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Abstract
A necessary and sufficient condition for the iterated function system { f (·, ω) | ω ∈ �}
with probability P to have exactly one invariant measure μ∗ with μ∗((0, 1)) = 1 is
given. The main novelty lies in the fact that we only require the transformations
f (·, ω) to be increasing homeomorphims, without any smoothness condition, nei-
ther we impose conditions on the cardinality of �. In particular, positive Lyapunov
exponents conditions are replaced with the existence of solutions to some functional
inequalities. The stability and strong law of large numbers of the considered system
are also proven.

Keywords Iterated function systems · Invariant measures · Stability · Strong law of
large numbers · Functional equations

Mathematics Subject Classification 37C40 · 39B12 · 47B80 · 39B22

1 Introduction

In this note we study random one-dimensional systems consisting of increasing home-
omorphisms defined on the interval [0, 1]. These systems can be looked upon from
various points of view. Here we are interested in the existence of a unique invariant
measure on (0, 1) (unique ergodicity). Observe that existence of such a measure may
not be obtained by the Krylov–Bogolubov theorem since we are looking for a measure
on a non-compact interval. On the other hand, every convex combination of the Dirac
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measures δ0 and δ1 is invariant, therefore the aforementioned theorem, applied to the
closed interval [0, 1], does not carry information about the problem we are interested
in.

Alsedá and Misiurewicz studied similar problem for some function systems con-
sisting of piecewise linear homeomorphisms (see [2]). More general iterated function
systems were considered by Gharaei and Homburg in [14]. Recently Malicet obtained
unique ergodicity as a consequence of the contraction principle for time homogeneous
random walks on the topological group of homeomorphisms defined on the circle and
interval (see [17]). In turn, Zdunik and the second author [24] defined a class of iter-
ated function systems (the so-called admissible iterated function systems) satisfying
unique ergodicity on (0, 1). All the results were formulated for the systems consisting
of finitely many transformations.

Here we give a necessary and sufficient condition for the existence and uniqueness
of an invariant measure for more general IFS’s with probabilities. Our condition is of
the same type as that given in [22]. In fact, this condition is expressed in the language
of functional equations. Also the proof of uniqueness is based upon some results on
existence of solutions of some functional equations.

The second aimof this paper is to studyproperties of the considered iterated function
system with probabilities such as properties of supports of its invariant measures,
asymptotic stability, and strong law of large numbers.

2 Preliminaries

Fix a probability space (�,A, P) and a function f : [0, 1] × � → [0, 1] such that:

(H1) for every x ∈ [0, 1] the function f (x, ·) : � → [0, 1] is A-measurable;
(H2) for every ω ∈ � the function fω : [0, 1] → [0, 1] defined by fω(x) = f (x, ω)

is an increasing homeomorphism of [0, 1] onto itself.
The familyF = { fω | ω ∈ �} forms an iterated function system (IFS for short) and

the pair (F , P), in which we are interested in this paper, forms an iterated function
system with probabilities (IFSP for short). Many authors have widely studied such
systems (see [8] and the references therein). It is worth mentioning here that we do
not make any assumptions on contractivity or at least local contractivity on average of
the system as authors usually do (see e.g. [3, 19, 20]). The contractivity, for instance,
does not hold for homeomorphisms. In our setting we do not assume smoothness of
homeomorphisms fω.

Note that f is a Carathéodory function (i.e., continuous with respect to the first
variable andA-measurable with respect to the second one), and hence it is measurable
with respect to σ -algebra B ⊗ A, where B denotes the σ -algebra of all Borel subsets
of [0, 1] (see [1, Lemma 4.51]). Therefore, f is also a random-valued function (rv-
function for short), which iterates were introduced independently in [5] and [10] for
different needs, as follows

f 1(x, ω) = f (x, ω1) and f n+1(x, ω) = f ( f n(x, ω), ωn+1)
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for all x ∈ [0, 1], n ∈ N and ω = (ω1, ω2, . . .) ∈ �∞; here �∞ is defined as the
one-sided shift space on �, which plays an essential role in topological and sym-
bolic dynamics (for more details see [23]). Observe that for every n ∈ N the iterate
f n : [0, 1]×�∞ → [0, 1] is again an rv-function, but now on the product probability
space (�∞,A∞, P∞). More precisely, the iterate f n is measurable with respect to
the product σ -algebra B⊗An , whereAn denotes the σ -algebra of all sets of the form

{(ω1, ω2, . . .) ∈ �∞ | (ω1, . . . , ωn) ∈ A}

with A from the product σ -algebra An .
Fix B ∈ B. Since f is an rv-function, it follows that f −1(B) ∈ B ⊗ A. Hence the

�-section f −1(B)ω of the set f −1(B), determined by ω ∈ �, is Borel and

f −1(B)ω = {x ∈ [0, 1] | f (x, ω) ∈ B} = {x ∈ [0, 1] | fω(x) ∈ B} = f −1
ω (B).

Moreover, if μ is a Borel probability measure, defined on [0, 1], then the function
"ω �→ μ( f −1

ω (B))" is A-measurable and
∫
�

μ( f −1
ω (B))d P(ω) = P ⊗ μ( f −1(B)).

This justify to the following definition.
ABorel probabilitymeasureμ∗, defined on [0, 1], is said to be an invariant measure

for the IFSP (F , P), if

μ∗(B) =
∫

�

μ∗
(

f −1
ω (B)

)
d P(ω) (2.1)

for every Borel set B ⊂ [0, 1]. Note that μ∗ is invariant measure for (F , P) if and
only if μ∗(B) = P ⊗ μ∗( f −1(B)) for every Borel set B ⊂ [0, 1].

Denote by B([0, 1], R) the set of all bounded functions from [0, 1] to R, and by
C([0, 1], R) its subset of all continuous functions. Put

I = {ϕ ∈ B([0, 1], R) | ϕ is increasing, ϕ(0) = 0 and ϕ(1) = 1},
D = I ∩ C([0, 1], R).

Following the idea from [22] we introduce the following conditions:

(a) for any x ∈ (0, 1) there exists a set �x− ∈ A with P(�x−) > 0 and such that
fω(x) < x for every ω ∈ �x− or for any x ∈ (0, 1) there exists a set �x+ ∈ A with
P(�x+) > 0 and such that x < fω(x) for every ω ∈ �x+;

(b) there exist ρ1, ρ2 ∈ I which are right-continuous, continuous at 1, such that
ρ1 ≤ ρ2 and

ρ1(x) ≤
∫

�

ρ1( f −1
ω (x))d P(ω) and

∫

�

ρ2( f −1
ω (x))d P(ω) ≤ ρ2(x)

for every x ∈ [0, 1].
Note that if the point x ∈ (0, 1) is a commonfixed point of all functions of the family

F , then the Dirac measure δx is an invariant measure for (F , P). In such a case, the
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search for invariant measures for (F , P) reduces to an independent search for invariant
measures for (F |[0,x], P) and (F |[x,1], P), where families F |[0,x] and F |[x,1] consist
of all functions from F restricted to [0, x] and [x, 1], respectively. Condition (A)
excludes this situation. In particular, the invariant measure we are looking for cannot
be the Dirac measure of any point of the interval (0, 1). Moreover, as we will see
later that condition (A) guarantees the atomlessness of the invariant measure we are
interested in, as well as its uniqueness. On the other hand, it is well known that to prove
the existence of an invariant measure on (0, 1), some conditions on the behaviour in
the neighbourhood of 0 and 1 have to be assumed. Condition (B) is parallel with the
existence of positive Lyapunov exponents of smooth functions.

From now on we fix an IFSP (F , P) with f : [0, 1] × � → [0, 1] satisfying (H1)
and (H2), and consider a function g : [0, 1] × � → [0, 1] given by

g(x, ω) = f −1
ω (x). (2.2)

It is clear that gω = f −1
ω for every ω ∈ �, and hence g satisfies (H2). To see that g

satisfies also (H1) it suffices to fix x, a ∈ [0, 1] and note that

{ω ∈ � | g(x, ω) ≤ a} = {ω ∈ � | (ω, a) ∈ f −1([x, 1])} ∈ A.

Therefore, g is a Carathéodory function as well as an rv-function.
In the proofs of our results it will be more convenient to use the function g instead

of f .

3 Key Observation

The following simple observation (cf. e.g. [12, 9.1.1]) is motivated by [18] and reads
as follows.

Proposition 3.1 (i) If μ∗ is an invariant measure for (F , P), then the function
ϕ∗ : [0, 1] → [0, 1] given by

ϕ∗(x) = μ∗([0, x]) (3.1)

is increasing, right-continuous, ϕ∗(1) = 1 and

ϕ∗(x) =
∫

�

ϕ∗(g(x, ω))d P(ω) for every x ∈ [0, 1]. (3.2)

(ii) If ϕ∗ : [0, 1] → [0, 1] is an increasing and right-continuous function satisfy-
ing (3.2) with ϕ∗(1) = 1, then formula (3.1) determines uniquely an invariant
measure for (F , P).

Proposition 3.1 says that we have a mutual, one-to-one, correspondence between
invariant measures for (F , P) and right-continuous and increasing functions satisfy-
ing (3.2) taking value 1 at 1. Using for subsets A ⊂ [0, 1] the notation χA to denote
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the characteristic function of A defined on [0, 1], we observe that the function χ[0,1]
corresponds to the Dirac measure δ0 and the function χ{1} corresponds to the Dirac
measure δ1.

The next observation shows that if ϕ∗ solves (3.2), then there is a fairly large family
of pair of functions ρ1, ρ2 satisfying (B).

Remark 3.2 Fix ϕ∗ ∈ I satisfying (3.2) and assume that it is right-continuous and
continuous at 1. Ifψ ∈ D is convex and φ ∈ D is concave, thenψ ◦ϕ∗, φ ◦ϕ∗ ∈ I are
right-continuous, continuous at 1, and, by the Jensen inequality (see e.g. [12, 10.2.7]),
we have

(ψ ◦ ϕ∗)(x) ≤
∫

�

(ψ ◦ ϕ∗)( f −1
ω (x))d P(ω) ≤

∫

�

(φ ◦ ϕ∗)( f −1
ω (x))d P(ω)

≤ (φ ◦ ϕ∗)(x)

for every x ∈ [0, 1].
Proposition 3.3 Assume that

{x ∈ (0, 1) | fω(x) = x for P-almost all ω ∈ �} = ∅. (3.3)

If μ is an invariant measure for (F , P), then μ({x}) = 0 for every x ∈ (0, 1).

Proof Let ϕ∗ : [0, 1] → [0, 1] be the function that corresponds to μ by Proposition
3.1. It follows from [21, Lemma 1] that ϕ∗ is continuous at every point of (0, 1), or
equivalently, that μ({x}) = 0 for every x ∈ (0, 1). �
Corollary 3.4 Assume that (F , P) satisfies (3.3). Then the existence of an invariant
measure for (F , P) different from all convex combinations of Dirac measures δ0 and
δ1 is equivalent to the existence of a continuous and increasing function ϕ∗ : [0, 1] →
[0, 1] satisfying (3.2) with ϕ∗(0) = 0 and ϕ∗(1) = 1.

Proof (⇒) Let μ be an invariant measure for (F , P) that is not a convex combination
of δ0 and δ1. By assertion (i) of Proposition 3.1 there exists a right-continuous and
increasing function ϕ : [0, 1] → [0, 1] satisfying (3.2) with ϕ(1) = 1 and such that
ϕ �= cχ[0,1] + (1− c)χ{1} for every c ∈ [0, 1]. Moreover, Proposition 3.3 implies that
ϕ is continuous at every point of (0, 1). Therefore, the function ϕ∗ : [0, 1] → [0, 1]
given by

ϕ∗(x) =

⎧
⎪⎨

⎪⎩

ϕ(x) − ϕ(0)
lim

y→1− ϕ(y) − ϕ(0) , if x ∈ [0, 1)

1, if x = 1

is continuous, increasing, satisfies (3.2), ϕ∗(0) = 0 and ϕ∗(1) = 1.
(⇐) It is enough to apply assertion (ii) of Proposition 3.1. �

Remark 3.5 If (F , P) satisfies (A), then (3.3) holds.
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In view of Remark 3.5 we see that Corollary 3.4 says that if there is an invariant
measure μ for (F , P) satisfying (A) and such that μ((0, 1)) > 0, then there is an
extreme invariant measure μ∗ for (F , P) such that μ∗((0, 1)) = 1; recall that an
extreme invariant measure for (F , P) is an invariant measure for (F , P) that cannot
be represented as a convex combination of other invariant measures for (F , P).

We now prove that under condition (A) the considered IFSP has at most three
extreme invariant measures.

Theorem 3.6 Assume that (F , P) satisfies (A). Then there exists at most one invariant
measure μ∗ for (F , P) with μ∗((0, 1)) = 1.

Proof According to Propositions 3.1 and 3.3, and Remark 3.5, it suffices to prove that
there exists at most one continuous function ϕ∗ : [0, 1] → [0, 1] satisfying (3.2) with
ϕ∗(0) = 0 and ϕ∗(1) = 1.

Suppose, on the contrary, that there are two different continuous functions
ϕ1, ϕ2 : [0, 1] → [0, 1] satisfying (3.2) such that ϕ1(0) = ϕ2(0) = 0 and ϕ1(1) =
ϕ2(1) = 1. Put ϕ = ϕ1 − ϕ2. Clearly, ϕ is a non-trivial continuous solution of equa-
tion (3.2). Put M = sup{|ϕ(x)| | x ∈ [0, 1]} and S = {x ∈ [0, 1] | |ϕ(x)| = M}.
Obviously, a = min S ∈ (0, 1) and b = max S ∈ (0, 1). By (A) and (2.2), at least one
of the following cases occurs: there exists a set �b− with P(�b−) > 0 such that

b < g(b, ω) for every ω ∈ �b− (3.4)

or there exists set �a+ with P(�a+) > 0 such that

g(a, ω) < a for every ω ∈ �a+. (3.5)

Note that for every x ∈ S we have

M = |ϕ(x)| ≤
∫

�

|ϕ(g(x, ω))|d P(ω) ≤ M,

and hence g(x, ω) ∈ S for P-almost all ω ∈ �. In consequence,

a ≤ g(a, ω) ≤ g(b, ω) ≤ b

for P-almost all ω ∈ �, which contradicts both (3.4) and (3.5). �
We end this section with an application of results obtained up to now.

Example 3.7 Fix a real number a > 1, anA-measurable function c : � → (0, a) with∫
�

c(ω)d P(ω) = 1 that is not equal to 1 almost everywhere, and consider the family
F consisting of functions of the form

fω(x) =
⎧
⎨

⎩

x
c(ω)

for x ∈ [0, c(ω)
a ],

(a−1)x+1−c(ω)
a−c(ω)

for x ∈ (
c(ω)

a , 1].
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Clearly, (A) holds and for every ω ∈ � we have

g(x, ω) =
⎧
⎨

⎩

c(ω)x for x ∈ [0, 1
a ],

c(ω)(1−x)+ax−1
a−1 for x ∈ ( 1a , 1].

Moreover, if x ∈ [0, 1
a ], then

∫

�

g(x, ω)d P(ω) = x
∫

�

c(ω)d P(ω) = x,

and if x ∈ ( 1a , 1], then

∫

�

g(x, ω)d P(ω) = 1 − x

a − 1

∫

�

c(ω)d P(ω) + ax − 1

a − 1
= x .

Thus we see that the function id[0,1] solves equation (3.2); in particular, (B) holds
with ρ1 = ρ2 = id[0,1]. Therefore, Proposition 3.1 implies that the one-dimensional
Lebesguemeasure on [0, 1] is an extreme invariant measure for the considered (F , P).
Moreover, by Theorem 3.6, there is no other extreme invariant measure μ for (F , P)

with μ((0, 1)) > 0.

4 The Case of Two ExtremeMeasures

Combining Proposition 3.1 with [4, Theorem 2.2] we obtain the following result.

Proposition 4.1 Assume that the family F consists of pairwise commuting functions.
If

∫

�

g(x, ω)d P(ω) �= x for every x ∈ (0, 1), (4.1)

then δ0 and δ1 are the only extreme invariant measures for (F , P).

The next result is a counterpart to Proposition 4.1.

Proposition 4.2 Assume that (F , P) satisfies (A). If there exists an increasing home-
omorphisms h : [0, 1] → [0, 1], commuting with every member of F , such that

h(x) �= x for every x ∈ (0, 1), (4.2)

then δ0 and δ1 are the only extreme invariant measures for (F , P).
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Proof Suppose that, on the contrary, there is an invariant measure μ∗ for (F , P)

with μ∗((0, 1)) = 1. Let ϕ∗ be the function that corresponds to μ∗, by Proposition
3.1. From Theorem 3.6, Remark 3.5 and Proposition 3.3 we conclude that ϕ∗ is the
unique increasing and continuous function satisfying equation (3.2) with ϕ∗(0) = 0
and ϕ∗(1) = 1. Since the function ϕ = ϕ∗ ◦ h is increasing, continuous ϕ(0) = 0,
ϕ(1) = 1, and for every x ∈ [0, 1] we have

ϕ(x) =
∫

�

ϕ∗(g(h(x), ω))d P(ω) =
∫

�

ϕ∗(h(g(x, ω)))d P(ω)

=
∫

�

ϕ(g(x, ω))d P(ω)

it follows that ϕ = ϕ∗, i.e. ϕ∗(h(x)) = ϕ∗(x) for every x ∈ [0, 1]. This jointly with
the assumptions imposed on h implies that ϕ∗ is constant on (0, 1), which contradicts
its continuity. �

Note that (4.1) implies (A), but (A) does not yield (4.1). Moreover, if the family F
consists of pairwise commuting function, then (4.1) yields the existence of at least
one member in the family F , which satisfies (4.2) and commutes with every member
of F .
The next example shows the possible application of Propositions 4.1 and 4.2.

Example 4.3 Fix an A-measurable function α : � → (0,∞) and consider the family
F that consists of functions of the form

fω(x) = xα(ω).

We first observe that the function h : [0, 1] → [0, 1] given by h(x) = x2 is an
increasing homeomorphism satisfying (4.2) that commutes with every member of F .
If there exists �0 ⊂ � with P(�0) > 0 such that α(ω) �= 1 for every ω ∈ �0, then
(F , P) satisfies (A), and hence δ0 and δ1 are the only extreme invariant measures for
(F , P), by Proposition 4.2. If there is no set �0 with the above property, then clearly
any probability measure on [0, 1] is invariant measure for (F , P).
Note that in specific situations of the considered family F , Proposition 4.1 can also
be applied. For example, assume that � = [0, 1], A = B, P is the one-dimensional
Lebesgue measure on [0, 1] and α(ω) = 1

ω+α
, where α ∈ (0,∞) is fixed. Then for

every x ∈ (0, 1) we have

∫ 1

0
g(x, ω)dω =

∫ 1

0
xω+αdω = xα x − 1

log x
,

and hence, xα x−1
log x ≥ √

x x−1
log x > x if α ∈ (0, 1

2 ], whereas xα x−1
log x ≤ x x−1

log x < x if

α ∈ [1,∞). Therefore, Proposition 4.1 can be applied for every α ∈ (0, 1
2 ] ∪ [1,∞);

however it cannot be applied if α ∈ ( 12 , 1) because (4.1) does not hold.
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5 The Case of Three ExtremeMeasures

We are now in a position to prove the main results of this paper. For this purpose define
the operator T : I → I by

Tϕ(x) =
∫

�

ϕ(g(x, ω))d P(ω)

for every x ∈ [0, 1].
Theorem 5.1 Assume that (F , P) satisfies (A) and (B). Then there exists exactly one
invariant measure μ∗ for (F , P) with μ∗((0, 1)) = 1.

Proof The uniqueness is settled by Theorem 3.6. It is only the existence that must be
proved.

Since

ρ1 ≤ Tnρ1 ≤ Tn+1ρ1 ≤ Tn+1ρ2 ≤ Tnρ2 ≤ ρ2 for every n ∈ N,

the sequence (Tnρ1)n∈N pointwise converges and its limit ϕ is an increasing function,
ρ1 ≤ ϕ ≤ ρ2 and, by the Monotone Convergence Theorem,

ϕ(x) =
∫

�

ϕ(g(x, ω))d P(ω) for every x ∈ [0, 1].

Consequently, the function ϕ∗ : [0, 1] → [0, 1] defined by

ϕ∗(x) = lim
y→x+ ϕ(y) for every x ∈ [0, 1), ϕ∗(1) = 1,

is increasing, right-continuous, satisfies (3.2), and ρ1 ≤ ϕ∗ ≤ ρ2. In particular, ϕ∗ is
continuous at 1. By Proposition 3.1 formula (3.1) determines an invariant measure for
(F , P), which vanishes on {0, 1}. �

It turns out that condition (B) is not only sufficient, but also necessary for the IFS
(F , P) satisfying (A) to have the third extreme measure. More precisely, we have the
following consequence of Theorem 5.1.

Corollary 5.2 Assume that (F , P) satisfies (A). Then there exists an invariant measure
μ∗ for (F , P) with μ∗((0, 1)) = 1 if and only if (B) holds.

Proof (⇐) This implication follows directly from Theorem 5.1.
(⇒)Suppose that there exists an invariantmeasureμ∗ for (F , P)withμ∗((0, 1)) =

1. Let ϕ∗ be the function that corresponds to μ∗ by Proposition 3.1. From Proposition
3.3, which we may apply by Remark 3.5, we see that ϕ∗ is continuous on (0, 1) and
sinceμ∗({0}) = μ∗({1}) = 0 we conclude that ϕ∗ is continuous. Hence ϕ∗ ∈ D. Now,
it is enough to apply Remark 3.2. �
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Returning to the family F from Example 4.3, note that it does not satisfy (B) if (A)
holds, which is an immediate consequence of Corollary 5.2 or Theorem 5.1. However,
if (A) does not hold, then (B) is satisfied with any right-continuous and continuous at
1 functions ρ1, ρ2 ∈ I.

6 Supports of Invariant Measures

Given a family H = {hω | ω ∈ �} of increasing homeomorphisms of an interval
I ⊂ R onto itself, we say that an interval J ⊂ I isH-invariant if hω(J ) ⊂ J happens
P-a.s., and we say that it is H-expansive if J ⊂ hω(J ) happens P-a.s.

Put

J1 = {[a, b] ⊂ (0, 1) | [a, b] is a minimal in the sense of inclusion F- expansive

interval
}
,

J2 =
{
[a, b] � [0, 1] | [a, b] is a maximal in the sense of inclusion F- expansive

interval disjoint from
⋃

J1 with a = 0 or b = 1
}
,

J = J1 ∪ J2.

Note that (3.3) implies that the family J1 consists of pairwise disjoint non-
degenerate intervals, whereas (A) yields J1 = ∅.
Theorem 6.1 Assume that (F , P) satisfies (3.3). If μ is an invariant measure for
(F , P), then suppμ ∩ (a, b) = ∅ for every [a, b] ∈ J .

Proof Let μ be an invariant measure for (F , P). If μ is a convex combination of δ0
and δ1, then there is noting to prove. Therefore, we assume that μ((0, 1)) > 0. Put
μ∗ = 1

μ((0,1))μ and let ϕ∗ be the function that corresponds to μ∗ by Proposition 3.1.
Note that ϕ∗ is continuous by Proposition 3.3.

Let ψ : R → (0, 1) be an increasing homeomorphism. For every ω ∈ � we put
hω = ψ−1 ◦ gω ◦ ψ and define a function h : R × � → R putting h(x, ω) = hω(x).
It is clear that for every x ∈ R the function h(x, ·) : � → R is A-measurable and for
every ω ∈ � the function hω is an increasing homeomorphism of R onto itself. By
(3.3) we have

{x ∈ R | h(x, ω) = x for P-almost all ω ∈ �} = ∅.

Moreover, ϕ∗ satisfies (3.2) if and only if ϕ = ϕ∗ ◦ ψ satisfies

ϕ(x) =
∫

�

ϕ(h(x, ω))d P(ω) for every x ∈ R.

Fix [a, b] ∈ J1. Then [ψ−1(a), ψ−1(b)] is minimal {h−1
ω | ω ∈ �}-expansive.

Applying [16, Theorem 2] we obtain ϕ(ψ−1(a)) = ϕ(ψ−1(b)), and hence ϕ∗(a) =
ϕ∗(b). In consequence, suppμ = suppμ∗ ⊂ [0, a] ∪ [b, 1].
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Let [0, b] ∈ J2. Then (−∞, ψ−1(b)] is maximal {h−1
ω | ω ∈ �}-expansive disjoint

from any {h−1
ω | ω ∈ �}-expansive compact interval I ⊂ R. Applying [16, Remark 2]

we conclude that ϕ is constant on (−∞, ϕ(ψ−1(b))], i.e., ϕ∗ is constant on (0, b]. In
consequence, suppμ = suppμ∗ ⊂ {0} ∪ [b, 1].

If [a, 1] ∈ J2, then arguing as above we come to suppμ ⊂ [0, a] ∪ {1}. �
The next result gives additional information about supports of invariant measures

for (F , P) satisfying (A).

Theorem 6.2 Assume that (F , P) satisfies (A). If μ is an invariant measure for (F , P),
then suppμ ∩ {0, 1} �= ∅.

Proof Without loss of generality we can assume that μ((0, 1)) = 1. Let ϕ be corre-
spond to μ by Proposition 3.1.

Put

a = sup{x ∈ [0, 1] | ϕ(x) = 0} and b = inf{x ∈ [0, 1] | ϕ(x) = 1}.

Proposition 3.3 jointly with Remark 3.5 imply ϕ(a) = 0 and ϕ(b) = 1. In particular,
a < b. Since

0 = ϕ(a) =
∫

�

ϕ(g(a, ω))d P(ω) and 1 = ϕ(b) =
∫

�

ϕ(g(b, ω))d P(ω),

it follows that ϕ(g(a, ω)) = 0 and ϕ(g(b, ω)) = 1 for P-almost all ω ∈ �. Hence
g(a, ω) ≤ a < b ≤ g(b, ω) for P-almost all ω ∈ �, i.e.

a ≤ fω(a) < fω(b) ≤ b for P − almost all ω ∈ �. (6.1)

Suppose that suppμ ∩ {0, 1} = ∅. Then we would have 0 < a < b < 1, which
jointly with (6.1) contradicts (A). �
Remark 6.3 Let μ be an invariant measure for (F , P), x ∈ (0, 1) and n ∈ N.
Then {ω ∈ �∞ | f n(x, ω) ∈ (inf suppμ, sup suppμ)} ⊂ {ω ∈ �∞ | f n+1(x, ω) ∈
(inf suppμ, sup suppμ)} holds P∞-a.s.

Proof Put a = inf suppμ, b = sup suppμ. Clearly, the interval [a, b] is F-invariant.
Therefore, ifω = (ω1, ω2, . . .) ∈ �∞ anda < f n(x, ω) < b, thena ≤ f (a, ωn+1) <

f ( f n(x, ω), ωn+1) = f n+1(x, ω) = f ( f n(x, ω), ωn+1) < f (b, ωn+1) ≤ b for P-
almost all ωn+1 ∈ �. �

7 Stability

Using some martingale techniques developed in [13] (see also [8]), we prove the
stability of (F , P). Before formulating our result, let us denote by P the Markov–
Feller operator that corresponds to (F , P), i.e.

Pμ(B) =
∫

[0,1]

(∫

�

χB( f (x, ω))d P(ω)

)

dμ(x) (7.1)
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for all μ ∈ M1 and B ∈ B; here M1 denotes the family of all probability Borel
measures on [0, 1].
Theorem 7.1 Assume that (F , P) satisfies (A) and (B). If μ∗ is the unique invariant
measure for (F , P) with μ∗((0, 1)) = 1, then for every x ∈ (0, 1) we have

lim
n→∞

∫

�∞
ψ( f n(x, ω))d P∞(ω) =

∫

[0,1]
ψ(y)dμ∗(y)

for any ψ ∈ C([0, 1], R).

(7.2)

Proof Following [15], for every n ∈ N, we consider the operator σn : �∞ → �∞
given by

σn(ω1, ω2, . . .) = (ωn, . . . , ω1, ωn+1, . . .).

Next, for all ω ∈ �∞ and x ∈ (0, 1) we define a sequence ( fn(x, ω))n∈N by setting

fn(x, ω) = f n(x, σn(ω))

and for any ψ ∈ C([0, 1], R) we define a sequence (ξ
ψ
n )n∈N of random variables

putting

ξψ
n (ω) =

∫

[0,1]
ψ( fn(y, ω))dμ∗(y) for every ω ∈ �∞. (7.3)

Sinceμ∗ is an invariantmeasure, we easily check that (ξψ
n )n∈N is a boundedmartingale

with respect to the natural filtration. From the Martingale Convergence Theorem (see
[11, SectionXI.14]) it follows that (ξψ

n )n∈N is convergent P∞-a.s. This jointlywith the
separability ofC([0, 1], R) implies that there exists a set�0 ⊂ �∞ with P∞(�0) = 1
such that (ξψ

n (ω))n∈N is convergent for any ψ ∈ C([0, 1], R) and ω ∈ �0. Therefore,
by the Riesz Representation Theorem, there exists a function μ : �0 → M1 such
that

lim
n→∞ ξψ

n (ω) =
∫

[0,1]
ψ(y)dμ(ω)(y) for every ψ ∈ C([0, 1], R). (7.4)

Arguing as in the proof of [8, Theorem 2] we can easily show that there exist a set
�0

0 ⊂ �0 and a function s : �0
0 → [0, 1] such that P∞(�0

0) = 1 and

μ(ω) = δs(ω) for every ω ∈ �0
0. (7.5)

Moreover,

μ∗ =
∫

�0
0

δs(ω)d P∞(ω). (7.6)
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By Theorem 6.2, we have suppμ∗ ∩{0, 1} �= ∅. Assume that 0 ∈ suppμ∗ (the case
where 1 ∈ suppμ∗ can be considered in the same way) and set γ = sup suppμ∗.

We begin proving (7.2) from the case where x ∈ (0, γ ).
Fix x ∈ (0, γ ). We first want to show that

lim
n→∞ fn(x, ω) = s(ω) for every ω ∈ �0

0. (7.7)

For this purpose we fix ω ∈ �0
0, ε > 0, and let ψω ∈ C([0, 1], R) be such that

0 ≤ ψω ≤ 1, ψω(s(ω)) = 1 and ψω(y) = 0 if |y − s(ω)| > ε. Then making use of
(7.3), (7.4) and (7.5) we obtain

lim
n→∞

∫

[0,1]
ψω( fn(y, ω))dμ∗(y) =

∫

[0,1]
ψω(y)dδs(ω)(y) = ψω(s(ω)) = 1.

This jointly with the fact that μ∗((0, x)) > 0 and μ∗((x, γ )) > 0, and the definition
of ψω implies that there exists n0 ∈ N such that for any n ≥ n0 there are yn ∈ (0, x)

and zn ∈ (x, 1) with | fn(yn, ω) − s(ω)| ≤ ε and | fn(zn, ω) − s(ω)| ≤ ε. Since

fn(yn, ω) < fn(x, ω) < fn(zn, ω) for every n ≥ n0,

we conclude that | fn(x, ω) − s(ω)| < ε, which means that (7.7) holds.
According to the Alexandrov Theorem (see [7, Theorem 2.1]), to prove (7.2) it is

enough to show that for any a ∈ (0, 1) we have

lim
n→∞ P∞({ω ∈ �∞ | f n(x, ω) < a} = μ∗((0, a)).

To verify this condition we fix a ∈ (0, 1) and note that

P∞({ω ∈ �∞ | f n(x, ω) < a}) = P∞({ω ∈ �∞ | f n(x, σn(ω)) < a})
= P∞({ω ∈ �∞ | fn(x, ω) < a})

for every n ∈ N. Then, applying (7.7) and (7.6), we get

lim
n→∞ P∞({ω ∈ �∞ | f n(x, ω) < a}) = P∞({ω ∈ �0

0 | s(ω) < a})

=
∫

{ω∈�0
0 | s(ω)<a}

δs(ω)((0, 1))d P∞(ω)

=
∫

�0
0

δs(ω)((0, a))d P∞(ω) = μ∗((0, a)),

which completes the proof in case where x ∈ (0, γ ).
Now, we are going to show that condition (7.2) also holds for any x ∈ [γ, 1).
Fix x ∈ [γ, 1) and observe that to complete the proof, it suffices to show that

lim
m→∞ P∞({ω ∈ �∞ | f m(x, ω) ∈ (0, γ )} = 1; (7.8)
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indeed, having this, we can choose m ∈ N such that f m(x, ω) ∈ (0, γ ) happens
P∞-a.s., and then, keeping in mind that f n+m = f n ◦ f m for every n ∈ N, we are
able to apply (7.2), which is valid by the first part of the proof.

To prove (7.8) we fix ε > 0. Observe first that, by Remark 6.3, for every n ∈ N we
have

P∞({ω ∈ �∞ | f n+1(x, ω)∈(0, γ )}≥ P∞({ω ∈ �∞ | f n(x, ω)∈(0, γ )}.
(7.9)

Further, by the Krylov–Bogolubov Theorem (see [9, Theorem 7.1]), the sequence

(
1

n

n−1∑

m=0

Pmδx

)

n∈N

converges weakly to an invariant measure for (F , P). Since μ∗ is the unique invariant
measure for (F , P) with μ∗((0, 1)) = 1, it follows that the Alexandrov Theorem
implies the existence of m ∈ N such that

Pmδx ((0, γ )) > μ∗((0, γ )) − ε = 1 − ε,

due to the fact that μ∗ is atomless (see Proposition 3.3 and Remark 3.5). Therefore,

P∞({ω ∈ �∞ | f m(x, ω) ∈ (0, γ )} = Pmδx ((0, γ )) > 1 − ε,

which jointly with (7.9) yields (7.8). �

8 Strong Law of Large Numbers

From the uniqueness of an invariant measure and Breiman’s law of large numbers we
may easily derive the strong law of large numbers.

Theorem 8.1 Assume that (F , P) satisfies (A) and (B). If μ∗ is the unique invariant
measure for (F , P) with μ∗((0, 1)) = 1, then for all x ∈ (0, 1) and P∞-almost all
ω ∈ �∞ we have

lim
n→∞

1

n

n−1∑

k=0

ψ( f k(x, ω)) =
∫

[0,1]
ψ(x)dμ∗(x) for any ψ ∈ C([0, 1], R).

Proof Fix x ∈ (0, 1). From Breiman’s law of large numbers (see [6, Corollary 3.4]) it
follows that for P∞-almost all ω ∈ �∞ the sequence

(
1

n

n−1∑

m=0

δ f m (x,ω)

)

n∈N
(8.1)



Invariant Measures for Uncountable Random Interval… Page 15 of 16 124

converges weakly to an invariant measure for (F , P). To complete the proof we have
to show that this invariant measure is equal to μ∗. This, however, easily follows from
(7.8) (or its counterpart limm→∞ P∞({ω ∈ �∞ | f m(x, ω) ∈ (inf suppμ∗, 1)} = 1)
and the Birkhoff Ergodic Theorem applied to the dynamical system corresponding to
the considered Markov process on (�,A, P). In fact, since

lim
m→∞ P∞({ω ∈ �∞ | f m(x, ω) ∈ (β, γ )} = 1,

where β = inf suppμ∗ and γ = sup suppμ∗, with no loss of generality we may (and
do) assume that x ∈ (β, γ ); note that, by Theorem 6.2, β = 0 or γ = 1. Choose
x1, x2 ∈ (β, γ ) such that x1 < x < x2. Due to the Birkhoff Ergodic Theorem for all
i ∈ {1, 2}, c ∈ (β, γ ) and P∞-almost all ω ∈ �∞ we have

lim
n→∞

1

n

n−1∑

m=0

χ(0,c)( f m(xi , ω)) = μ∗((0, c)) ∈ (0, 1) (8.2)

and

lim
n→∞

1

n

n−1∑

m=0

χ(c,1)( f m(xi , ω)) = μ∗((c, 1)) = 1 − μ∗((0, c)), (8.3)

since μ∗ is atomless. Furthermore, (H2) yields

1

n

n−1∑

m=0

f m(x1, ω) <
1

n

n−1∑

m=0

f m(x, ω) <
1

n

n−1∑

m=0

f m(x2, ω),

which jointly with (8.2) and (8.3) implies that the weak limit of the sequence (8.1) is
equal to μ∗. �
Acknowledgements The first author was supported by the University of Silesia Mathematics Department
(Iterative Functional Equations and Real Analysis program). The research of the second author was sup-
ported by the Polish NCN Grant 2021/43/B/ST1/01042.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


124 Page 16 of 16 J. Morawiec, T. Szarek

References

1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd ed. Springer, Berlin (2006). A
Hitchhiker’s Guide

2. Alsedá, L., Misiurewicz, M.: Random interval homeomorphisms. Publ. Math. 58, 15–36 (2014)
3. Barnsley, M.F., Demko, S.G., Elton, J.H., Geronimo, J.S.: Invariant measures for Markov processes

arising from iterated function systems with place-dependent probabilities. Ann. Inst. H. Poincaré
Probab. Stat. 24(3), 367–394 (1988)

4. Baron, K., Jarczyk, W.: Random-valued functions and iterative functional equations. Aequationes
Math. 67(1–2), 140–153 (2004)

5. Baron, K., Kuczma, M.: Iteration of random-valued functions on the unit interval. Colloq. Math. 37(2),
263–269 (1977)

6. Benoist, Y., Quint, J.F.: Random Walks on Reductive Groups. Springer, Berlin (2016)
7. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Prob-

ability and Statistics, 2nd ed. Wiley, New York (1999). A Wiley-Interscience Publication
8. Czudek, K., Szarek, T.: Ergodicity and central limit theorem for random interval homeomorphisms.

Isr. J. Math. 239, 75–98 (2020)
9. Da Prato, G.: An Introduction to Infinite-dimensional Analysis. Universitext. Springer, Berlin (2006).

Revised and extended from the 2001 original by Da Prato
10. Diamond, P.: A stochastic functional equation. Aequationes Math. 15(2–3), 225–233 (1977)
11. Doob, J.L.: Measure Theory. Graduate Texts in Mathematics, Vol. 143. Springer, New York (1994)
12. Dudley, R.M.: Real Analysis and Probability, volume 74 of Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, Cambridge (2002). Revised reprint of the 1989 original
13. Furstenberg, H.: Boundary Theory and Stochastic Processes on Homogenous Spaces. In: Proceedings

of Symposia in Pure Mathematics, vol. 26, pp. 193–229. American Mathematical Society, Providence
(1973)

14. Gharaei, M., Homburg, A.J.: Random interval diffeomorphisms. Discrete Continu. Dyn. Syst. 10,
241–272 (2017)

15. Kapica, R.: Sequences of iterates of random-valued vector functions and continuous solutions of a
linear functional equation of infinite order. Bull. Pol. Acad. Sci. Math. 50(4), 447–455 (2002)

16. Kochanek, T., Morawiec, J.: Probability distribution solutions of a general linear equation of infinite
order. Ann. Polon. Math. 95(2), 103–114 (2009)

17. Malicet, D.: Random walks on homeo (s1). Comm. Math. Phys. 356(3), 1083–1116 (2017)
18. Matkowski, J.: Remark on BV-solutions of a functional equation connected with invariant measures.

Aequationes Math. 29(2–3), 210–213 (1985)
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