having

the C1−density dμ/dpV with respect to measure pV
}

.

Let ξμ := dμ/dpV and let∇ξμ denote the gradient of ξμ. By ω we denote a Lebesgue
measure on�. The function Stμ : Conv(Rd×m) → Rd×m called a generalized Steiner
center, and given by the formula

Stμ(C) = V−1
(∫

�

pσ(p,C)ξμ(p)dω(p) −
∫

B(0,1)
σ (p,C) � ξμ(p)dp

)
(15)

for every μ ∈ M, has the following properties.
For A, B,C ∈ Conv(Rd×m) and a, b ∈ R1 the following properties hold

Stμ(C) ∈ C,

Stμ(aA + bB) = aStμ(A) + bStμ(B),

| Stμ(A) − Stμ(B) |≤ Lμ · H(A, B), (16)

where Lμ = dmmaxp∈� ξμ(p) + maxp∈B(0,1) | �ξμ(p) | (see, [5], [9]).
Moreover, it was proved in [9] that every setC ∈ Conv(Rd×m) has a representation

C = clRd×m {Stμ(C)}μ∈M. (17)

Since G : [0, T ] × Rd → Conv(Rd×m) then we define the generalized Steiner
selections Stμ(G) : [0, T ] × Rd → Rd×m by formula

(t, x) → Stμ(G(t, x)).

It follows by (17) that for every (t, x) ∈ [0, T ] × Rd the set {Stμ(G(t, x))}μ∈M is
dense in G(t, x). Using (H3) together with inequality (16) we get

| Stμ(G(t, x)) − Stμ(G(s, y)) | ≤ Lμ · H(
G(t, x),G(s, y)

)

≤ LμM(| t − s |β + | x − y |γ ).
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It means that every generalized Steiner selection Stμ(G) is β-Hölder in t and
γ -Hölder in x i.e.,

Stμ(G) ∈ Cβ×γ ([0, T ] × Rd , Rd×m). (18)

Let �0
h G(t, x) = G(t + h, x) ÷ G(t, x), �i

hG(t, x) = G(t, x + hei ) ÷ G(t, x) for
i = 1, . . . , d.

Then h−1�0
hG(t, x) → DH0(G)(t, x), h−1�i

hG(t, x) → DHi (G)(t, x) for i =
1, . . . , d and h−1Stμ(�

j
hG(t, x)) → Stμ(DH j (G)(t, x)) for j = 0, 1, . . . , d, as

h → 0+, by continuity of Stμ. Since A ÷ B = C ⇐⇒ A = B + C then
Stμ(G(t + h, x)) = Stμ(�0

hG(t, x)) + Stμ(G(t, x)) and
Stμ(G(t, x + hei )) = Stμ(�i

hG(t, x)) + Stμ(G(t, x)) for i = 1, . . . , d.
Therefore,
h−1

(
Stμ(G(t + h, x)) − Stμ(G(t, x))

) = Stμ(h−1�i
hG(t, x)) and

h−1
(
Stμ(G(t, x + hei )) − Stμ(G(t, x))

) = Stμ(h−1�i
hG(t, x)) for i = 1, . . . , d

because of linearity of Stμ. Taking h → 0 we obtain
∂Stμ(G)

∂t (t, x) = Stμ(DH0(G)(t, x)) and ∂Stμ(G)

∂xi
(t, x) = Stμ(DHi (G)(t, x)),

for i = 1, . . . , d.

Therefore, Stμ(G)′(t, x) ∈ DH(G)(t, x) and taking inmind formula (7)wededuce
that every Stμ(G) ∈ IS(G).

Let f̃ be an arbitrary Carathéodory selection of F and Stμ(G) be any generalized
Steiner selection of G. It was proved above that Stμ(G) ∈ IS(G).

Consider the Young differential equation

x(t) = x0 +
∫ t

0
f̃ (u, x(u))du +

∫ t

0
Stμ(G)(u, x(u))dw(u).

Since f̃ and Stμ(G) satisfy all assumptions of Theorem 4.1 of [24] then this equation
admits a solution x̃ ∈ Cα([0, T ], Rd). But f̃ and Stμ(G) are appropriate selections of
F and G, respectively. Therefore,

∫ t
s f̃ (τ, x(τ ))dτ ∈ ∫ t

s F(τ, x(τ ))dτ and∫ t
s Stμ(G)(τ, x(τ ))dwτ ∈ (IS)

∫ t
s G(τ, x(τ ))dwτ .

From this we get

x̃(t) − x̃(s) ∈
∫ t

s
F(τ, x̃(τ ))dτ + (IS)

∫ t

s
G(τ, x̃(τ ))dwτ , x̃(0) = x0.

It means that x̃ is a solution of Young differential inclusion (Y DI ). �
Let Sol(x0, F,G, w) denote the set of all solutions of the inclusion (Y DI ).

First we will present conditions imposed on F,G : [0, T ] × Rd →
Conv(Rd)(resp.,Conv(Rd×m) assuring the closedness of the set Sol(x0, F,G, w)

in Cα([0, T ], Rd).
Assume the following condition
(H2′) F is locally δ-Hölder in x for some δ ∈ (0, 1).
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Theorem 8 Under conditions (H1) − (H3) and (H2′), the set Sol(x0, F,G, w) of
all solutions of the Young differential inclusion (YDI) is closed in Cα([0, T ], Rd).

Proof Suppose that (xk)∞k=1 ⊂ Sol(x0, F,G, w) is a sequence convergent to some
limit x in Cα([0, T ], Rd). We have to prove that x ∈ Sol(x0, F,G, w). Since xk are
solutions of (Y DI ) then xk(0) = x0 for every k. But ‖xk − x‖∞ → 0 and from this
we deduce x(0) = x0. Moreover, | x(s) − x(0) |≤ Mα(x) | s − 0 |α . Therefore,
| x(s) |≤| x0 | +Mα(x)T α := ε1(x). Since xk tends to x in Cα([0, T ], Rd) then
for every ε2(x) > 0 there exists N0 such that for every k > N0 and every s ∈ [0, T ]
| xk(s) − x(s) |< ε2(x). Therefore, | xk(s) |≤| x(s) | +ε2(x) ≤ ε2(x) + ε1(x) :=
ε(x). From this we deduce that there exists ε(x) depending only on Mα(x), α, T , x0
and such that x(s), xk(s) ∈ [−ε(x), ε(x)]d for every s ∈ [0, T ] and k > N0. Let us
take a set A(x) := [0, T ] × [−ε(x), ε(x)]d and consider set-valued functions F|A(x)

and G|A(x) with their domains restricted to the set A(x). Then F|A(x)(t, ·) is δ-Hölder
with a Hölder constant Lε(x) by (H2′). From the other side there exists Nε(x) > 0 such
that ‖DHi (G)(t, u)‖ ≤ Nε(x) for every (t, u) ∈ A(x) and each i = 0, 1, . . . , d by
(H3). Then, for every δ ∈ (0, 1),G|A(x) is δ-Hölder with a Hölder constant dependent
only on ε(x) and

‖G|A(x)‖δ ≤‖G(0, x0)‖+Nε(x)(T+T 1−δ)+dNε(x)
(
2ε(x)+(2ε(x))1−δ

)
<∞

by Proposition 1.
From the convergence of xk to x in Cα([0, T ], Rd) it follows Mα(xk − x) → 0.

From this | Mα(xk) − Mα(x) |→ 0 and therefore, Mα(xk) → Mα(x). Then there
exists a constant C > 0 such that supk Mα(xk) < C + Mα(x) < ∞.

If g ∈ IS(G) then

sup(t,u)∈A(x) | g′(t, u) |≤ sup(t,u)∈A(x)‖DH(G)(t, u)‖ ≤ Nε(x).

Similarly as in the proof of Proposition 1 we deduce that g|A(x) is δ-Hölder with a
Hölder constant Mδ(g|A(x)) ≤ Nε(x)

(
T 1−δ + d(2ε(x))1−δ

)
. Moreover,

| g(t, x(t)) − g(s, x(s)) |≤ Mδ(g|A(x))
( | t − s |δ + | x(t) − x(s) |δ)

≤ Nε(x)
(
T 1−δ + d(2ε(x))1−δ

)( | t − s |δ +Mα(x)δ | t − s |αδ
)
.

Taking σ = αδ and dividing both sides of the above inequality by | t − s |σ we get

Mσ (g ◦ x) ≤ Mδ(g|A(x))
(
T 1−α + Mα(x)δ)

≤ Nε(x)
(
T 1−δ + d(2ε(x))1−δ

)(
T 1−α + Mα(x)δ) < ∞. (19)

Therefore, g ◦ x is σ -Hölder. Similarly, g ◦ xk are σ -Hölder and

sup
k

Mσ (g ◦ xk) ≤ Mδ(g|A(x))
(
T 1−α + sup

k
Mα(xk)

δ
)

≤ Mδ(g|A(x))
(
T 1−α + (C + Mα(x))δ

)
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≤ Nε(x)
(
T 1−δ + d(2ε(x))1−δ

)(
T 1−α + (C + Mα(x))δ

)
< ∞.

(20)

From Theorem 4.1(1) in [14] we get

H

(∫ t

s
F(τ, xk(τ ))dτ,

∫ t

s
F(τ, x(τ ))dτ

)

≤
∫ t

s
H

(
F(τ, xk(τ )), F(τ, x(τ ))dτ

) ≤ Lε(x)‖xk − x‖δ∞T → 0

for every s, t ∈ [0, T ], s ≤ t, as k → ∞. We wish to show that x ∈ Sol(x0, F,G, w).

For this let us estimate

distRd

(
x(t) − x(s),

∫ t

s
F(τ, x(τ ))dτ + (IS)

∫ t

s
G(τ, x(τ ))dwτ

)

≤ | x(t) − x(s) − (xk(t) − xk(s)) |
+distRd

(
xk(t) − xk(s),

∫ t

s
F(τ, xk(τ ))dτ + (IS)

∫ t

s
G(τ, xk(τ ))dwτ

)

+H
( ∫ t

s
F(τ, xk(τ ))dτ,

∫ t

s
F(τ, x(τ ))dτ

)

+H

(
(IS)

∫ t

s
G(τ, xk(τ ))dwτ , (IS)

∫ t

s
G(τ, x(τ ))dwτ

)

= I + I I + I I I + I V .

Since xk ∈ Sol(x0, F,G, w) then I I = 0. I and I I I tend to 0 because of ‖xk −
x‖∞ → 0.We have to prove that I V → 0. For this we will estimate both semimetrics

H̄

(
(IS)

∫ t

s
G(τ, xk(τ ))dwτ , (IS)

∫ t

s
G(τ, x(τ ))dwτ

)

and

H̄

(
(IS)

∫ t

s
G(τ, x(τ ))dwτ , (IS)

∫ t

s
G(τ, xk(τ ))dwτ

)
.

Using Lemma 3, for every s, t ∈ [0, T ], s ≤ t, it holds

sup
g1∈IS(G)

distRd

(∫ t

s
g1(τ, xk(τ ))dwτ , (IS)

∫ t

s
G(τ, x(τ ))dwτ

)

= sup
g1∈IS(G)

inf
g2∈IS(G)

∣∣∣
∣(

∫ t

s
g1(τ, xk(τ ))dwτ −

∫ t

s
g2(τ, x(τ ))dwτ

∣∣∣
∣

≤ C(ρ) sup
g1∈IS(G)

inf
g2∈IS(G)

{
‖g1 ◦ xk − g2 ◦ x‖∞
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+
(
Mσ (g1 ◦ xk) + Mσ (g2 ◦ x)

)
θσ

}
θ−ρ

+ sup
g1∈IS(G)

inf
g2∈IS(G)

‖g1 ◦ xk − g2 ◦ x‖∞Mα(w)T α

= C(ρ)

{

sup
g1∈IS(G)

dist∞(g1 ◦ xk, IS(G) ◦ x)

+
(

sup
g1∈IS(G)

Mσ (g1 ◦ xk) + sup
g2∈IS(G)

Mσ (g2 ◦ x)

)
θσ

}

θ−ρ

+ sup
g1∈IS(G)

dist∞(g1 ◦ xk, IS(G) ◦ x)Mα(w)T α,

where IS(G) ◦ x := {g ◦ x : g ∈ IS(G)}.
Therefore,

H̄

(
(IS)

∫ t

s
G(τ, xk(τ ))dwτ , (IS)

∫ t

s
G(τ, x(τ ))dwτ

)

≤ C(ρ)H̄∞
(

(IS)(G) ◦ xk, (IS)(G) ◦ x

)
θ−ρ

+C(ρ)

(
sup

g1∈IS(G)

Mσ (g1 ◦ xk) + sup
g2∈IS(G)

Mσ (g2 ◦ x)

)
θσ θ−ρ

+Mα(w)T α H̄∞
(
(IS)(G) ◦ xk, (IS)(G) ◦ x

)

= I (a) + I I (a) + I I I (a).

We will prove that H̄∞
(
(IS)(G) ◦ xk, (IS)(G) ◦ x

) → 0 as k → ∞.
Really, since g1 ∈ IS(G) then g1|A(x) is δ-Hölder with a Hölder constant

Mδ(g1|A(x)) ≤ Nε(x)
(
T 1−δ + d(2ε(x))1−δ

)
. Then we get

H̄∞
(
(IS)(G) ◦ xk, (IS)(G) ◦ x

)

= sup
g1∈IS(G)

inf
g2∈IS(G)

‖(g1(·, xk(·)) − g2(·, x(·))‖∞

≤ sup
g1∈IS(G)

‖(g1(·, xk(·)) − g1(·, x(·))‖∞

≤ Nε(x)
(
T 1−δ + d(2ε(x))1−δ

)‖xk(·) − x(·)‖δ∞ → 0 as k → ∞.

From this we deduce that I (a) and I I I (a) tend to 0 as k → ∞. Since σ − ρ > 0 and
θ ∈ (0, 1) can be arbitrarily taken then I I (a) is arbitrarily small because of formulas
(19) and (20). Therefore,

H̄
(
(IS)

∫ t

s
G(u, xk(u))dw(u), (IS)

∫ t

s
G(u, x(u))dw(u)

) → 0.
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Similarly, we deduce that the reversed semimetric satisfies

H̄
(
(IS)

∫ t

s
G(u, x(u))dw(u), (IS)

∫ t

s
G(u, xk(u))dw(u)

) → 0.

It means that I V → 0. By this we obtain

distRd

(
x(t) − x(s),

∫ t

s
F(u, x(u))du + (IS)

∫ t

s
G(u, x(u))dw(u)

) = 0.

Therefore,

x(t) − x(s) ∈
∫ t

s
F(u, x(u))du + (IS)

∫ t

s
G(u, x(u))dw(u).

It was proved previously that x(0) = x0, so x belongs to Sol(x0, F,G, w). �
Nowwe discuss the continuous dependence of solutions with respect to the right hand
side of inclusion.

Consider Young differential inclusions:

(Y DIn) xn(t) − xn(s) ∈ (IS)
∫ t
s Gn(τ, xn(τ ))dwn(τ ), xn(0) = an for every

0 ≤ s ≤ t < T
and
(Y DI ) x(t) − x(s) ∈ (IS)

∫ t
s G(τ, xn(τ ))dw(τ), x(0) = a

for every 0 ≤ s ≤ t < T .

The following version of Proposition 4 from [20] will be used in the proof of next
result.

Proposition 9 ([20])Assume that f : [0, T ]×Rd → Rd×m is γ -Hölder, differentiable
and its derivative is γ -Hölder, w ∈ Cα([0, T ], Rm), α > 1/2, γ > 1/α − 1. Then the
solution to

x(t) = x0 +
∫ t

0
f (s, x(s))dw(s)

is unique. In addition the map w → x, called the Itô map, is locally Lipschitz con-
tinuous with respect to (a, f , w). More precisely, let x (resp. x̂) be the solution to
x(t) = a + ∫ t

0 f (s, x(s))dw(s) (resp. x̂(t) = â + ∫ t
0 f̂ (s, x̂(s))dŵ(s)). We assume

that ‖x‖∞ ≤ R, Mα(x) ≤ R, | a |≤ R, Mγ (∇ f ) ≤ R, ‖∇ f ‖∞ ≤ R, Mα(w) ≤ R
and the same holds true when (a, f , w, x) is replaced by (â, f̂ , ŵ, x̂). Then there
exists a constant C depending only on T and R such that

Mα(x − x̂) ≤ C
(
Mα(w − ŵ) + ‖( f − f̂ )|B(0,R)‖∞ + ‖(∇ f − ∇ f̂ )|B(0,R)‖∞+ | a − â | )

.
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Let Gn,G : [0, T ] × Rd → Rd×m be such that:
(H1′′) Gn and G are γ -Hölder for some γ > (1 − α)/α, α > 1/2 and satisfy

supn Mγ (Gn) ≤ K1 for some K1 > 0,
(H2′′) Gn and G have γ -Hölder and bounded Hukuhara derivatives and

supn Mγ (DH(Gn)) ≤ K2 for some K2 > 0,

Theorem 10 Let (H1′′) and (H2′′) hold. Moreover, assume

(i) Mα(wn − w) → 0 and | an − a |→ 0,
(ii) sup(t,v)∈[0,T ]×Rd H(Gn(t, v),G(t, v)) → 0,
(iii) sup(t,v)∈[0,T ]×Rd H(DH(Gn)(t, v), DH(G)(t, v)) → 0

as n → ∞.

Then every sequence of solutions (xn) of (Y DIn) satisfying

(Y DEn) xn(t) = an +
∫ t

0
Stμ(Gn)(u, xn(u))dwn(u),

is convergent in Cα([0, T ], Rd) norm to solution x of (Y DI ) satisfying

(Y DE) x(t) = a +
∫ t

0
Stμ(G)(u, x(u))dw(u).

Proof DH(G) is bounded by (H2′′). Then, similarly as in Corollary 6, there exist
K3 > 0 and N0 > 0 such that

sup
(t,v)∈[0,T ]×Rd

‖DH(Gn)(t, v)‖ ≤ K3

for n > N0 by assumption (i i i).
Therefore, (Gn) have uniformly bounded Hukuhara derivatives for n > N0. Simi-

larly as in formula (18) of the proof of Theorem 7we deduce that Stμ(Gn) and Stμ(G)

are γ -Hölder with Hölder constants Mγ (Stμ(Gn)) ≤ LμK1 and Stμ(Gn)
′(t, v) ∈

DH(Gn)(t, v), Stμ(G)′(t, v) ∈ DH(G)(t, v) with Mγ (Stμ(Gn)
′) ≤ LμK2 by

(H1′′) and (H2′′). Therefore, equations (Y DEn) and (Y DE) admit solutions xn and
x , which are solutions to (Y DIn) and (Y DI ), respectively, by Theorem 7.

It was proved in Proposition 1 of [20] that there exist constants Rn depending only
on T , α, γ, Mα(wn), Mγ (Stμ(Gn)), an and such that ‖xn‖∞ ≤ Rn andMα(xn) ≤ Rn .

Since supn Mγ (Stμ(Gn)) ≤ LμK1 and supn | an |< ∞ then there exists one constant
P1 = supn Rn < ∞ such that ‖xn‖∞ ≤ P1 and Mα(xn) ≤ P1 for every n. The
same holds for solution x of (Y DE), i.e., there exists a constant P2 depending only
on T , α, γ, Mα(w), Mγ (Stμ(G)), a and such that ‖x‖∞ ≤ P2 and Mα(x) ≤ P2.
Moreover, we have ‖Stμ(Gn)

′‖∞ ≤ K3 and supn Mγ (Stμ(Gn)
′) ≤ LμK2. Taking

R = max{P1, P2, K3, LμK2} all assumptions of Proposition 9 are satisfied and we
get

Mα(xn − x) ≤ C

(

Mα(wn − w) + ‖(Stμ(Gn) − Stμ(G))|B(0,R)‖∞
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+‖(Stμ(Gn)
′ − Stμ(G)′)|B(0,R)‖∞+ | an − a |

≤ C

(

Mα(wn − w) + Lμ sup
(t,v)∈[0,T ]×Rd

H(Gn(t, v),G(t, v))

)

+Lμ sup
(t,v)∈[0,T ]×Rd

H(DH(Gn)(t, v), DH(G)(t, v))+ | an − a |
)

.

Thus, by assumptions (i) − (i i i) we get Mα(xn − x) → 0 as n → ∞.
Since supt∈[0,T ] | xn(t) − x(t) |≤| an − a | +T αMα(xn − x) then we obtain

convergence of xn to x in Cα([0, T ], Rd). �
Remark 2 All the results are easily adapted to deal with the stochastic differential
inclusion

x(t) − x(s) ∈
∫ t

s
F(u, x(u))du + (IS)

∫ t

s
G(u, x(u))dBH (u), x(0) = x0.

where BH is a fractional Brownian motion. Last theorem needs additional property
that Hurst index of fBm satisfies inequality H > 1/2.

Let us conclude with applications to stochastic inclusions. Consider a 1-dimensional
fractional Brownianmotion BH = (BH (t))t∈[0,T ] ofHurst index H ∈ (1/2, 1), which
is a centered Gaussian process such that

E(BH (s)BH (t)) = 1/2(t2H + s2H− | t − s |2H )

for every s, t ∈ [0, T ]. Let (�,�, P) be the associated canonical probability space.
By the Garcia-Rodemich-Rumsey lemma (see Nualart [25], Lemma A.3.1), the paths
of BH are α-Hölder continuous for any α ∈ (0, H) and therefore, the integral
(IS)

∫ t
s G(u, x(u))dBH (u) can be treated as a Young integral.

Let us consider the following medical model. Let x : [0, T ] → R+ be a function
for which the value x(t) denotes the number of cancerous cells at time t ∈ [0, T ]. The
disease is diagnosed if x(t) ≥ a0 > 0 where a0 is a given reference level. In practice
we may assume that a0 is a level at which some therapy starts. One can also assume
that there is a maximum level of cancer cells a1 > a0 at which no further treatment
(dose of drugs) can help. So in the presence of active treatment x(t) ∈ [a0, a1]. Let
u : [0, T ] → [0, c] be a function for which u(t) represents the dose of the drug at
time t and let d : [0, c] → R+ be a given continuous function describing destroying
rate per tumor cell. In [27] the following controlled cancer growth model under the
influence of drugs was considered

dx(t) =
(

λ ln

(
μ

x(t)

)
− d(u(t))

)
· x(t)dt, x(0) = a0, (21)

where λ and μ are some positive parameters. In [18] the function d was taken in
particular as d(u) = k1u/(k2 + u) with some positive parameters k1, k2. Since
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therapy effects may be different in cases of different patients it seems reasonable to
generalize model (21) adding a stochastic perturbation governed by the fractional
Brownian motion BH with Hurst parameter H ∈ (0, 1), i.e., to consider the model

dx(t) =
(

λ ln

(
μ

x(t)

)
− d(u(t))

)
· x(t)dt + v(u(t))x(t)dBH

t , x(0) = a0,

or in its integral form

x(t) = a0 +
∫ t

0

(
λ ln

(
μ

x(τ )

)
− d(u(τ ))

)
· x(τ )dτ +

∫ t

0
v(u(τ ))x(τ )dBH

τ

(22)

instead of model (1). The term v(u(t)) can be interpreted as unforeseen (random)
reaction of the patient to treatment. It is assumed that v is a continuous function.

Let us define the following set-valued functions: F(x) := f (x) + F1(x) with
f (x) = λx ln(μ/x), F1(x) = −d([0, c])·x , andG(x) := v([0, c])·x for x ∈ [a0, a1].
Then the controlled model (22) can be rewritten in the framework of Young integral
inclusion as

x(t) − x(s) ∈
∫ t

s
( f + F1)(x(τ )dτ + (IS)

∫ t

s
G(x(τ ))dBH

τ , x(0) = a0.

(23)

Let us note that both f + F1 and G take on nonempty, compact and convex values
in R1. By standard calculations and Mean Value Theorem one can show that f is
Lipschitz continuous with a Lipschitz constant

K = λ(| ln(μ) | +max{| ln(a0) |, | ln(a1) |} + 1).

It is also easy to see that F1 is Lipschitz continuous with a Lipschitz constant
‖d([0, c])‖. Thus F is Lipschitz continuous too. It can be also verified that ‖F(x)‖ ≤
L | x |with L = λmax{| ln(μ/a0) |, | ln(μ/a1) |}+‖d([0, c])‖. Similarly,G is Lip-
schitz continuous with a bounded Hukuhara derivative DH(G)(x) = v([0, c]). Hence
F satisfies all conditions (H1), (H2) and (H2′) while G satisfies (H3). Therefore,
using Theorems 7 and 8 we deduce that inclusion (23) admits solutions and the set of
its solutions is closed in Cα([a0, a1], R1).

It is known, that classical Steiner point can be interpreted as a center of a mass of
a given set. Therefore, Theorem 10 applied to a system of equations

xn(t) = an +
∫ t

0
StGn(u(τ )) · xn(τ )dBH ,n

τ

and

x(t) = a +
∫ t

0
StG(u(τ )) · x(τ )dBH

τ
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allows us to deduce that a mean unforced reaction of a patient to treatment v(u(t))
is stable with respect to a convergent sequence of individual mean unforced reactions
vn(u(t)), initial reference levels an and a sequence of different fractional Brownian
motions BH ,n

τ .
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