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Abstract
There are few adapted SIR models in the literature that combine vaccination and
logistic growth. In this article, we study bifurcations of a SIRmodel where the class of
Susceptible individuals grows logistically and has been subject to constant vaccination.
We explicitly prove that the endemic equilibrium is a codimension two singularity in
the parameter space (R0, p), where R0 is the basic reproduction number and p is
the proportion of Susceptible individuals successfully vaccinated at birth. We exhibit
explicitly the Hopf, transcritical, Belyakov, heteroclinic and saddle-node bifurcation
curves unfolding the singularity. The two parameters (R0, p) are written in a useful
way to evaluate the proportion of vaccinated individuals necessary to eliminate the
disease and to conclude how the vaccination may affect the outcome of the epidemic.
We also exhibit the region in the parameter space where the disease persists and we
illustrate our main result with numerical simulations, emphasizing the role of the
parameters.
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1 Introduction

Mathematical models applied to epidemiology play an important role to understand
the dynamics of infectious diseases. Understanding how a disease evolves in a popu-
lation can be beneficial, not only to predict epidemic outbreaks, but also to improve
approaches against its spread [1–5]. One of the most widely used models to study
population interactions is the SIR model based on the division of the population in
three classes of individuals: Susceptible (S), Infectious (I) and Recovered (R) [6, 7].

When a disease enters a population, the medical community aims (as quick as
possible) to find ways to stop its evolution. There are studies in the literature that
investigate the behaviour of populations in the presence of infectious diseases by
using a wide range of techniques [8–12]. One of the most effective ways to prevent the
disease’s progression is via a vaccination policy [13–17]. As far as we know, there are
few articles in the literature that combine logistic growth in the Susceptible population
and the effect of vaccination.

In mathematical modelling, one may identify three vaccination strategies:

(i) Constant vaccination [15, 18, 19]—it consists of vaccinating a prescribed ratio
of newborns;

(ii) Pulse vaccination [18, 20]—it implies vaccinating a percentage of the suscep-
tible population periodically;

(iii) Mixed vaccination [18]—combination of constant and pulse vaccination.

Finding the most appropriate strategy is a challenge because we need to combine
the effect of several factors, namely the efficiency of the vaccination and its cost to the
public health policies. The application of bifurcation analysis to epidemiology may
give clues about the evolution of a given disease in the presence of several factors
namely vaccination, seasonality, sub-optimal immunity and nonlinear incidence [21–
24]. In the present article, we are interested in a modified SIR model exhibiting a
Double-zero (DZ) singularity and the dynamics it may unfold [25]. Sensitivity analysis
may be particularly useful in this context.

State of Art

There are several studies involving singularities in epidemic models.1

In Jin et al. [26], the authors studied global dynamics of a SIRS model with nonlin-
ear incidence rate. They established a threshold for a disease to be extinct or endemic,
analyzed the existence and stability of equilibria and verified the existence of bistable
states. Using normal forms and the Dulac criterion, they investigated backward bifur-
cation and obtained all curves associated to the Bogdanov-Takens bifurcation.

Zhang and Qiao [27] analyzed bifurcations in a SIR model including bilinear
incidence rate, vaccination and hospital resources (number of available beds). They
exhibited conditions to ensure the existence of a codimension three singularity for

1 There is an abundance of references in the literature. We choose to mention only a few for clarity and the
choice is uniquely based on our preferences. The reader interested in more details and examples may use
the references within those we mention.
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the system. They concluded that a high value of the vaccination parameter allows
the disappearance of the disease in the population. See also [28] where the authors
considered a SIR model with a standard incidence rate and a nonlinear recovery rate,
formulated to consider the impact of available resources of the public health system
(essentially the number of hospital beds).

Alexander and Moghadas [29] studied a SIRS epidemic model with a generalized
nonlinear incidence as a function of the number of infected individuals. It is assumed
that the natural immunity acquired by the infection is not permanent but wanes with
time. Normal forms have been derived for the different types of bifurcation that the
model undergoes. The Bogdanov-Takens normal form has been used to formulate the
local bifurcation curves for a family of homoclinic orbits arising when a Hopf and a
saddle-node bifurcation merge. They provided conditions for the occurrence of Hopf
bifurcations in terms of two parameters: the basic reproductive number and the rate
of loss of immunity acquired by the infection.

In 2022, Pan et al. [30] proposed a SIRS model undergoing a degenerate codimen-
sion three bifurcation inducing intermittency into the dynamics. The authors provided
sufficient conditions to guarantee the global asymptotic stability of the unique endemic
equilibrium. Vaccination and its boosted version have not been taken into account.

In 2018, Li and Teng [31] presented a SIRS model with generalized non-monotone
incidence rate and qualitatively proved the existence ofBogdanov-Takens bifurcations.
They located regions where the disease either persists or disappears. This phenomenon
indicates that the initial conditions of an epidemic may determine the final states of an
epidemic to go extinct or not.We also address the reader to [32, 33] for other variations
of the SIR/SIRS models. The reference [33] includes numerical simulations and data-
fitting of the influenza data in China.

Novelty

Our work contributes to the mathematical understanding of the modified SIR model,
where the class of Susceptible individuals (subject to a constant vaccination) grows
logistically. We find a DZ singularity in the bifurcation space (R0, p), where R0
is the basic reproduction number and p is the proportion of Susceptible individuals
successfully vaccinated at birth. Writing the parameters (of the model) as function of
R0 and p is our first breakthrough.

We exhibit explicit expressions for the saddle-node, transcritical, Hopf and hete-
roclinic bifurcation curves associated to the DZ bifurcation. These unfolding curves
have the same qualitative properties to the truncated amplitude system associated to
the Hopf-zero normal form (8.81) of [25]. The heteroclinic cycle is associated to two
disease-free equilibria and is asymptotically unstable (repelling).

For the sake of completeness, in Sect. 2, we describe some terminology that are
going to be useful throughout this article.
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2 Preliminaries

In this section, we introduce some terminology for vector fields acting on aRn , n ∈ N,
that will be used in the remaining sections. Let f be a smooth vector field on Rn with
flow given by the unique solution x(t) = ϕ(t, x) ∈ R

n of the two-parameter family

ẋ = f(η1,η2)(x), x(0) = x0, (1)

where (η1, η2) ∈ R
2.

Definition 1 We say that K ⊂ (R+
0 )2 is a positively flow-invariant set for (1) if for all

x ∈ K the trajectory of ϕ(t, x) is contained in K for t ≥ 0.

Definition 2 Given two hyperbolic equilibria A and B of (1), a heteroclinic connection
from A to B, is a solution of (1) contained inWu(A)∩Ws(B), the intersection of the
unstable manifold of A and the stable manifold of B.

For a solution of (1) passing through x ∈ R
n , the set of its accumulation points, as

t goes to +∞, is the ω-limit set of x . More formally, if A is the topological closure of
A ⊂ R

n , then:

Definition 3 If x ∈ R
n , the ω-limit of x is:

ω(x) =
+∞⋂

T=0

(
⋃

t>T

ϕ(t, x)

)
.

It is well known that ω(x) is closed and flow-invariant, and if the ϕ–trajectory of x is
contained in a compact set, then ω(x) is non-empty. If E is an invariant set of (1), we
say that E is a global attractor if ω(x) ⊂ E , for Lebesgue almost all points x in Rn .

The center manifold of a non-hyperbolic equilibrium is the set of solutions whose
behaviour around the equilibrium point is not controlled neither by the attraction of
the stable manifold nor by the repulsion of the unstable manifold. If the linearized part
of Df(η1,η2) (at a given equilibrium) has an eigenvalue with zero real part, the center
manifold plays an important goal and it is the right set where bifurcations occur.

Throughout this article, we study the DZ singularity of codimension two for a
family of differential equations corresponding to the case s = 1, θ < 0 in Equation
(8.81) of [25]. The unfolding of this singularity involves lines of saddle-node,Belyakov
transition, Hopf and homo/heteroclinic bifurcations. We suggest the reading of [25]
for a complete understanding of these bifurcations as well as the sufficient conditions
that prompt their existence.

3 TheModel

Inspired by the classical SIR model, we are going to divide the individuals of a given
(human) population into three classes of individuals [7, 34]:
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• Susceptible (S) proportion of healthy individualswho are susceptible to the disease;

• Infectious (I) proportion of infected individuals who can transmit the disease to
susceptible individuals;

• Recovered (R) proportion of individuals who recovered naturally from the disease
or through immunity conferred by the vaccine. This comprises individuals who
have definitive immunity and can not transmit the disease.

We assume that Susceptible individuals have never been in contact with the dis-
ease, but may become infected when they are in contact with the population of the
Infectious, and then become part of this class. Whereas in the class of Infectious, these
individuals can recover naturally and become part of the class of Recovered ones.
The Susceptible individuals may also have been successfully vaccinated at birth, thus
becoming immune to the disease [18, 35, 36]. Inspired by [7, 18, 37], the nonlinear
system of ODE in variables S, I and R (depending on time t), is given by:

Ẋ = F(X) ⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡ = S(A − S) − β I S − pm

İ = β I S − (μ + d)I − gI

Ṙ = pm + gI − μR,

(2)

where

X(t) = (S(t), I (t), R(t)) ∈ (R+)3,

Ẋ = (Ṡ, İ , Ṙ) =
(
dS

dt
,
dI

dt
,
dR

dt

)
.

Remark 1 When S = 0, we may extend non-smoothly F to the vector field

(0,−(μ + d)I − gI , pm + gI − μR).

The parameters of (2) may be interpreted as follows:

A carrying capacity of susceptible individualswhenβ = 0 (in the absence of disease)
and p = 0 (in the absence of vaccination);

β transmission rate of the disease;
m birth rate;
p proportion of susceptible individuals successfully vaccinated at birth, for p ∈

[0, 1];
μ natural death rate of infected and recovered individuals;
d death rate of infected individuals due to the disease;
g natural recovery rate.
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S I R
βIS gI

S(A − S)
Logistic growth

(μ + d)I μR

pm

Fig. 1 Schematic diagram of model (2). Boxes represent compartments, and arrows indicate the flow
between S, I and R

Figure1 illustrates the interaction between the classes of Susceptible, Infectious and
Recovered individuals in model (2). The basic reproduction number, denoted byR0,
may be seen as the number of secondary infections caused by a single infected person
in a susceptible population [38]. For model (2) with p = 0, R0 may be explicitly
computed as [9, 39, 40]:

R0 = lim
T→+∞

1

T

∫ T

0

Aβ

μ + d + g
dt = Aβ

μ + d + g
> 0. (3)

3.1 Hypotheses andMotivation

With respect to system (2), we also assume the following conditions:

(C1) All parameters are positive;
(C2) For all t ∈ R

+
0 , S(t) ≤ A;

(C3) Vaccination is considered only whenR0 > 1, i.e. p > 0 if and only ifR0 > 1
(in other words, forR0 < 1 no preventive measures involving vaccination will
be considered).

The phase space associated to (2) is a subset of (R+
0 )3 induced with the usual topology,

and the set of parameters is:

� =
{
ω = (A, β,m, μ, d, g) ∈ (R+)6

}
and p ∈ R

+
0 .

System (2) has been inspired in the classical SIRmodel [6]with slightmodifications
as we proceed to explain:

• We consider logistic growth in the susceptible population due to the crowding
and natural competition for resources [9, 34, 37], instead of linear or exponential
growth;

• Instead of a mixed or pulse vaccination strategy [18, Subsection 2.1], we have
assumed constant vaccination [15, 18, 20].
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3.2 Two-Dimensional System

The first two equations of (2), Ṡ and İ , are independent of R. Therefore, we may
consider the system:

⎧
⎨

⎩

Ṡ = S(A − S) − β I S − pm

İ = β I S − (μ + d) I − gI ,
(4)

with x = (S, I ) ∈ (R+)2. Because of Remark 1, we may extend (4) to the line S = 0:

⎧
⎨

⎩

Ṡ = 0

İ = − (μ + d) I − gI .
(5)

The vector field associated to (4) and (5) will be denoted by f and its flow is

ϕ(t, (S0, I0)), t ∈ R
+
0 , (S0, I0) ∈ (R+

0 )2.

This model will be the object of study of the present article; in order to shorten the
notation, we denote by σ the sum μ + d.

Lemma 1 The region defined by:

M =
{
(S, I ) ∈ (R+

0 )2 : 0 ≤ S ≤ A, 0 ≤ S + I ≤ A(σ + g + A)

σ + g
, S, I ≥ 0

}
,

is positively flow-invariant for (4) and (5).

Proof It is easy to check that (R+
0 )2 is flow invariant (note that (5) leaves invariant the

vertical lines S = 0 and I = 0).
Now, we show that if (S0, I0) ∈ M, then ϕ0(t, (S0, I0)), t ∈ R

+
0 , is contained

in M. Let us define φ(t) = S(t) + I (t) associated to the trajectory ϕ(t, (S0, I0)).
Omitting the dependence of the variables on t (when there is no risk of ambiguity),
one knows that:

φ̇ = Ṡ + İ

= S(A − S) − β I S − pm + β I S − (σ + g)I

= S(A − S) − pm − (σ + g)I ,
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from where we deduce that:

φ̇ + (σ + g)φ = S(A − S) − pm − (σ + g)I + (σ + g)S + (σ + g)I

= S(A − S) + (σ + g)S

≤ (σ + g + A)S.

If β = p = 0, then the first component of (4) would be the logistic growth and
thus its solution is limited by A (see (C2)), a property which remains for β, p > 0. In
particular, we may conclude that

φ̇ + (σ + g)φ ≤ (σ + g + A)A.

The classical differential version of the Gronwall’s Lemma2 says that for all t ∈ R
+
0 ,

we have:

φ(t) ≤ φ(0)e−(σ+g)t − (σ + g + A)A

(σ + g)

(
e−(σ+g)t − 1

)
.

Taking the limit when t → +∞, we get:

0 ≤ lim
t→+∞ φ(t) ≤ lim

t→+∞

[
φ(0)e−(σ+g)t − (σ + g + A)A

(σ + g)

(
e−(σ+g)t − 1

)]

= (σ + g + A)A

(σ + g)

Since limt→+∞ φ(t) = limt→+∞ (S(t) + I (t)), the result follows. 
�

4 Main Result and Consequences

We state the main results of the article, as well as its structure. We also discuss some
consequences.

4.1 Main Result

System (4) may have three formal equilibria3: two disease-free equilibria and one
endemic equilibrium, when they exist. The disease-free equilibria of system (4) are:

E p
0 = (S p

0 , I p0 ) =
(
A −√A2 − 4pm

2
, 0

)

2 If a, b ∈ R and u : R+
0 → R

+
0 is a C1 map such that u′ ≤ au + b, then u(t) ≤ u(0)eat + b

a (eat − 1).
3 The term “formal equilibria” means that they are equilibria of the system regardless it makes sense or
not in the context of the epidemic problem.
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and

E p
1 = (S p

1 , I p1 ) =
(
A +√A2 − 4pm

2
, 0

)
,

where p ≤ A2

4m ≤ 1, which implies A ≤ 2
√
m. The endemic formal equilibrium of

(4) is:

E p
2 = (S p

2 , I p2
) =

(
σ + g

β
,
−pmβ2 + A (σ + g) β − (σ + g)2

β2 (σ + g)

)
,

where −pmβ2 + A (σ + g) β − (σ + g)2 > 0
(3)⇔ R0 > 1 + pmβ2

(σ + g)
.

We are able to study the map f as a two-parameter family depending on the basic
reproduction number R0 and the proportion of vaccination p. Our main result says
that, in the bifurcation parameter (R0, p), E

p
2 is a DZ singularity for the vector field

f �→ f(R0,p).

Theorem A The endemic equilibrium E p
2 of (4) undergoes a DZ bifurcation at

(R

0, p


) =
(
2, A2

4m

)
. The local representations of the bifurcation curves in the space

of parameters (R0, p) ∈ (R+
0 )2 are as follows:

(i) Saddle-node bifurcation curve:

SN =
{
(R0, p) ∈ (R+

0 )2 : p = A2

4m

}

(ii) Transcritical bifurcation curve:

T =
{

(R0, p) ∈ (R+
0 )2 : p = A2

m

(R0 − 1)

R2
0

}

(iii) Belyakov transition curve:

Bt =
⎧
⎨

⎩(R0, p) ∈ (R+
0 )2 : p =

(
−2β + 1 + 2

√
β (R0 + β − 2)

)
A2

mR2
0

⎫
⎬

⎭

(iv) Heteroclinic cycle bifurcation curve:

Het. =
{

(R0, p) ∈ (R+
0 )2 : p ≈ 4.495

R2.313
0

− 0.039

}
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(v) Hopf bifurcation curve:

H =
{

(R0, p) ∈ (R+
0 )2 : p = A2

mR2
0

}
.

The Belyakov transition is a curve in the bifurcation space where the eigenvalues
of Df(R0,p) at E

p
2 change from non-real to real or vice-versa.

4.2 Proof of Theorem A and the Structure of the Article

The jacobian matrix of the vector field associated to (4) at E p
2 when (R


0, p

) =(

2, A2

4m

)
is given by:

⎛

⎜⎜⎜⎜⎝

p
mβ2 − (σ + g)2

β (σ + g)
− (σ + g)

−p
mβ2 + A (σ + g) β − (σ + g)2

β (σ + g)
0

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

p
m

A
R


0 − A

R

0

− (σ + g)

− p
m

A
R


0 + A − A

R

0

0

⎞

⎟⎟⎟⎟⎠

=
⎛

⎝
0 − (σ + g)

0 0

⎞

⎠ . (6)

It is easy to verify that the matrix (6) is non-hyperbolic and has a double zero eigen-

value. This is why we say that, for (R

0, p


) =
(
2, A2

4m

)
, the point E p

2 is a singularity

of codimension 2. The associated DZ bifurcations exist if the vector field f(R0,p),
at the bifurcation point, satisfies the nondegeneracy conditions described in [25, pp.
316–322]. Instead of verifying these additional conditions, we check analytically the

existence of all bifurcation curves that pass through the point (R

0, p


) =
(
2, A2

4m

)
,

as pointed out in Table 1.
For the sake of completeness, we have added in Sect. 5 a study of model (4) for

p = 0. The curve representing the heteroclinic cycle, denoted by H, in the space of
parameters (R0, p) was obtained by interpolation. The estimated correlation between
the two parameters where one observes a repelling heteroclinic cycle is 1 (precision:
10−5), as the reader may check in Sect. 6.6 and “Appendix 1”.We simulate the dynam-
ics in all hyperbolic regions associated to theDZ singularity in Fig. 5. Section8 finishes
this article.
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Fig. 2 DZ bifurcation diagram associated to (4). In the regions C, D and E, the disease persists in the
population. Compare with numerics of Fig. 5

4.3 Biological Consequences

As a direct consequence of Theorem A, we are able to locate three regions in the
parameter space (R0, p) where the disease persists (C, D and E), i.e. there is a set
with positive Lebesgue measure (in the phase space) whose ω-limit is the endemic
equilibrium. In regions C and D, trajectories starting “below” Ws(E p

0 ) tend to E p
2 . In
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Table 1 Codimension 1
bifurcations that characterizes
the DZ bifurcation and structure
of the proof of Theorem A

Bifurcation/transition Curve in Fig. 2 Subsection

Saddle-node SN 6.2

Transcritical T 6.3

Belyakov Bt 6.4

Hopf H 6.5

Heteroclinic Het 6.6

region E, there is a repelling periodic solution C (arising from the Hopf bifurcation)
which is responsible for the maintenance of an endemic region where the disease
persists.

In regionE, if we assume seasonality in the transmission rate β, the associated flow
exhibits a strange repeller and hyperbolic horseshoes, as a consequence of the works
[9, 41]. The heteroclinic cycle H is a repeller. In the regions F, G and H, the high
vaccination does not play a major role in the elimination of the disease because the
carrying capacity A is small compared with the number of Infected individuals that
are being generated.

5 The CaseWithout Vaccination (p = 0)

For the sake of completeness, we analyze model (4) considering p = 0:

ẋ = f(R0,0)(x) ⇔
⎧
⎨

⎩

Ṡ = S(A − S) − β I S

İ = β I S − (σ + g) I .
(7)

The disease-free equilibria of system (7) are obtained by imposing I = 0. Then we
get:

E0 ≡ E0
0 = (0, 0) and E1 ≡ E0

1 = (A, 0) .

With respect to the endemic equilibrium, we know that:

E2 =
(

σ + g

β
,
Aβ − (σ + g)

β2

)
(3)=
(

A

R0
,
A

β

(
1 − 1

R0

))
.

The formal equilibrium E2 ≡ E0
2 lies in the interior of the first quadrant when

R0 > 1.
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The jacobian matrix of the vector field associated to (7) at a general point E =
(S, I ) ∈ (R+

0 )2 is given by:

J (E) =
⎛

⎝
−β I + A − 2S −βS

β I βS − (σ + g)

⎞

⎠ . (8)

Evaluating J (E) at E0, E1 and E2 we have:

J (E0) =
⎛

⎝
A 0

0 − (σ + g)

⎞

⎠ J (E1) =
⎛

⎝
−A −Aβ

0 Aβ − (σ + g)

⎞

⎠ .

and

J (E2) =

⎛

⎜⎜⎜⎝

−σ + g

β
− (σ + g)

Aβ − (σ + g)

β
0

⎞

⎟⎟⎟⎠ ,

respectively.

Lemma 2 System (7) exhibits:

(1) two disease-free equilibria, E0 and E1, such that:

(a) for all R0 ∈ R
+, E0 is a saddle;

(b) if R0 < 1, then E1 is a sink. If R0 > 1, then E1 is a saddle;
(c) at R0 = 1, E1 undergoes a transcritical bifurcation with E2.

(2) an endemic equilibrium E2 such that:

(a) if 1 < R0 < 1 + 1
4β , then E2 is a stable node;

(b) if R0 > 1 + 1
4β , then E2 is a stable focus;

(c) at R0 = 1 + 1
4β , E2 undergoes a Belyakov transition.

Proof (1) The eigenvalues of J (E0) are − (σ + g) < 0 and A > 0. Since the eigen-
values of J (E0) have real part with opposite signs, then E0 is a saddle for all
R0 ∈ R

+. The eigenvalues of J (E1) are Aβ − (σ + g) and −A < 0. If

Aβ − (σ + g) < 0 ⇔ Aβ

σ + g
< 1

(3)⇔ R0 < 1,

then E1 is a sink. If R0 > 1, then E1 is a saddle. Therefore, in the vertical
direction, E1 interchanges its stability with E2 from stable to unstable at R0 = 1
(transcritical bifurcation).
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(2) The eigenvalues of J (E2) are given by:

λ1 := − (σ + g) − √
�

2β
and λ2 := − (σ + g) + √

�

2β
,

where � = −4 (σ + g)

[(
−β − 1

4

)
g + Aβ2 − σβ − σ

4

]
. Since β > 0 and

σ + g > 0, it is easy to verify that λ1 has negative real part. The eigenvalue λ2 has
negative real part if and only if

− (σ + g) + √
� < 0

⇔ √
� < σ + g

⇔

⎧
⎪⎨

⎪⎩

� ≥ 0

� < (σ + g)2

⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−4 (σ + g)

[(
−β − 1

4

)
g + Aβ2 − σβ − σ

4

]
≥ 0

−4 (σ + g)

[(
−β − 1

4

)
g + Aβ2 − σβ − σ

4

]
< (σ + g)2

⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
−β − 1

4

)
g + Aβ2 − σβ − σ

4
≤ 0

−4

[(
−β − 1

4

)
g + Aβ2 − σβ − σ

4

]
< σ + g

⇔

⎧
⎪⎨

⎪⎩

4Aβ2 − (4σβ + σ) − (4β + 1) g ≤ 0

g − Aβ + σ < 0

⇔

⎧
⎪⎪⎨

⎪⎪⎩

4βR0 − σ (4β + 1)

σ + g
− g (4β + 1)

σ + g
≤ 0

R0 > 1

⇔

⎧
⎪⎪⎨

⎪⎪⎩

R0 ≤ 1 + 1

4β

R0 > 1.

If 1 < R0 < 1 + 1
4β , then λ2 < 0 and E2 is a stable node. In an analogous way,

if R0 > 1 + 1
4β , then � < 0 and E2 is a stable focus. Hence, E2 evolves from

stable node to stable focus at R0 = 1 + 1
4β (Belyakov transition).
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Fig. 3 Phase diagram of (7) for different values of R0. I. E1 is a global attractor when restricted to the
closure of the first quadrant. II. Besides the E0 and E1, there exists a stable node E2. III. Besides the E0
and E1, there exists a stable focus E2. From I. to II. E1 undergoes a transcritical bifurcation at R0 = 1.
From II. to III. E2 evolves a Belyakov transition at R0 = 1 + 1

4β


�
In Fig. 3, one observes the scheme of the equilibria stability of system (7) for

different values ofR0. The transcritical bifurcation atR0 = 1 represents the threshold
for the existence of the endemic disease in the population, agreeing well with the
empirical belief.

6 The Case with Constant Vaccination (p > 0)

We analyze (4) by considering p > 0 and R0 > 1 (see (C3)):

ẋ = f(R0,0)(x) ⇔
⎧
⎨

⎩

Ṡ = S(A − S) − β I S − pm

İ = β I S − (σ + g) I .
(9)

For A andm fixed, we settle the following maps that will be used throughout this text:

pSN (R0) := A2

4m
, pT (R0) := A2

m

(R0 − 1)

R2
0

and pH (R0) := A2

mR2
0

, (10)

forR0 > 1. It is easy to verify that:

• pSN is a constant map and
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• if 1 < R0 < 2, then pH (R0) > pSN (R0), which does not make sense (because
E p
2 does not exist in the first quadrant as a consequence of Lemmas 3, 5). This is

the reason why we consider the set [2,+∞[ as the domain of pH .

6.1 Preparatory Section

We state a preliminary result that will be used in the sequel.

Lemma 3 The following statements hold for the maps given in (10):

(1) If R0 > 1 and R0 �= 2, then pT (R0) < pSN (R0);
(2) pH (2) = pT (2) = pSN (2);
(3) If R0 > 2, then pH (R0) < pT (R0) < pSN (R0).

Proof (1) From (10), it follows that:

pT (R0) < pSN (R0)

⇔ A2

m

(R0 − 1)

R2
0

<
A2

4m

⇔ R0 − 1

R2
0

<
1

4

⇔ R2
0 − 4R0 + 4 > 0

⇔ (R0 − 2)2 > 0. (11)

(2) This item follows if we evaluate pH , pT and pSN at R0 = 2.
(3) From (10), we have:

pH (R0) < pT (R0)

⇔ A2

mR2
0

<
A2

m

(R0 − 1)

R2
0

⇔ R0 − 1 > 1

⇔ R0 > 2. (12)

The remaining inequality follows from the previous item and transitivity.

�

6.2 Saddle-Node Bifurcation

The general jacobian matrix of (9) at E p = (S p, I p) ∈ (R+
0 )2 coincides with that of

(8). At E p
0 , E

p
1 and E p

2 , the matrix (8) takes the form:

J (E p
0 ) =

⎛

⎝
A − 2S p

0 −βS p
0

0 βS p
0 − (σ + g)

⎞

⎠ , J (E p
1 ) =

⎛

⎝
A − 2S p

1 −βS p
1

0 βS p
1 − (σ + g)

⎞

⎠
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and

J (E p
2 ) =

⎛

⎜⎜⎜⎜⎝

pmβ2 − (σ + g)2

β (σ + g)
− (σ + g)

−pmβ2 + A (σ + g) β − (σ + g)2

β (σ + g)
0

⎞

⎟⎟⎟⎟⎠
, (13)

respectively.

Lemma 4 The following statements hold for model (9):

(1) If p > pSN (R0), then E p
0 and E p

1 do not exist in the first quadrant of (S, I ).
(2) If pT (R0) < p < pSN (R0), then:

(a) E p
0 is a saddle and E p

1 is a sink for 1 < R0 < 2;
(b) E p

0 is a source and E p
1 is a saddle for R0 > 2.

(3) If p < pT (R0) and R0 > 1, then E p
0 and E p

1 are saddles.

Proof The eigenvalues of J (E p
0 ) are A − 2S p

0 and βS p
0 − (σ + g). We know that

A − 2S p
0 > 0

⇔ 2A − 2A + 2
√
A2 − 4pm

2
> 0

⇔
√
A2 − 4pm > 0 if p ≤ pSN (R0)

(1) If p > pSN (R0), then E p
0 and E p

1 do not exist.
(2) We may write:

βS p
0 − (σ + g) < 0

⇔ S p
0 <

σ + g

β

(6)⇔ A −√A2 − 4pm

2
<

σ + g

β

⇔
√
A2 − 4pm > A − 2 (σ + g)

β

⇔
√
A2 − 4pm >

AR0

R0
− 2A

R0

⇔
√
A2 − 4pm >

A (R0 − 2)

R0

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A2 − 4pm ≥ 0, 1 < R0 < 2

A2 − 4pm >
A2 (R0 − 2)2

R2
0

, R0 ≥ 2
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(10)⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p ≤ pSN , 1 < R0 < 2

p <
A2 (R0 − 1)

mR2
0

, R0 ≥ 2

(10)⇒

⎧
⎪⎨

⎪⎩

p < pSN (R0), 1 < R0 < 2

p < pT (R0), R0 > 2

, (14)

then the eigenvalues of J (E p
0 ) have real part with opposite signs and E p

0 is a
saddle. On the other hand, if

βS0 − (σ + g) > 0

⇔ S0 >
σ + g

β

⇔
√
A2 − 4pm <

A (R0 − 2)

R0

⇔ 0 ≤ A2 − 4pm <
A2 (R0 − 2)2

R2
0

, R0 > 2

(10)⇒ pT (R0) < p < pSN (R0), R0 > 2, (15)

then the eigenvalues of J (E p
0 ) have real part with positive signs, and E p

0 is a
source. Moreover, the eigenvalues of J (E p

1 ) are A−2S p
1 < 0 and βS p

1 − (σ + g).
Hence, if

βS p
1 − (σ + g) < 0

⇔ S p
1 <

σ + g

β

⇔
√
A2 − 4pm <

A (2 − R0)

R0

⇔ 0 ≤ A2 − 4pm <
A2 (2 − R0)

2

R2
0

, 1 < R0 < 2

(10)⇒ pT (R0) < p < pSN (R0), 1 < R0 < 2, (16)

then both eigenvalues of J (E p
1 ) have negative real part and E p

1 is a sink. If

βS p
1 − (σ + g) > 0

⇔ S p
1 >

σ + g

β

⇔
√
A2 − 4pm >

A (2 − R0)

R0
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⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A2 − 4pm >
A2 (2 − R0)

2

R2
0

, 1 < R0 ≤ 2

A2 − 4pm ≥ 0, R0 > 2

⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p <
A2

m

(
R0 − 1

R2
0

)
, 1 < R0 ≤ 2

p ≤ A2

4m
, R0 > 2

(10)⇒

⎧
⎪⎨

⎪⎩

p < pT (R0), 1 < R0 < 2

p < pSN (R0), R0 > 2,

(17)

then the eigenvalues of J (E p
1 ) have real part with opposite signs and E p

1 is a
saddle. Therefore, from (14) and (16), we conclude that:

(a) if pT (R0) < p < pSN (R0) and 1 < R0 < 2, then E p
0 is a saddle and E p

1 is
a sink;

(b) if pT (R0) < p < pSN (R0), then E p
0 is a source and E p

1 is a saddle, for
R0 > 2, under conditions (15) and (17).

(3) From (14) and (17), we conclude that if p < pT (R0), then E
p
0 and E p

1 are saddles.


�

6.3 Transcritical Bifurcation

Lemma 5 The endemic equilibrium E p
2 undergoes a transcritical bifurcation at p =

pT (R0) and lies in the interior of the first quadrant if p < pT (R0).

Proof The equilibrium E p
2 lies in the interior of the first quadrant if both S p

2 and I p2

are positive. It is clear that S p
2 = σ + g

β
> 0. Since β2(σ + g) > 0, we have

I p2 > 0 ⇔ −pmβ2 + A (σ + g) β − (σ + g)2 > 0.

Solving the previous inequality in order to p, one gets:

−pmβ2 + A (σ + g) β − (σ + g)2 > 0

⇔ p <
A (σ + g) β − (σ + g)2

mβ2

⇔ p <
A (σ + g)2 β

m (σ + g) β2 − (σ + g)2 A2

A2mβ2
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⇔ p <
(σ + g)2 A2

mβ2A2 R0 − 1

R2
0

A2

m

⇔ p <
1

R0

A2

m
− 1

R2
0

A2

m

⇔ p <
A2

m

(R0 − 1)

R2
0

(10)⇔ p < pT (R0)

since R0 > 1. Hence, E p
2 undergoes a trancritical bifurcation along the line p =

pT (R0) and interchanges its stability with E p
2 (ifR0 < 2) and E p

1 (ifR0 > 2). 
�

6.4 Belyakov Transition

We settle the following functions that will be used throughout this text:

�2(p) := m2 p2β4 + 4pm (σ + g)2 β3 − [4A (σ + g) + 2pm] (σ + g)2 β2

+ 4 (σ + g)4 β + (σ + g)4

= m2β4 p2 + 2mβ2 (2β − 1) (σ + g)2 p + (4β + 1) (σ + g)4

− 4A (σ + g)3 β2, (18)

p(1)
Bt

(R0) :=
(
−2β + 1 − 2

√
β (R0 + β − 2)

)
A2

mR2
0

, (19)

p(2)
Bt

(R0) :=
(
−2β + 1 + 2

√
β (R0 + β − 2)

)
A2

mR2
0

, (20)

for β (R0 + β − 2) > 0 ⇔ β > 2−R0, where p(1)
Bt

(R0) and p(2)
Bt

(R0) are the square

roots of �2(p)written as function ofR0. It is easy to verify that p
(1)
Bt

(R0) < p(2)
Bt

(R0).

Lemma 6 If β ≥ 1
2 and R0 > 1 + 1

4β , then p(2)
Bt

(R0) > 0.

Proof From (20) we know that if

(
−2β + 1 + 2

√
β (R0 + β − 2)

)
A2

mR2
0

> 0

⇔
(
−2β + 1 + 2

√
β (R0 + β − 2)

)
A2 > 0

⇔ 2
√

β (R0 + β − 2) > 2β − 1

⇔ √
β (R0 + β − 2) > β − 1

2



SIR Model with Vaccination: Bifurcation Analysis Page 21 of 32 105

⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β − 1

2
≥ 0, β (R0 + β − 2) >

[
β − 1

2

]2

β − 1

2
< 0, β (R0 + β − 2) ≥ 0

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β ≥ 1

2
, βR0 − 2β > −β + 1

4

β <
1

2
, β2 + R0β − 2β ≥ 0

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β ≥ 1

2
, β (R0 − 1) >

1

4

β <
1

2
, β ≥ 2 − R0

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β ≥ 1

2
, R0 > 1 + 1

4β

β <
1

2
, R0 ≥ 2 − β

,

then p(2)
Bt

(R0) > 0. If R0 = 1 + 1
4β , then p(2)

Bt
(R0) = 0 and if R0 = 2, then

p(2)
Bt

(R0) = pSN (R0). Hence we conclude that if β ≥ 1
2 and R0 > 1 + 1

4β , then

p(2)
Bt

(R0) > 0. 
�

Before we analyze the stability of E p
2 , we remind the readers that E p

2 exists in the
first quadrant when p < pT (R0) (by Lemma 5).

Lemma 7 The following statements hold for model (9):

(1) If p(2)
Bt

(R0) < p < pT (R0), then �2(p) > 0 and E p
2 is:

(a) stable node for R0 < 2;
(b) unstable node for p > pH (R0).

(2) If p < p(2)
Bt

(R0), then �2(p) < 0 and E p
2 is:

(a) stable focus for p < pH (R0);
(b) unstable focus for p > pH (R0).

Hence, E p
2 undergoes a Belyakov transition at p = p(2)

Bt
(R0).

Proof With respect to (9), the eigenvalues of the jacobian matrix of J (E p
2 ) are:

λ1 = pmβ2 − (σ + g)2 −√�2(p)

2β (σ + g)
and λ2 = pmβ2 − (σ + g)2 +√�2(p)

2β (σ + g)
.
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where λ1 < λ2. Hence, if λ1 > 0, then λ2 > 0. If λ2 < 0, then λ1 < 0. We know
from (18), (19), (20) and Lemma 6 that:

⎧
⎪⎨

⎪⎩

�2 > 0 , if 0 < p < p(1)
Bt

or p(2)
Bt

< p < +∞

�2 < 0 , if p(1)
Bt

< p < p(2)
Bt

,

where p(2)
Bt

(R0) < pT (R0).
(1) Therefore, if

λ1 > 0

⇔ pmβ2 − (σ + g)2 −√�2(p)

2β (σ + g)
> 0

⇔ √
�2(p) < pmβ2 − (σ + g)2

⇔

⎧
⎪⎨

⎪⎩

�2(p) ≥ 0

�2(p) <
[
pmβ2 − (σ + g)2

]2
, pmβ2 − (σ + g)2 > 0

⇔

⎧
⎪⎨

⎪⎩

p ≥ p(2)
Bt

(R0)

p < pT (R0)

, p > pH (R0)

⇒ p(2)
Bt

(R0) < p < pT (R0), for p > pH (R0)

then λ1 > 0 ⇒ λ2 > 0 and E p
2 is an unstable node. Analogously, we proceed in the

same way for λ2 < 0. If

λ2 < 0

⇔ pmβ2 − (σ + g)2 +√�2(p)

2β (σ + g)
< 0

⇔ √
�2(p) < (σ + g)2 − pmβ2

⇔

⎧
⎪⎨

⎪⎩

�2(p) ≥ 0

�2(p) <
[
(σ + g)2 − pmβ2

]2
, (σ + g)2 − pmβ2 > 0

⇔

⎧
⎪⎨

⎪⎩

p ≥ p(2)
Bt

(R0)

p < pT (R0)

, p < pH (R0)

⇒ p(2)
Bt

(R0) < p < pT (R0), for p < pH (R0)

then λ2 < 0 ⇒ λ1 < 0 and E p
2 is a stable node.
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(2) Now, let us assume that �2(p) < 0, which means that p < p(2)
Bt

(R0), the

eigenvalues are complex and E p
2 is a focus. If the real part of the eigenvalues of

J (E p
2 ) is negative (and β is positive), i.e. if

pmβ2 − (σ + g)2 < 0

⇔ pmβ2 < (σ + g)2

⇔ p <
(σ + g)2

mβ2

⇔ p <
A2

mR2
0

(10)⇔ p < pH (R0),

then E p
2 is a stable focus. Otherwise E p

2 is an unstable focus. Also, we conclude that

E p
2 undergoes a Belyakov transition at p = p(2)

Bt
(R0), since E p

2 changes its stability
from a node to a focus. 
�

6.5 Hopf Bifurcation

In this section we will find a line in the parameter space (p,R0) where a Hopf bifur-
cation occurs.

Lemma 8 If p = pH (R0), then E p
2 undergoes a subcritical Hopf bifurcation associ-

ated to an unstable periodic solution C (as R0 increases).

Proof Let the eigenvalues of J (E p
2 ) given by

λ1 = pmβ2 − (σ + g)2 −√�2(p)

2β (σ + g)
and λ2 = pmβ2 − (σ + g)2 +√�2(p)

2β (σ + g)
.

From [42, pp. 151–153, Theorem 3.4.2 (adapted)] we know that the Hopf bifurcation
occurs when the following conditions hold:

(1) the eigenvalues of themap Df (E p
2 ) (see (13)) have the form±iω (ω > 0), which is

equivalent to Tr J (E p
2 ) = 0, where Tr represents the usual trace operator. Indeed,

Tr J (E p
2 ) = 0

⇔ pmβ2 − (σ + g)2

β (σ + g)
= 0

⇔ pmβ2 − (σ + g)2 = 0

⇔ p = (σ + g)2

mβ2
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Fig. 4 Phase portraits of system (9) when E p
2 undergoes a subcritical Hopf bifurcation as R0 increases

⇔ p = A2

mR2
0

(10)⇔ p = pH (R0).

(2)
d

dR0

(
Re λ j (R0)

) ∣∣R0∈pH
�= 0, for j ∈ {1, 2}:

Hence, for p = pH (R0) we get

d

dR0

(
Re λ j (R0)

) ∣∣R0=R

0

= d

dR0

(
pmβ2

2β (σ + g)
− (σ + g)2

2β (σ + g)

) ∣∣∣R0=R

0

= d

dR0

(
σ + g

2β
− A

2R0

) ∣∣∣R0=R

0

= A

2R

0
2 �= 0. (21)

Hence, E p
2 undergoes a subcritical Hopf bifurcation (asR0 increases; the periodic

solution appears for R0 < R

0 as illustrated in Fig. 4. Figure2 provides a better

perspective of all bifurcations under consideration. 
�

6.6 Heteroclinic Cycle

Finding explicitly a non-robustheteroclinic cycle (in the phase space) to twohyperbolic
saddles and its bifurcating curve is a difficult task. In this section, we use polynomial
interpolation (of rational degree) to find the latter curve. We proceed to explain the
method that we have used to compute the map. All steps are described in “Appendix
1”.

Using MATLAB_R2018a, we locate thirteen pairs (R0i , pi ) in the parameter space
(R0, p) where one observes a heteroclinic cycle associated to the disease-free equi-
libria E pi

0 and E pi
1 (see Table 2). The type of function for the interpolation should be

appropriately chosen to fit the curve to our finite set of points [43, Part I, Section 1].
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Table 2 13 interpolating points
of the heteroclinic cycle function
in the space of parameters
(R0, p)

i R0i pi

1 2.0725 0.793486

2 2.2000 0.686625

3 2.2698 0.636156

4 2.4237 0.541135

5 2.6000 0.453994

6 2.6981 0.413374

7 2.8039 0.374719

8 2.9184 0.338027

9 3.0426 0.303294

10 3.1778 0.270517

11 3.3256 0.239692

12 3.4878 0.210816

13 3.6667 0.183883

These points were obtained in MATLAB_R2018a

As suggested by [23], points in the parameter space that correspond to the het-
eroclinic cycle associated to the disease-free equilibria should lie on the graph of
(Fig. 5):

y = axb + c for a, b, c ∈ R.

Using again MATLAB_R2018a, we obtain a = 4.495, b = −2.313 and c = −0.039,

and the graph of pHet. (R0) = 4.495

R2.313
0

− 0.039 is plotted in Fig. 6.

The heteroclinic bifurcation organizes the dynamics, stressing a geometric config-
uration in its unfolding.

7 Numerics

In this section we describe the dynamics of the bifurcations of model (9) and we per-
form numerical simulations associated to parameters in all hyperbolic (open) regions
of Figs. 2 and 5.

A: The vaccination coverage is so large that Infectious individuals tend to
disappear.

B: The flow exhibits two disease-free equilibria, a saddle E p
0 and a sink E p

1 .
All trajectories starting in the first quadrant evolve in such a way that their
I component tend to disappear. No endemic equilibria exist.

C and D: The endemic equilibrium E p
2 lies in the interior of the first quadrant and

it is Lyapunov stable. There is a positive Lebesgue measure set of initial
conditions converging to E p

2 , so the disease remains persistently in the
population. Initial conditions lying “below” Ws(E p

0 ) have E p
2 as ω-limit.
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Fig. 5 Numerical simulations of DZ bifurcation diagram with A = 1.1, β = 1.3, m = σ = g = 0.35 for
regions A, D,Het., E, F,G andH. For region B we use A = 1, β = 1.3, m = 0.35 and σ = g = 0.50, and
for region C we use A = 1.1, β = 0.91 and m = σ = g = 0.35. For all regions we consider p ∈ [0, 1].
Compare with the theoretical description in Fig. 2

E: The unstable heteroclinic cycleH is broken giving rise to an unstable peri-
odic solution C. The region bounded by C is conducive to the persistence of
the disease since all initial conditions tend toward E p

2 . All initial conditions
lying in the unbounded region defined by C are propitious to the disappear-
ance of the disease. The period of C is very large when (R0, p) is close to
the curve Het.

F and G: The equilibrium E p
2 is unstable and all initial conditions are in a region

conducive to the disappearance of the disease.
H: No endemic equilibria exist. The equilibria E p

0 and E p
1 repel Lebesgue

almost all trajectories towards the origin.

8 Concluding Remarks

In this article, we have performed a bifurcation analysis of a modified SIR model
accomodating constant vaccination and logistic growth in the Susceptible population,
whichmay be seen as a contribution towards the study of strategies to control infectious
diseases.
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Fig. 6 Function obtained by interpolation of 13 points (see Table 2) for which it is possible to observe the
heteroclinic cycle in phase space (S, I ). The function obtained by interpolation for which we can find the
heteroclinic cycle in the space of parameters (R0, p) is p (R0) ≈ 4.495R− 2.313

0 − 0.039

8.1 Conclusions

Model (2) exhibits an endemicDouble-zero (DZ) singularity. To prove themain result,
we have checked that the vector field associated to (2) has a double zero eigenvalue (at
the endemic equilibrium E p

2 ) and we have described all associated bifurcation curves

passing through the bifurcation point
(R


0, p


) =

(
2, A2

4m

)
in the parameter space. In

Fig. 2, we have exhibited explicitly the regions in the space of parameters where the
disease persists in the population.

We have established a threshold for the disease to be extinct or endemic andwe have
analyzed the existence and asymptotic stability of equilibria. Writing the bifurcation
curves as a function R0 and p is useful since these variables are key parameters in
many epidemiological studies.

The inclusion of a constant vaccination and a logistic function in the Susceptible
population increases the complexity of the dynamics of the classical SIR model. The
system may exhibit two disease-free equilibria and none of them corresponds to the
equilibrium (0, 0). Similar dynamics occurs in the context of prey-predator models
[44, 45].

Although Df(
2, A

2
4m

) at E p
2 has a double zero eigenvalue, the associated bifurcation

curves do not correspond to those of the classic Bogdanov-Takens bifurcation. It is
a variant of the truncated amplitude system associated to the Hopf-zero normal form
(8.81) of [25]. This implies chaos and suspended horseshoes in the presence of seasonal
parameters near pH (R0), as a consequence of the theory developed in [9, 46].
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In the presence of the endemic equilibrium (in the first quadrant of (S, I )), we have
detected two different regimes forR0 ≥ 1:

• 1 < R0 < 2: the increase of the vaccination rate plays an essencial role to decrease
the number of Infectious;

• 2 ≤ R0: although vaccination policies are beneficial, the control of the endemic
disease is mostly due to the saturation of the class of Susceptible individuals.

With constant vaccination, the transcritical and theHopf bifurcation curves induce
a change in the stability of the endemic equilibriumpoint. At the epidemiological level,
this means that these curves determine if the disease either disappears or remains. The
saddle-node bifurcation curves indicate the moment where disease-free equilibria
appear.

Although the model under analysis has limitations in terms of biologic validity, the
existence of a DZ bifurcation organizes the dynamics and stresses the role played by
the vaccination; the model agrees well with the empirical beliefs.

8.2 FutureWork

As already referred, our work generalizes that of Shulgin et al. [18] (with constant
vaccination) who modelled individual growth just with birth rate.

The strategy of constant vaccination may not be the most effective if the proportion
of successfully vaccinated newborns is low. Itmay be necessary to adoptmore effective
strategies such as the pulse vaccination. This technique aims to find an optimal period
between “shots” of the vaccine, allowing a proportion of infected individuals lower
than a given threshold. It should be possible to apply this technique to the regions
where the disease persists (C, D and E of Fig. 2). We would like to derive the period
of the vaccination “shot” that (efficiently) allows to control the number of infected
individuals.

Pulse vaccination can have different effects on the dynamics of infectious diseases,
depending on our starting model. Our next goal is to modify the first component of
(2) in the following way:

Ṡ = S(A − S) − β I S − p
+∞∑

n=0

S(nT−)δ(t − nT )

where n ∈ N and:

• T is the period between two consecutive “shots” (of vaccination);
• S(nT−) = limt→nT− S(t) is the number of Susceptible individuals at the instant
immediately before being vaccinated and δ is the usual Dirac function.

The analysis of an impulsive differential equation involving pulse vaccination is an
ongoing work.
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MATLAB R2018a: Code and Procedure

We set the code of MATLAB_R2018a to obtain the interpolation function that best
fits the (R0i , pi ) points in the parameter space (R0, p).
f=fit(x,y,‘power2’)
plot(f, x, y)
xlim([2 3.8])
ylim([0.1 0.75])
ax = gca;
ax.FontSize = 30;
xlabel(‘$R_0$’,‘Interpreter’,‘latex’)
ylabel(‘$p$’,‘Interpreter’,‘latex’)
leg1 = legend(‘($R_0_i,p_i$)
points’,‘Het. cycle function’)
lgd.FontSize = 20;
legend boxoff
set(leg1,‘Interpreter’,‘latex’);
where x and y are the vectors of R0i and pi values, respectively. The interpolation
function given by the MATLAB_R2018a has a correlation coefficient equal to 1 (pre-
cision: 10−5; confidence bound: 95%), as we can confirm in Fig. 7.

http://creativecommons.org/licenses/by/4.0/
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Fig. 7 MATLAB_R2018a
output for the two-term power
series model used in (R0i , pi )
points interpolation
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