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Abstract
To investigate the influence of humanbehavior on the spread ofCOVID-19,wepropose
a reaction–diffusion model that incorporates contact rate functions related to human
behavior. The basic reproduction numberR0 is derived and a threshold-type result on
its global dynamics in terms of R0 is established. More precisely, we show that the
disease-free equilibrium is globally asymptotically stable ifR0 ≤ 1; while there exists
a positive stationary solution and the disease is uniformly persistent ifR0 > 1. By the
numerical simulations of the analytic results, we find that human behavior changes
may lower infection levels and reduce the number of exposed and infected humans.

Keywords Reaction–diffusion model · COVID-19 · Human behavior change · Basic
reproduction number

Mathematics Subject Classification 35K57 · 35B40 · 37N25 · 92D30

1 Introduction

From the Black Plague in Europe in the Middle Ages to COVID-19 outbreak in
2019, all kinds of infectious diseases have been one of the important factors threat-
ening human health and life, and the problem of infectious diseases has been widely
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concerned by every country in the world. In addition to the treatment of infectious dis-
eases, the prevention of diseases is also of great significance in the process of dealing
with infectious diseases. Mathematical modeling for infectious diseases can provide
useful insights into disease dynamics that could guide national health authorities for
designing effective prevention and control measures against epidemics [1]. Therefore,
according to the epidemiological characteristics of the transmission of COVID-19,
establishing a mathematical model in line with the law of transmission of COVID-19
and further determining its transmission law have an important guiding role in the
formulation of prevention and control measures.

Over the past few decades, the mathematical theory of epidemiological models
has gradually been perfected. In 1927, Kermack and McKendrick [2] established the
SIR (susceptible-infected-recovered) compartmentalmodelwhen they investigated the
epidemic law of the Black Plague. Since then, various extensions of this mathematical
model have been proposed that include more detailed information, such as spatial het-
erogeneity, seasonality, age-structures, etc., and significant progress has been made in
almost all of these aspects. Most of these mathematical epidemic models assume the
spread of disease by random contact between individuals, which is usually formulated
by the law of group action [3, 4], so behavioral effects are excluded. However, in
addition to the disease itself, the mechanisms of disease transmission possibly involve
social, economic and psychological factors. In particular, human behavior can have
a significant impact on disease transmission [5]. For example, individuals with the
awareness of the risk of infection tend to change their behavior, such as paying more
attention to personal hygiene, reducing unnecessary going-out, activelywearingmasks
and receiving vaccinations. Meanwhile, the rapid development of information tech-
nology makes it possible for humans to get the latest outbreak situation from various
media channels in a timely manner.

Thus, human behavior canmake a significant contribution to the spread of a disease.
Following the pioneering work of Capasso and Serio [6] in extending the Kermack-
McKendric model, mathematical epidemiological modeling of human behavior has
increased (see [7]). For example, Liu et al. [8] analyzed the influence of psychological
factors on the transmission of multiple infectious diseases. Cui et al. [9] proposed a
simple SIS model that included media effects. In addition, Collinson and Heffernan
[10] also found that the diseases with large-scale epidemics were strongly influenced
by the function of media. Funk et al. [11] divided the epidemiological model into two
categories: belief-based and prevalence-based, according to human behavior changes.
These examples suggest that human behavior plays an important role in complex
epidemic patterns of infectious diseases [12].

The goal of this paper is to improve our understanding of the effect of human behav-
ior on COVID-19. Particularly, we incorporate human behavior into the mathematical
modeling of COVID-19. This disease is an acute respiratory infectious disease caused
by novel coronavirus infection and it is characterized by fever, dry cough, breath-
ing problems, and even death in severe cases [13]. COVID-19 was found in Wuhan,
China in late 2019 for the first time and then traces of this virus were found in var-
ious regions and countries. In a short time, COVID-19 caused large-scale infection
and death all over the world. Today, COVID-19 is still raging around the world, with
a large amount of reported morbidity and mortality in various countries, exerting a
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huge impact on the economic and social life of countries around the world. Therefore,
numerous scholars have published studies on the mathematical modeling and analysis
of COVID-19. For example, Wu et al. [14] proposed a SEIR model and predicted the
global spread based on the data of the Wuhan epidemic in China. Yang [15] improved
the algorithm based on the SEIR model and predicted the epidemic trend of the dis-
ease with the method of artificial intelligence, indicating that the implementation of
control measures would greatly reduce the chance of transmission. The assumption
of the above studies is that the investigated humans are fixed. Nowadays, with the
development of transportation, a disease can spread to a remote place in a short time.
The COVID-19 outbreak is an example of exactly how far and how fast a disease
can now spread. Therefore, it is necessary to consider the spatiotemporal transmis-
sion of COVID-19. For example, Omana [16] established the SEIR model based on
the reaction–diffusion equation. Mammeri [17] simulated the spread of COVID-19 in
France by considering a reaction–diffusion model of the average daily movements of
susceptible, exposed and asymptomatic humans. Recently, there are also many works
related to reaction–diffusion equations for COVID-19. For example, Zheng et al. [18]
proposed a diffusion SEIAR model with Beddington-DeAngelis type incidence to
characterize the spread of COVID-19 with spatial transmission. Kammegne et al.
[19] used the bias of reaction–diffusion equations to study the susceptible, exposed,
infected, recovered, and vaccinated population model of the COVID-19 pandemic. Li
et al. [20] developed a reactive-diffusion epidemic model on humanmobility networks
to characterize the spatio-temporal propagation of COVID-19.

However, the above studies did not specifically consider the influence of human
behavior changes on the COVID-19. Motivated by Wang’s study [21] of the impact
of human behavior changes on cholera, we consider contact rate functions related
to human behavior changes of exposed and infected humans respectively. Then, we
analyze the disease dynamics to prove that the lower contact rate due to human behav-
ior changes leads to the reduction of epidemic scale. In this paper, we propose a
SEIR model with a monotonic contact function β(t, x) to reflect the impact of human
behavior factors in the COVID-19, and then expect that this model can provide a new
cognition of the COVID-19.

The remainder of this paper is organized as follows. We introduce a PDE model
that incorporates human behavior, and then study the well-posedness of the problem in
Sect. 2. Section3 is divided into two parts, the first part derives the basic reproduction
number R0 and gives its expression, as well as a threshold-type result on the global
dynamics in terms ofR0 is established in the other part. Section4 conducts numerical
simulation by taking appropriate parameters to explore the effect of human behavior
on disease dynamics. Finally, this paper ends with a brief discussion.

2 TheModel

We know that COVID-19 has an incubation period, a SEIR model can be established
to describe the transmission process of the epidemic. Besides, the humans infected
with COVID-19 are generally divided into asymptomatic humans and symptomatic
humans. By [22–24], the novel coronavirus is believed to be infectious during incu-
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Fig. 1 Flow chart of disease infection

bation period. In the article [17, 25], the COVID-19 models are proposed with the
exposed population, and the exposed humans are assumed to be infectious. Then, we
can assume that the exposed humans are someone in the incubation period. There-
fore, the exposed humans are infectious and asymptomatic humans are classified into
exposed population. Moreover, we can assume that the exposed individuals and the
infected individuals play the similar role in the spread of COVID-19. Then, we extend
the PDEmodel in [16] by explicitly including contact rate functions related to exposed
and infected humans and taking into account human behavior changes. Here, when
people realize the disease outbreak, many people may reduce unnecessary going-out,
actively wear masks or other ways to lower the contact rate. These human behavior
changes can reduce the number of infected individuals partly (see [5, 21]).

Based on the discussion above,we consider the following diagramFig. 1 to illustrate
the relationship between various groups of the population:

The model can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= DS�S + � − β1(E, x)SE − β2(I , x)SI − μS,

∂E

∂t
= DE�E + β1(E, x)SE + β2(I , x)SI − (μ + δ)E,

∂ I

∂t
= DI�I + δE − (μ + d + γ )I ,

∂R

∂t
= DR�R + γ I − μR,

(2.1)

for x ∈ � ⊂ R and t > 0, with the initial condition:

S0 = S(x, 0) ≥ 0, E0 = E(x, 0) ≥ 0, I0 = I (x, 0) ≥ 0,

R0 = R(x, 0) ≥ 0, x ∈ �, (2.2)

and subject to the homogeneous Neumann boundary condition:

∂S

∂nnn
= ∂E

∂nnn
= ∂ I

∂nnn
= ∂R

∂nnn
= 0, (x, t) ∈ ∂� × (0,∞). (2.3)
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For convenience, we assume UUU = (U1,U2,U3,U4) = (S, E, I , R) and the initial
valueU0U0U0 = (S0, E0, I0, R0).

Here � ⊂ R represents the bounded domain with smooth boundary ∂�, and nnn is

the outward unit normal vector on ∂� and
∂

∂nnn
means the normal derivative along nnn on

∂�. The population density of susceptible, exposed, infected and recovered humans
at location x and time t are measured by S = S (x, t), E = E (x, t), I = I (x, t) and
R = R (x, t), respectively. The parameter Di (i = S, E, I , R) denote the diffusion
coefficient of S, E, I and R, respectively. The parameter� is the influx rate of suscep-
tible humans, μ is the natural death rate of the human, δ is the rate of asymptomatic
humans moving to infected humans, d is the death rate of infected humans due to
COVID-19 and finally γ is the recovery rate of infectious humans. Particularly, when
the COVID-19 outbreak occurs in a specific region, the condition is imposed that
nobody can enter or leave the area. So, we employ the no-flux boundary conditions
(homogeneous Neumann boundary conditions). One of the most important features
of our model is the inclusion of the human behavior. More specifically, we assume that

⎧
⎨

⎩

β1(E, x) = (a1 − b1m1(E))β̃1(x),

β2(I , x) = (a2 − b2m2(I ))β̃2(x),
(2.4)

are the contact rate functions of E and I , where a1 and a2 are the direct contact rates
of E and I , b1 and b2 are the associated largest reduced rates due to human behavior
changes of E and I , m1(E) and m2(I ) are saturation functions satisfy

ai ≥ bi > 0, 0 ≤ mi ≤ ai
bi

, mi ∈ C1([0,∞)) with mi (0) = 0,

m′
1(E) ≥ 0 and m′

2(I ) ≥ 0. (2.5)

Here β̃1(x) and β̃2(x) are the direct transmission contribution rates of E and I , which
are probabilities that measure the contribution of spatial heterogeneity into direct
human-to-human transmission.

We make the following assumptions:

(H1) All the parameters in (2.1) and (2.4) are assumed to be positive;
(H2) U0U0U0 ∈ C(�,R4+);
(H3) (E0, I0) �≡ (0, 0) on �;
(H4) β̃1(x) and β̃2(x) are nontrivial, nonnegative and Hölder continuous functions

on �.

It follows from the Hölder continuity of β̃i (x) that supx∈� |β̃i (x)| < +∞ for
i = 1, 2 on �.

In the remainder of this section, we focus on the well-posedness of system (2.1)–
(2.3).

First, let X := C(�,R4) be the Banach space with the supremum norm ‖ · ‖X ,
and X+ := C(�,R4+) be the positive cone of the Banach space X . We prove the
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local existence and positivity of solutions in X+ according to the theory developed in
[26, 27]. Let Y = C(�,R) and PPP(t) = (P1(t), P2(t), P3(t), P4(t)): X → X be the
evolution operator associated with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= −μS + DS�S,

∂E

∂t
= −(μ + δ)E + DE�E,

∂ I

∂t
= −(μ + d + γ )I + DI�I ,

∂R

∂t
= −μR + DR�R,

(2.6)

for x ∈ � and t > 0, which is subject to boundary conditions

∂S

∂nnn
= ∂E

∂nnn
= ∂ I

∂nnn
= ∂R

∂nnn
= 0, (x, t) ∈ ∂� × (0,∞). (2.7)

By [27, Corollary 7.2.3], each Pi (t) (1 ≤ i ≤ 4) is a compact and strongly positive
operator on Y for all t ≥ 0. We defineFFF = (F1,F2,F3,F4): X+ → X by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F1(φφφ)(x) := � − β1(φ2, x)φ1φ2 − β2(φ3, x)φ1φ3,

F2(φφφ)(x) := β1(φ2, x)φ1φ2 + β2(φ3, x)φ1φ3,

F3(φφφ)(x) := δφ2,

F4(φφφ)(x) := γφ3,

(2.8)

for any φφφ = (φ1, φ2, φ3, φ4) ∈ X+ and t ≥ 0. Then the solution of system (2.1) can
be written as

Ui (x, t) = Pi (t)φi +
∫ t

0
Pi (t − s)Fi (UUU (x, s))ds, 1 ≤ i ≤ 4. (2.9)

By [26, Corollary 4 and Theorem 1], it follows that for each φφφ ∈ X+, system (2.1)
has a unique solutionUUU (x, t;φφφ) on its maximal existence interval [0, tφ]withU0U0U0 = φφφ,
where tφ ≤ ∞, and remains non-negative if it is non-negative initially.

Then, we further prove the global existence and boundedness of solutions to get
the following theorem:

Theorem 2.1 For any φφφ ∈ X+, system (2.1) has a unique solution UUU (x, t;φφφ) on
[0,+∞) with U0U0U0 = φφφ. Moreover, system (2.1) generates a semiflow Q (t) on X+
defined by Q (t)φφφ = UUU (x, t;φφφ) for all t ≥ 0, and Q(t) has a strong global attractor
in X+.
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To prove the Theorem 2.1, we need the following result (see [28, Theorem 1 and
Corollary 1]):

Lemma 2.2 Consider the parabolic system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

− di�ui = fi (x, t,uuu), x ∈ �, t > 0, i = 1, 2, · · · ,m,

∂ui
∂nnn

= 0, x ∈ ∂�, t > 0,

ui (x, 0) = u0i (x), x ∈ �,

(2.10)

where uuu = (u1, u2, · · · , um), u0i (x) ∈ C(�), di > 0 and � is an open set in R
N

(N represents spatial dimension, N ≥ 1) with smooth boundary ∂�. Assume that for
each i = 1, 2, · · · ,m, the functions fi satisfy the condition:

| fi (x, t,uuu)| ≤ C1

m∑

i=1
|ui |p + C2, (2.11)

for some nonnegative constants C1 and C2, and positive constant p. Let α be a positive

constant such that α >
N

2
max{0, p − 1} and tφ be the maximal existence time of the

solution uuu corresponding to the initial value uuu0. Suppose that there exists a positive
functionCα(uuu0) such that ‖uuu(·, t)‖Lα(�) ≤ Cα(uuu0) for all t ∈ (0, tφ), then the solution
uuu exists for all time and there is a positive function C∞ such that ‖uuu(·, t)‖L∞(�) ≤
C∞(uuu0) for all t ∈ (0,∞). Moreover, if there exists T and KT independent of initial
value uuu0 such that ‖uuu(·, t)‖Lα(�) ≤ KT for all t ≥ T , then there exists a positive
number K∞ independent of initial value uuu0 such that ‖uuu(·, t)‖L∞(�) ≤ K∞ for all
t ≥ T .

The following proves Theorem 2.1:

Proof of Theorem 2.1 Let N (x, t;φφφ) = S(x, t;φφφ)+E(x, t;φφφ)+I (x, t;φφφ)+R(x, t;φφφ)

for any φφφ = (φ1, φ2, φ3, φ4) ∈ X+, then

d

dt

∫

�

N (x, t;φφφ)dx =
∫

�

(� − μN (x, t;φφφ))dx − d
∫

�

I (x, t;φφφ)dx

+
∫

�

(DS�S + DE�E + DI�I + DR�R)dx

≤ �|�| − μ

∫

�

N (x, t;φφφ)dx, ∀t ∈ (0, tφ).

ByGronwall’s inequality, we obtain
∫

�

N (x, t;φφφ)dx ≤
∫

�

N0(x)dx + � |�|
μ

(1−
e−μt ), where N0(x) = N (x, 0;φφφ) = ∑4

i=1 φi (x) and |�| is length of domain �. It

follows that there exists a constant c :=
∫

�

N0(x)dx such that
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∫

�

Ui (x, t;φφφ)dx ≤
∫

�

N (x, t;φφφ)dx

≤ c + � |�|
μ

(1 − e−μt ),∀t ∈ (0, tφ), 1 ≤ i ≤ 4.

(2.12)

Moreover, we can obtain

lim sup
t→∞

∫

�

N (x, t;φφφ)dx ≤ c + � |�|
μ

(2.13)

uniformly for x ∈ �.
By Lemma 2.2, we take m = 4, p = 2, N = 1. By Young’s inequality, we can

prove the global existence and boundedness of the solutions. Here we take the first
equation as an example to verify (2.11), and the other cases can be verified in a similar
way.

| f1(x, t,UUU )| ≤ � + a1β̃1SE + a2β̃2SI + μS

≤ � + a1β̃1
S2 + E2

2
+ a2β̃2

S2 + I 2

2
+ μ

S2 + 1

2

≤
(
a1β̃1

2
+ a2β̃2

2
+ μ

2

)

S2 + a1β̃1

2
E2 + a2β̃2

2
I 2 + � + μ

2

≤ C1(S
2 + E2 + I 2 + R2) + C2,

where f1(x, t,UUU ) = � − β1(E, x)SE − β2(I , x)SI − μS, C1 = max
{
a1β̃1

2
+ a2β̃2

2
+ μ

2
,
a1β̃1

2
,
a2β̃2

2

}

and C2 = � + μ

2
. In view of (2.12) and

Lemma 2.2 with α = 1, we can show that Ui (1 ≤ i ≤ 4) is L∞-bounded, denoted by
M∞(φφφ), in other words,Ui is uniformly bounded, that is, ‖Ui (·, t;φφφ)‖ ≤ M∞(φφφ) for
all t ∈ (0, tφ), and hence, tφ = ∞. Moreover, by (2.13), we immediately obtain that
Ui is ultimately bounded.

Define a family of maps {Q (t)}t≥0: X
+ → X+ by Q (t)φφφ = UUU (·, t;φφφ) for any

φφφ ∈ X+. It follows that Q (t) is a semiflow (see [29, Remark 1.1.3]). From the above
discussions, we know that Q (t) is point dissipative. Note that for all t > 0, Q (t)
is compact. Therefore, we know Q (t) has a strong global attractor in X+ (see [29,
Theorem 1.1.3]). �

3 Threshold Dynamics

In this section, our goal is to derive the basic reproduction numberR0, thenwe establish
the threshold dynamics of the system (2.1) according toR0.
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3.1 The Basic Reproduction Number

Obviously, there is a disease-free equilibrium point E f = (S∗, 0, 0, 0) in the system

(2.1), where S∗ = �

μ
. By [30, Lemma 1], S∗ is the unique positive steady-state

solution of the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ S̃

∂t
= DS�S̃ + � − μS̃, x ∈ �, t > 0,

∂ S̃

∂nnn
= 0, x ∈ ∂�, t > 0,

S̃(x, 0) = S0(x), x ∈ �.

(3.1)

By the comparison principle [27, Theorem 5.1.1], it implies that S(x, t) in system
(2.1) satisfies

lim sup
t→∞

S(x, t) ≤ lim sup
t→∞

S̃(x, t) = S∗ (3.2)

uniformly for x ∈ �.
Linearizing system (2.1)–(2.3) at (S∗, 0, 0, 0):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= DS�S − a1β̃1(x)S∗E − a2β̃2(x)S∗ I − μS∗,

∂E

∂t
= DE�E + a1β̃1(x)S∗E + a2β̃2(x)S∗ I − (μ + δ)E,

∂ I

∂t
= DI�I + δE − (μ + d + γ )I ,

∂R

∂t
= DR�R + γ I − μR,

(3.3)

for x ∈ � and t > 0.
Since the equations of E and I do not contain S and R, we only consider the

following subsystem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= DE�E + a1β̃1(x)S∗E + a2β̃2(x)S∗ I − (μ + δ)E, x ∈ �, t > 0,

∂ I

∂t
= DI�I + δE − (μ + d + γ )I , x ∈ �, t > 0,

∂E

∂nnn
= ∂ I

∂nnn
= 0, x ∈ ∂�, t > 0.

(3.4)
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Define

A =
(
DE� + a1β̃1(x)S∗ − (μ + δ) a2β̃2(x)S∗

δ DI� − (μ + d + γ )

)

=
(
DE� − (μ + δ) 0

δ DI� − (μ + d + γ )

)

+
(
a1β̃1(x)S∗ a2β̃2(x)S∗

0 0

)

= V + F .

Let T (t) : C(�,R2) → C(�,R2) be the semigroup associated to the problem
(3.4). It is easy to see that T (t) has the generator A. Let T ∗(t) : C(�,R2+) →
C(�,R2+) be the semigroup generated by V .

By the theory in [31, 32], we define next generation operator L:

L(φφφ)(x) =
∫ ∞

0
F(x)T ∗(t)φφφ(x)dt = F(x)

∫ ∞

0
T ∗(t)φφφ(x)dt,

φφφ = (φ2, φ3) ∈ C(�,R2), x ∈ �. (3.5)

L represents the total new infection distribution generated by the initial infection
distribution φφφ during the infection period. Next, we define the basic reproduction
number:

R0 = r(L) = sup{|λ| : λ ∈ σ(L)}, (3.6)

where σ(L) is the spectral set of operator L . Let s(A) = sup{Re λ : λ ∈ σ(A)} is the
spectral bound of A.

We have the following lemmas:

Lemma 3.1 ([32, Theorem 3.1 (i)])R0 − 1 has the same sign as s(A).

We consider the eigenvalue problems of the second and third equations in linearized
system (3.3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DE�ϕ2 + a1β̃1(x)S∗ϕ2 + a2β̃2(x)S∗ϕ3 − (μ + δ)ϕ2 = λϕ2, x ∈ �,

DI�ϕ3 + δϕ2 − (μ + γ + d)ϕ3 = λϕ3, x ∈ �,

∂ϕ2

∂nnn
= ∂ϕ3

∂nnn
= 0, x ∈ ∂�.

(3.7)

By the Appendix A of [33], it is not difficult to see that A is irreducible. Therefore,
the system (3.4) generates a strongly positive and compact semigroup on C(�,R2+).
According to the conclusions in Chapter 4 and Chapter 7 of [27], we immediately
have the following result:

Lemma 3.2 s(A) is the principal eigenvalue of the eigenvalue problem (3.7)associated
with a strongly positive eigenfunction.
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3.2 Global Dynamics in Terms ofR0

In this subsection, we prove a threshold-type result on the global dynamics of system
(2.1) in terms of R0.

Theorem 3.3 IfR0 < 1, then the disease-free equilibrium point E f is globally asymp-
totically stable.

Proof The local asymptotical stability of E f follows from [32, Theorem 3.1 (ii)]. We
only need to prove the global attractivity of E f .

Fix ε0 > 0. By (3.2), there exists a t0 > 0 such that

0 ≤ S(x, t) ≤ S∗ + ε0, (x, t) ∈ � × [t0,∞).

For all (x, t) ∈ � × [t0,∞), taking the comparison principle [27, Theorem 5.1.1]
for the system (2.1), together with β1(E, x) ≤ a1β̃1(x) and β2(I , x) ≤ a2β̃2(x) (see
(2.4)–(2.5)), we have

(E(x, t), I (x, t)) ≤ (Ê(x, t), Î (x, t)),

where (Ê(x, t), Î (x, t)) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ê

∂t
= DE�Ê + a1β̃1(x)(S∗ + ε0)Ê + a2β̃2(x)(S∗ + ε0) Î − (μ + δ)Ê,

∂ Î

∂t
= DI� Î + δ Ê − (μ + d + γ ) Î ,

∂ Ê

∂nnn
= ∂ Î

∂nnn
= 0,

(3.8)

for x ∈ � and t ≥ t0.
Since s(A) < 0 (see Lemma 3.1), we can choose a ε0 small such that s(Aε0) < 0,

where

Aε0 =
(
DE� + a1β̃1(x)(S∗ + ε0) − (μ + δ) a2β̃2(x)(S∗ + ε0)

δ DI� − (μ + d + γ )

)

.

Then we can find a corresponding eigenvector (ψ
ε0
2 (x), ψε0

3 (x)).
For each φφφ ∈ X+, there exists a � > 0 such that

(Ê(x, t0;φφφ), Î (x, t0;φφφ)) ≤ �(ψ
ε0
2 (x), ψε0

3 (x)).

By the comparison principle, we have

(E(x, t;φφφ), I (x, t;φφφ)) ≤ �es(Aε0 )(t−t0)(ψ
ε0
2 (x), ψε0

3 (x))
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for all t > t0.
Therefore, we have (E(x, t), I (x, t)) → (0, 0) as t → ∞ uniformly for

x ∈ �. In addition, since S∗ is the steady-state solution of the system (3.1), we
obtain S(x, t) → S∗(x) uniformly for x ∈ �, and by the asymptotic equation
from the fourth equation of the system (2.1), we have limt→∞ R(x, t) = 0. Hence,
limt→∞UUU (x, t;φφφ) = (S∗, 0, 0, 0) uniformly for x ∈ �. �

Next, we discuss the case R0 > 1. First, we need the following result:

Lemma 3.4 Let UUU (·, t;φφφ) be the solution of system (2.1)–(2.3) with U0U0U0 = φφφ ∈ X+.
If there exists some t∗ ≥ 0 such that (E(x, t∗;φφφ), I (x, t∗;φφφ)) �≡ (0, 0), then
Ui (x, t;φφφ) > 0 (1 ≤ i ≤ 4) for all t > t∗ and x ∈ �. Moreover, if there exists
a ζ ∗ > 0 such that lim inf t→∞ E(·, t;φφφ) ≥ ζ ∗ and lim inf t→∞ I (·, t;φφφ) ≥ ζ ∗, then
there exists a ζ ∈ (0, ζ ∗) such that lim inf t→∞ Ui (·, t;φφφ) ≥ ζ (1 ≤ i ≤ 4).

Proof For a givenφφφ ∈ X+, since E(x, t;φφφ) and I (x, t;φφφ) in system (2.1) is uniformly
bounded, we know that for E(x, t;φφφ) and I (x, t;φφφ), there exists a constant m =
m(φφφ) > 0 and n = n(φφφ) > 0 such that E(x, t;φφφ) < m and I (x, t;φφφ) < n for all
t > 0 and x ∈ �. Let S(x, t;φ) be the solution of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= DS�S + � − (a1β̃1(x)m + a2β̃2(x)n + μ)S, x ∈ �, t > 0,

S(x, 0) = φ(x) ≤ φ1, x ∈ �,

∂S

∂nnn
= 0, x ∈ ∂�, t > 0.

(3.9)

It is easy to see S(x, t;φφφ) ≥ S(x, t;φ), x ∈ �. Let S
∗
(x;φ) be the globally

attractive positive equilibrium of system (3.9), then by the comparison principle in
[27, Theorem 5.1.1], we have

lim inf
t→∞ S(x, t;φφφ) ≥ ζ1,

where ζ1 := minx∈� S
∗
(x;φ) = minx∈�

{
�

a1β̃1(x)m + a2β̃2(x)n + μ

}

> 0.

We consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ĕ

∂t
= DE�Ĕ − (μ + δ)Ĕ, x ∈ �, t > 0,

∂ Ĭ

∂t
= DI� Ĭ − (μ + d + γ ) Ĭ , x ∈ �, t > 0.

∂ Ĕ

∂nnn
= ∂ Ĭ

∂nnn
= 0, x ∈ ∂�, t > 0.

(3.10)
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From the comparison principle in [27, Theorem 5.1.1], we have

(E(x, t), I (x, t)) ≥ (Ĕ(x, t), Ĭ (x, t)), x ∈ �, t > 0.

By the strong maximum principle (see [27, Theorem 7.2.1]) and Hopf Lemma
(see [34, Lemma 2.1.1]), together with (E(x, t∗;φφφ), I (x, t∗;φφφ)) �≡ (0, 0), we have
E(x, t;φφφ) > 0 and I (x, t;φφφ) > 0 for all t > t∗.

Notice that when t > t∗,

∂R

∂t
= DR�R + γ I − μR > DR�R − μR, (3.11)

it immediately follows that R(x, t;φφφ) > 0 for all t > t∗ and x ∈ �. Since there exists
a ζ ∗ > 0 such that lim inf t→∞ E(x, t;φφφ) ≥ ζ ∗ and lim inf t→∞ I (x, t;φφφ) ≥ ζ ∗, we
can find a sufficiently large t1 > 0 such that I (x, t;φφφ) >

1

2
ζ ∗ for all t > t1. Together

with (3.11) we have

∂R

∂t
≥ DR�R + 1

2
ζ ∗γ − μR.

Therefore, there exists a ζ2 > 0 such that lim inf t→∞ R(x, t;φφφ) ≥ ζ2. Taking ζ =
min{ζ ∗, ζ1, ζ2}, we complete the proof. �
Theorem 3.5 If R0 > 1, then system (2.1)–(2.3) have at least one positive solution,
and there exists an η > 0 such that for any φφφ ∈ X+ with φ2(x) �≡ 0 or φ3(x) �≡ 0, we
have

lim inf
t→∞ Ui (x, t;φφφ) ≥ η, 1 ≤ i ≤ 4

uniformly for all x ∈ �.

Proof In the case whereR0 > 1, we have s(A) > 0 (see Lemma 3.1). Let

W0 := {φφφ ∈ X+ : φ2(x) �≡ 0 and φ3(x) �≡ 0}

and

∂W0 := X+\W0 = {φφφ ∈ X+ : φ2(x) ≡ 0 or φ3(x) ≡ 0}.

Note that for any φφφ ∈ W0, Lemma 3.4 implies that E(x, t;φφφ) > 0 and I (x, t;φφφ) > 0
for all t > 0 and x ∈ �. It follows that Q(t)W0 ⊂ W0.

Next, we define

M∂ := {φφφ ∈ ∂W0 : Q(t)φφφ ∈ ∂W0, ∀t ≥ 0}.

Let ω(φφφ) be the omega limit set of the orbit o+ = {Q(t)φφφ : ∀t ≥ 0} and let M =
(S∗, 0, 0, 0), then Q(t)(M) = M .
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Next, we prove the theorem by two claims.

Claim 1. M is globally stable in M∂ in the sense that M is globally attractive and
locally Lyapunov stable inM∂ .

Let M0 = {φφφ ∈ X+ : φ2(x) ≡ 0 and φ3(x) ≡ 0}. For any φφφ ∈ M0, we have
E(·, t;φφφ) = [Q(t)φφφ(·)]2 = 0 and I (·, t;φφφ) = [Q(t)φφφ(·)]3 = 0 for all t ≥ 0. It
impliesφφφ ∈ M∂ , and hence,M0 ⊂ M∂ . On the other hand, for anyφφφ ∈ M∂ , we obtain
from Lemma 3.4 that (φ2(·), φ3(·)) ≡ (0, 0), and hence φφφ ∈ M0, which means that
M∂ ⊂ M0. It then follows that M∂ = M0. In order to prove the global stability of
M in M∂ , we first show that for any φφφ ∈ M∂ , the omega limit set ω(φφφ) = M . Since
M∂ = M0, we have E(·, t;φφφ) = 0 and I (·, t;φφφ) = 0 for any φφφ ∈ M0 and t ≥ 0.
Thus, S(x, t;φφφ) and R(x, t;φφφ) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= DS�S + � − μS, x ∈ �, t > 0,

∂R

∂t
= DR�R − μR, x ∈ �, t > 0,

∂S

∂nnn
= ∂R

∂nnn
= 0, x ∈ ∂�, t > 0.

(3.12)

Obviously, limt→∞ R(x, t;φφφ) = 0 uniformly for x ∈ �. For autonomous system
(3.12), by limiting system arguments, we can easily obtain limt→∞ S(x, t;φφφ) = S∗
uniformly for x ∈ �, and hence, ω(φφφ) = M . This shows that M is globally stable in
M∂ . By [29, Lemma 2.2.1], M is locally Lyapunov stable in M∂ . This proves Claim
1.

We consider the following system with a parameter η∗ > 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w
η∗
1

∂t
= DE�w

η∗
1 + β1(η

∗, x)(S∗ − η∗)wη∗
1 + β2(η

∗, x)(S∗ − η∗)wη∗
2 − (μ + δ)w

η∗
1 ,

∂w
η∗
2

∂t
= DI�w

η∗
2 + δw

η∗
1 − (μ + d + γ )w

η∗
2 ,

∂w
η∗
1

∂nnn
= ∂w

η∗
2

∂nnn
= 0,

(3.13)

for x ∈ � and t > 0, where β1(η
∗, x) = (a1 − b1m1(η

∗))β̃1(x) and
β2(η

∗, x) = (a2 − b2m2(η
∗))β̃2(x). For any ψψψ ∈ C(�,R2), let wη∗

wη∗
wη∗

(x, t,ψψψ) =
(w

η∗
1 (x, t,ψψψ),w

η∗
2 (x, t,ψψψ)) be the unique solution of system (3.13) with initial value

ψψψ . Let Tη∗(t) : C(�,R2) → C(�,R2) be the semigroup associated to the problem
(3.13), and define Aη∗ is the generator of Tη∗(t). Let s(Aη∗) is the spectral bound
of Aη∗ . It is easy to find that lim

η∗→0
s(Aη∗) = s(A), then we can fix a sufficiently

small number η∗ > 0 such that η∗ < S∗ and s(Aη∗) > 0. By the continuous depen-
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dence of solutions on the initial value, there exists η′ > 0 such that for any φφφ with
‖φφφ − M‖X ≤ η′, we have ‖Q(t)φφφ − M‖X < η∗ for all t ≥ 0.

Claim 2. M is a uniform weak repeller forW0 in the sense that

lim sup
t→∞

‖Q(t)φφφ − M‖X ≥ η∗, ∀φφφ ∈ W0,

where η∗ is a sufficiently small positive number and η∗ < S∗.
Suppose, by contradiction, there exists φ∗φ∗φ∗ ∈ W0 such that lim sup

t→∞
‖Q(t)φ∗φ∗φ∗ −

M‖X < η∗. Then there exists a sufficiently large t ′ > 0 such that

S(x, t;φ∗φ∗φ∗) > S∗ − η∗, E(x, t;φ∗φ∗φ∗) < η∗, I (x, t;φ∗φ∗φ∗) < η∗, R(x, t;φ∗φ∗φ∗) < η∗

for all (x, t) ∈ � × [t ′,∞]. Thus, when t ≥ t ′, by (2.4)–(2.5), we know that
(E(x, t;φ∗φ∗φ∗), I (x, t;φ∗φ∗φ∗)) of system (2.1) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
≥ DE�E + β1(η

∗, x)(S∗ − η∗)E + β2(η
∗, x)(S∗ − η∗)I − (μ + δ)E,

∂ I

∂t
= DI�I + δE − (μ + d + γ )I ,

∂E

∂nnn
= ∂ I

∂nnn
= 0,

(3.14)

for x ∈ � and t ≥ t ′.
By Lemma 3.4, we have E(x, t;φ∗φ∗φ∗) > 0, I (x, t;φ∗φ∗φ∗) > 0 when φ∗φ∗φ∗ ∈ W0. Then

there exists a sufficiently small ρ > 0 such that

(E(x, t ′;φ∗φ∗φ∗), I (x, t ′;φ∗φ∗φ∗)) ≥ ρwη∗
wη∗
wη∗

(x, t ′),

where wη∗
wη∗
wη∗

(x, t) = es(A∗ )tw∗
η∗w∗
η∗w∗
η∗(x, t), and w∗

η∗w∗
η∗w∗
η∗(x, t) is a positive function such that

wη∗
wη∗
wη∗

(x, t) is a solution of system (3.13). By the comparison principle, we have

(E(x, t;φ∗φ∗φ∗), I (x, t;φ∗φ∗φ∗)) ≥ ρes(A∗ )(t−t ′)w∗
η∗w∗
η∗w∗
η∗(x, t)

for all t > t ′.
In the case where R0 > 1, i.e., s(A) > 0, since limη∗→0 s(Aη∗) = s(A) and η∗ is

sufficiently small, we have s(Aη∗) > 0. Therefore, it is easy to see that

lim
t→∞E(x, t;φ∗φ∗φ∗) = ∞, lim

t→∞I (x, t;φ∗φ∗φ∗) = ∞.

This leads to a contradiction.
Claim 2 indicates that M is an isolated invariant set for Q(t) in X+, and

WS(M) ∩ W0 = ∅, where WS(M) is the stable manifold of M for Q(t). It then
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follows from [29, Theorem 1.3.1 and Remark 1.3.1] that Q(t) is uniformly persistent
with respect to (W0, ∂W0). Moreover, [35, Theorem 4.5] implies that there exists a
global attractor A0 in Q(t) : W0 → W0 and Q(t) has a fixed pointφ0φ0φ0 inW0. Clearly,
UUU (·, t;φ0φ0φ0) = (S(·, t;φ0φ0φ0), E(·, t;φ0φ0φ0), I (·, t;φ0φ0φ0), R(·, t;φ0φ0φ0)) is a solution of system
(2.1)–(2.3), and it is strictly positive by Lemma 3.4. Since A0 = Q(t)A0, we have
φ2(·) > 0 and φ3(·) > 0 for any φφφ ∈ A0. Let B0 := ∪t∈[0,∞)Q(t)A0. Then B0 ⊂ W0
and limt→∞ d(Q(t)φφφ, B0) = 0 for anyφφφ ∈ W0, where d is the norm-induced distance
in X . According to [36], we define a continuous function p : X+ → [0,∞) by

p(φφφ) = min

{

min
x∈�

φ2(x),min
x∈�

φ3(x)

}

, φφφ = (φ1, φ2, φ3, φ4) ∈ X+.

Since B0 is a compact subset ofW0, it follows that infφφφ∈B0 p(φφφ) = minφφφ∈B0 p(φφφ) >

0. Therefore, there exists an η∗
0 > 0 such that

lim inf
t→∞ p(Q(t)φφφ) = lim inf

t→∞

{

min
x∈�

E(x, t;φφφ), min
x∈�

I (x, t;φφφ)

}

≥ η∗
0

for any φφφ ∈ W0. It follows from Lemma 3.4 that there exists an η ∈ (0, η∗
0) such that

lim inf
t→∞ Ui (x, t;φφφ) ≥ η, ∀φφφ ∈ W0, 1 ≤ i ≤ 4.

Based on the above discussion, we complete the proof. �
In order to discuss the case where R0 = 1, we need the following results.

Lemma 3.6 If R0 = 1, E f is locally stable.

Proof Let ε > 0 be given. Suppose δ∗ > 0 and let φφφ ∈ X+ with ‖φφφ − E f ‖X ≤ δ∗.
Define

z(x, t) = S(x, t)

S∗ − 1 and h(t) = max
x∈�

{z(x, t), 0}.

Noticing DS�S∗ + � − μS∗ = 0 and by the first equation of system (2.1), we have

∂z

∂t
− DS�z + μz = −β1(E, x)SE + β2(I , x)SI

S∗ .

Let T̃1(t) be the positive semigroup generated by the operator DS� − μ.
Then there exists r > 0 such that ‖T̃1(t)‖ ≤ Ke−r t for some K > 0. Hence, we

have

z(x, t) = T̃1(t)z(x, 0) −
∫ t

0
T̃1(t − s)

β1(E, x)SE + β2(I , x)SI

S∗ ds,
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where z(x, 0) = S0
S∗ − 1. It then follows from the positivity of T̃1(t) that

h(t) = max
x∈�

{

T̃1(t)z(x, 0) −
∫ t

0
T̃1(t − s)

β1(E, x)SE + β2(I , x)SI

S∗ ds, 0

}

≤ max
x∈�

{T̃1(t)z(x, 0), 0}

≤ sup
x∈�

∥
∥
∥
∥
S0
S∗ − 1

∥
∥
∥
∥ Ke−r t

≤ δ∗Ke−r t

S∗ .

Noticing that (E, I ) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= DE�E + β1(E, x)S∗E + β2(I , x)S∗ I

−(μ + δ)E + (β1(E, x)S∗E + β2(I , x)S∗ I )
(

S

S∗ − 1

)

,

∂ I

∂t
= DI�I + δE − (μ + d + γ )I ,

(3.15)

for x ∈ � and t > 0, we have

(
E(x, t)
I (x, t)

)

= T (t)

(
E(x, 0)
I (x, 0)

)

+
∫ t

0
T (t − s)

⎛

⎝(β1(E, x)S∗E + β2(I , x)S∗ I )
(

S

S∗ − 1

)

0

⎞

⎠ ds,

(3.16)

where T (t) is the semigroup associated to the problem (3.4).
Since R0 = 1, i.e., s(A) = 0, we have ‖T (t)‖ ≤ K for t ≥ 0 and some constant

K > 0, where K can be chosen as large as needed. By h(t) ≤ δ∗Ke−r t

S∗ and (2.4)–

(2.5), we obtain

max
x∈�

{‖E(x, t)‖, ‖I (x, t)‖}

≤ Kmax
x∈�

{‖E0‖, ‖I0‖} + Ka1‖β̃1‖‖S∗‖
∫ t

0
h(s)‖E(s)‖ds
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+Ka2‖β̃2‖‖S∗‖
∫ t

0
h(s)‖I (s)‖ds

≤ K δ∗ + K1δ
∗
∫ t

0
e−rs‖E(s)‖ds + K2δ

∗
∫ t

0
e−rs‖I (s)‖ds,

where K1 = a1K 2‖β̃1‖, K2 = a2K 2‖β̃2‖. Therefore, we have

‖E(x, t)‖ + ‖I (x, t)‖ ≤ 2K δ∗ + 2δ∗K ∗
∫ t

0
e−rs(‖E(s)‖ + ‖I (s)‖)ds,

where K ∗ = max{K1, K2}.
By Gronwall’s inequality, we obtain

‖E(x, t)‖ + ‖I (x, t)‖ ≤ 2K δ∗e
2δ∗K∗

r .

Moveover, we have

∂S

∂t
≥ DS�S + � − μS − 2K δ∗e

2δ∗K∗
r β+S,

where β+ = max{a1β̃1(x), a2β̃2(x)}.
Let Ŝ be the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ŝ

∂t
= DS�Ŝ + � − μŜ − 2K δ∗e 2δ∗K∗

r β+ Ŝ, (x, t) ∈ � × (0,∞),

∂ Ŝ

∂nnn
= 0, (x, t) ∈ ∂� × (0,∞),

Ŝ(x, 0) = S0(x), x ∈ �.

(3.17)

By the comparison principle, we have S(x, t) ≥ Ŝ(x, t) for all x ∈ � and t ≥ 0. Let
Û be the positive steady state of system (3.17) and w = Ŝ − Û . Then w satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂w

∂t
= DS�w − μw − 2K δ∗e 2δ∗K∗

r β+w, (x, t) ∈ � × (0,∞),

∂w

∂nnn
= 0, (x, t) ∈ ∂� × (0,∞),

w(x, 0) = S0 − Û , x ∈ �.

(3.18)
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We can choose a K large such that ‖T̃1(t)‖ ≤ Ke−μt . By (3.18), we have

w(x, t) = T̃1(t)(S0 − Û ) −
∫ t

0
T̃1(t − s)2K δ∗e

2δ∗K∗
r β+w(x, s)ds.

Moreover, we have

‖w(x, t)‖ ≤ Ke−μt‖S0 − Û‖ +
∫ t

0
Ke−μ(t−s)2K δ∗e

2δ∗K∗
r ‖β+‖‖w(x, s)‖ds.

Let k = 2K 2δ∗e 2δ∗K∗
r ‖β+‖. Then, applying the Gronwall’s inequality to the above

leads to

‖Ŝ(x, t) − Û‖ = ‖w(x, t)‖ ≤ K‖S0 − Û‖ekt−μt .

Choosing a δ∗ > 0 sufficiently small such that k <
μ

2
, then

‖Ŝ(x, t) − Û‖ ≤ K‖S0 − Û‖e− μt
2 . (3.19)

Now by (3.19), we have

S(x, t) − S∗ ≥ Ŝ(x, t) − S∗ = Ŝ(x, t) − Û + Û − S∗

≥ −K‖S0 − Û‖e− μt
2 + Û − S∗

≥ −K (‖S0 − S∗‖ + ‖S∗ − Û‖) − ‖Û − S∗‖
≥ −K δ∗ − (K + 1)‖Û − S∗‖.

On the other hand, noticing that h(t) ≤ δ∗Ke−r t

S∗ ≤ δ∗K
S∗ , we have

S(x, t) − S∗ = S∗
(
S(x, t)

S∗ − 1

)

≤ ‖S∗‖h(t) ≤ δ∗K . (3.20)

Therefore, we obtain

‖S(x, t) − S∗‖ ≤ K δ∗ + (K + 1)‖Û − S∗‖. (3.21)

Finally, noticing that limδ∗→0 Û = S∗, we can choose a δ∗ > 0 small such that

‖S(x, t) − S∗‖, ‖E(x, t)‖, ‖I (x, t)‖ ≤ ε

for all t > 0, and by the asymptotic equation from the fourth equation of system (2.1),
we have ‖R(x, t)‖ ≤ ε. �
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Lemma 3.7 If R0 = 1, E f is globally attractive.

Proof By Theorem 2.1, Q(t) has a global attractor σ . Define

∂X = {(Š, Ě, Ǐ , Ř) ∈ X+ : Ě = Ǐ = 0}.

Next, we prove the lemma by two claims.

Claim 1. For any initial value U0U0U0 = φφφ = (φ1, φ2, φ3, φ4) ∈ σ , the omega limit set
ω(φφφ) ⊂ ∂X.

If E0 = I0 = 0, the claim is obviously valid. So we can assume that either E0 �= 0
or I0 �= 0. By Lemma 3.4, we haveUi (x, t) > 0 (1 ≤ i ≤ 4) for all x ∈ � and t > 0.
Moreover, S(x, t) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂S

∂t
< DS�S + � − μS, x ∈ �, t > 0,

∂S

∂nnn
= 0, x ∈ ∂�, t > 0,

(3.22)

Noticing (3.2), we must have S(x, 0) ≤ S∗. Then, by the comparison principle, we
must have S(x, t) ≤ S∗ for all x ∈ � and t > 0.

By Lemma 3.2, eigenvalue problem (3.7) has a positive eigenvector (ϕ2, ϕ3). We
define

ξ(t;φφφ) := inf
{
ξ̃ ∈ R : E(x, t) ≤ ξ̃ϕ2 and I (x, t) ≤ ξ̃ϕ3

}
.

It is easy to see ξ(t;φφφ) > 0 for all t > 0. We claim that ξ(t;φφφ) is strictly decreasing
with respect to t . To prove this, fix t̃0 > 0 and let Ẽ(x, t) = ξ(̃t0;φφφ)ϕ2 and Ĩ (x, t) =
ξ(̃t0;φφφ)ϕ3 for t ≥ t̃0. By S(x, t) ≤ S∗ and (3.7), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Ẽ

∂t
> DE�Ẽ + β1(Ẽ, x)SẼ + β2( Ĩ , x)S Ĩ − (μ + δ)Ẽ, x ∈ �, t > t̃0,

∂ Ĩ

∂t
= DI� Ĩ + δ Ẽ − (μ + d + γ ) Ĩ , x ∈ �, t > t̃0,

∂ Ẽ

∂nnn
= ∂ Ĩ

∂nnn
= 0, x ∈ ∂�, t > t̃0,

Ẽ(x, t̃0) ≥ E(x, t̃0), Ĩ (x, t̃0) ≥ I (x, t̃0), x ∈ �.

(3.23)

By the comparison principle, we obtain (Ẽ(x, t), Ĩ (x, t)) ≥ (E(x, t), I (x, t)) for all
x ∈ � and t ≥ t̃0. Then by system (3.23) and the strong maximum principle, we
obtain

ξ(̃t0;φφφ)ϕ2 = Ẽ(x, t) > E(x, t) and ξ(̃t0;φφφ)ϕ3 = Ĩ (x, t) > I (x, t)
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for all x ∈ � and t > t̃0. Since t̃0 > 0 is arbitrary, ξ(t;φφφ) is strictly decreasing.
Moreover, we have limt→∞ ξ(t;φφφ) = ξ∗ = 0 (see [37, Proof of Theorem 1.1(a)]).

Let uuu = (u1, u2, u3, u4) ∈ ω(φφφ), then there exists a sequence {tk} with
tk → ∞ such that limtk→∞ Q(tk)φφφ = uuu. Since limtk→∞ Q(t + tk)φφφ =
Q(t) limtk→∞ Q(tk)φφφ = Q(t)uuu, we must have ξ(t;uuu) = ξ∗ for all t ≥ 0. If u2 �= 0
or u3 �= 0, we can repeat the previous arguments to show that ξ(t;uuu) is strictly
decreasing, which contradicts that ξ(t;uuu) = ξ∗. Hence, (E(x, t), I (x, t)) → (0, 0)
as t → ∞. This proves Claim 1.

Claim 2. σ = {E f }
Since {E f } is globally attractive for system (2.1)–(2.3) in ∂X, and {E f } generates

the only compact invariant subset of system (2.1)–(2.3) in ∂X. Therefore, for any
φφφ ∈ σ , we conclude that ω(φφφ) = {E f }. On the other hand, we have σ = {E f } in
that the global attractor σ is compactly invariant in X+. By Claim 1 and Claim 2, we
complete the proof. �

By Lemmas 3.6 and 3.7, we immediately obtain the following theorem:

Theorem 3.8 IfR0 = 1, E f is globally asymptotically stable.

4 Numerical Simulations

In this section, we present numerical simulations to illustrate the effects of the human
behavior changes on the spread of COVID-19. For convenience, we take the domain
� to be [0, 3π ], and set DS = 1, DE = 1, DI = 0.2 and DR = 0.5 to indicate
humans’ mobility under the influence of COVID-19. We assume the direct trans-
mission contribution rates of E and I to be β̃1(x) = 0.5 + 0.25 cos(2πx) and
β̃2(x) = 0.4 + 0.15 cos(2πx) to reflect the direct transmission contribution rates
of exposed and infected individuals with spatial heterogeneity. In addition, we con-

sider the saturation functions m1(E) = E

E + M1
and m2(I ) = I

I + M2
as in [5] to

describe the human behaviors. To verify the previous threshold dynamics in terms of
R0, the parameter values are chosen as � = 100, μ = 0.01, δ = 0.14, d = 0.02,
γ = 0.2, bi = 0.8ai (i = 1, 2), M1 = 500, M2 = 300 and initial data S0 = 10,000,
E0 = 100, I0 = 40, R0 = 0.

When we choose a1 = 4.6×10−5 and a2 = 1.9×10−5, we obtainR0 = 2.87 > 1.
We find that the COVID-19 is uniformly persistent, which is shown in Fig. 2.

If we reduce the direct contact rate a1, a2 to 7.3 × 10−6, 3.1 × 10−6, we obtain
R0 = 0.46 < 1. Figure 3 shows that the disease-free equilibrium point E f is globally
asymptotically stable, which indicates the spread of COVID-19 cannot be sustained.

Finally, we observe the impact of human behavior changes on the spread of COVID-
19. Figure 4 shows howhuman interventions affect the spread of COVID-19,where the
red, green and blue curves represent the densities of exposed and infected individuals
with no human behavior changes (bi = 0, i = 1, 2), small behavior changes (bi =
0.8ai , M1 = 500, M2 = 300, i = 1, 2) and large behavior changes (bi = 0.8ai ,
M1 = 200, M2 = 100, i = 1, 2), respectively. We find that the curve trends of
exposed and infected individuals are similar in the Fig. 4, which shows that human
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Fig. 2 The evolution of COVID-19 in humans when R0 = 2.87 > 1

behavior changes have the same effect on exposed individuals and infected individuals.
Moreover, we observe that the severest outbreaks occur in the early phase among
the three situations mentioned above. These observations indicate that the human
interventions may be a very effective control strategy not only in the early stage of
the transmission, but also in the whole transmission process. The appropriate human
behavior changes significantly reduce the density of exposed and infected individuals.
However, Fig. 4 also tells us that we fail to eliminate COVID-19 by taking human
interventions alone. Furthermore, we notice that the number of exposed is alwaysmore
than that of infected by comparing the number of exposed individuals and infected
individuals, so we need to pay more attention to the situations of exposed individuals.

5 Discussion

In this paper, we have proposed and analyzed a SEIR reaction–diffusion model that
incorporates human behavior. We assume that people are well informed of the current
situation of the COVID-19 outbreak through various social media, so they will take
action to reduce contact with others by wearing masks and avoiding crowded places.
The assumed contact rate functions represent the changes caused by human behavior,
which can be used to observe the impact of human behavior on the whole transmission
process of COVID-19.
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Fig. 3 The evolution of COVID-19 in humans when R0 = 0.46 < 1

Fig. 4 Impacts of human behavior on COVID-19 transmission at location x=π (other parameters values
are the same as those in Fig. 2)

Firstly, we apply the theory in [31] to derive the basic reproduction number R0.
Next, with the help of the theories mentioned in [21] and [38], we prove the threshold-
type result on the global dynamics in terms of R0: if R0 ≤ 1, the disease-free
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equilibrium point E f is globally asymptotically stable, which indicates that COVID-
19 cannot be sustained; ifR0 > 1, COVID-19 will be persistent.

By numerical simulation, we show the effect of human behavior changes on the
spread of COVID-19. Comparing the density of exposed and infected individuals
under different behavioral changes in the Fig. 4, we notice that COVID-19 cannot
be eliminated by taking human interventions alone. A mathematical explanation is
that the terms b1 and b2 do not appear in the expression of R0, and hence, human
behavior changes fail to be a key factor to determine whether COVID-19 persists or
not. However, we find that human behavior changes play a positive role in lowering the
level of infection during the whole transmission process of COVID-19 (from the early
outbreak to the later stabilization). Furthermore, since the impact of human behavior
changes on exposed and infected individuals is almost the same, we need to pay more
attention to the exposed individuals.

The human behavior in response to the epidemics is assumed to be “rational” in
this paper. For example, the government can block epidemic areas. People in epidemic
regions should take protective measures, such as practicing personal hygiene and
wearingmasks, and reduce contact with infected individuals. However, wemay obtain
some false information on the details of the epidemics,whichmay lead to inappropriate
responses. In this case, the contact rate functions β1(t, x) and β2(t, x) in our model
will not be a simple monotone function. During the outbreak of diseases, human
behavior is more likely to be affected by the total number of infections and deaths
than by the real-time number of infected individuals [39]. These factors are worthy
of our consideration and analysis, but they are not reflected in this paper. Meanwhile,
there are other limitations in our paper. For instance, the diffusion coefficients as well
as several parameters in the model, can be regarded as spatial functions rather than
constants, to obtain the information of spatial heterogeneity. We leave these problems
for future studies.
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