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Abstract
This paper studies the boundary value problem for a fourth-order difference equation
with three quasidifferences. The new existence criterion of at least one solution to the
issues considered is obtained using the theory of variational methods. The main result
is illustrated in some examples.

Keywords Boundary value problem · Fourth-order difference equation · Existence
criterion · Critical point theory

Mathematics Subject Classification 39A27 · 39A12

1 Introduction

Let N, Z, R denote the set of positive integers, all integers, and real numbers, respec-
tively.We consider the existence of solutions to the following boundary value problem
(BVP) for the fourth-order difference equation with quasidifferences of the form

L(x(t)) + r(t)g(x(t)) + f (t) = 0, (1)
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where

L(x(t)) = �(p2(t − 1)�(p1(t − 2)�(p2(t − 2)�x(t − 2))))

−�(q(t − 1)�x(t − 1)),

and t ∈ [1, T ]Z, with the following boundary value conditions

�k x(−1) = �k x(T − 1), k = 0, 1, 2, 3. (2)

Here T is a natural number greater or equal to 2. We denote the forward difference
operator defined in a standard way

�x(t) = x(t + 1) − x(t) and �k x(t) = �(�k−1x(t)), for k ≥ 2.

Moreover, we assume that functions p1, p2, q, r , f : [1, T ]Z → R satisfy

pi (−1) = pi (T − 1), pi (0) = pi (T ), pi (1) = pi (T + 1), for i = 1, 2 (3)

and

q(0) = q(T ).

Our interests are focused on the widespread problem related to fourth-order equa-
tions, namely the existence of a solution to the boundary problem for a fourth-order
equation. Those kinds of problems are generally of considerable practical importance.
Such equations arise in many areas of science and technology, such as boundary value
problems for the deflection of a horizontal beam. The beam equation is widely used
in engineering, primarily civil and mechanical engineering, to determine the deflec-
tion or strength of a bending beam. Notice that various beam theories can be used to
describe the motion of the beam.

Fourth-order ordinary differential equation (ODE) is a tool to predict the deflection
for a beam problem, bending moment, modeling of viscoelastic flows, and soil settle-
ment. For this reason, vast literature deals with the existence and the multiplicity of
solutions for such a problem.

Yao [1] established several local existence theorems concerned with positive solu-
tions for a fourth-order two-point boundary value problem, where the nonlinear term
may be singular. The problem describes the deflection of an elastic beam rigidly fas-
tened on the left and supported on the right. Khanfer and Bougoffa [2] established
an existence and uniqueness theorem for the nonlocal fourth-order nonlinear beam
differential equations with a parameter.

Galewski et al. [3, 4] investigated a fourth-order Dirichlet problem connected with
the elastic beam equation with supported ends via a direct variational approach.
Bonanno and Bella [5] presented multiplicity results for a fourth-order nonlinear
boundary value problem. The existence of at least one nontrivial solution to a boundary
value problem for fourth-order elastic beam equations is established by Bonanno et al.
[6] based on a local minimum theorem for differentiable functionals. Grossinhoa et al.
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[7] considered the existence andmultiplicity of nontrivial periodic solutions for a semi-
linear fourth-order equation arising in studying spatial patterns for bistable systems
using variational tools such as the Brezis-Nirenberg Theorem and Clark Theorem.
Moghadam [8] established the existence of a nontrivial solution for a class of fourth-
order elastic beam equations involving Lipschitz non-linearity with Navier boundary
value condition using variational methods. The author ensured the exact collections of
the parameters in which the problem possesses at least a nontrivial solution. Drábek
and Holubová [9] showed that the usual limitations on the coefficient in the linear
problem with Navier boundary conditions are not necessary to get the existence of
positive or negative solutions whenever the coefficient is a nonconstant function.

In our considerations, we deal with the fourth-order discrete equation, which could
describe the casewhere the beam is fixed at both ends, itmeans the boundary conditions
for a cantilevered beamare given.However,more is needed to knowabout the existence
of solutions to such boundary value problems. He andYu [10] considered the existence
of positive solutions of fourth-order difference equation

�4u(t − 2) − ra(t) f (u(t)) = 0,

satisfying the boundary conditions

u(0) = �2u(0) = u(T + 2) = �2u(T ) = 0.

Using a symmetric Green’s function approach, Anderson and Minhós [11] presented
various existence, multiplicity, and nonexistence results for nontrivial solutions to a
nonlinear discrete fourth-order Lidstone boundary value problem

�4y(t − 2) − β�2y(t − 1) = λ f (y(t)), t ∈ {a + 1, . . . , b − 1},
y(a) = 0 = �2y(a − 1), y(b) = 0 = �2y(b − 1),

with dependence on two parameters.
Ma et al. [12] investigated the existence of positive solutions to the nonlinear bound-

ary value problem of fourth-order difference equation

�4u(t − 2) − ra(t) f (u(t)) = 0,

u(1) = u(T + 1) = �2u(0) = �2u(T ) = 0.

The authors’ approaches are based on the Krein-Rutman Theorem and Global Bifur-
cation Theorem.

In [13], Sang et al. presented sufficient conditions for the existence and unique-
ness of positive solutions for a discrete fourth-order beam equation under Lidstone
boundary conditions of the form

�4y(t − 2) − β�2y(t − 1) = h(t)[ f1(y(t)) + f2(y(t))], t ∈ {a + 1, . . . , b − 1},
y(a) = 0 = �2y(a − 1), y(b) = 0 = �2y(b − 1).
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By using the critical point theory, Huang and Zhou [14] established various sets of
sufficient conditions on the nonexistence and existence of solutions for the boundary
value problem

�2(p(t − 1)�2u(t − 2)) + �(q(t)�u(t − 1)) = f (t, u(t)), t ∈ {1, . . . , k},
u(−1) = u(0) = 0 = u(k + 1) = u(k + 2).

In 2019, Heidarkhani et al. [15] obtained the multiplicity results for discrete fourth-
order boundary value problem with four parameters

�4u(t − 2) + δ�2u(t − 1) − ξu(t) = λ f (t, u(t)) + μg(t, u(t)) + h(u(t),

u(a) = �2u(a − 1) = 0, u(b + 2) = �2u(b + 1) = 0.

Byemploying two critical point theorems, one due toAverna andBonanno, and another
one due to Bonanno, the authors guarantee the existence of two and three solutions
for the problem.

Ousbika and El Allali [16] proved the existence of three solutions for the discrete
nonlinear fourth-order boundary value problem

�4u(t − 2) + α�2u(t − 1) − βu(t) = λ f (t, u(t)) + μg(t, u(t)), t ∈ [2, T ]Z,

u(1) = �u(0) = �u(T ) = �3u(0) = �3u(T − 1) = 0,

with four parameters. The methods used in the proofs are based on the critical point
theory.

In 2022, Dhar and Kong, in [17], by using variational methods and critical point
theory, obtained criteria for the existence of at least three solutions for a generalized
fourth-order nonlinear difference equation together with periodic boundary conditions
of the form

�2(r(t − 2)�2u(t − 2)) + �(p(t − 1)(�u(t − 1))δ) − Q(t)(u(t))σ

= λ f (t, u(t)) + μg(t, u(t)), t ∈ [1, T ]Z,

�i u(−1) = �i u(T − 1), i + 0, 1, 2, 3.

Long and Zhang [18], by combining the method of the invariant sets of descending
flow with variational technique, gave a series of criteria in terms of different values of
λ to ensure that a discrete fourth-order Lidstone problem with three parameters

�4u(t − 2) + α�2u(t − 1) − βu(t) = λ f (t, u(t)), t ∈ [a + 1, b + 1]Z,

u(a) = �2u(a − 1) = 0, u(b + 2) = �2u(b + 1) = 0,

possesses at least four solutions. It is further shown that these four solutions consist
of one sign-changing solution, one positive solution, one negative solution and one
trivial solution.

For the background of the higher-order difference equations, see [19–21]. For the
theory of variational methods, see [22, 23] and the references therein.
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Compared to the previous results, our results concern a more general equation than
in the earlier studied boundary problems since a second sequence was introduced
to the quasidifference of the fourth-order, while earlier studies dealt with boundary
problems with one sequence in this quasidifference.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
variational structure. In Sect. 3, we state and prove the existence and uniqueness of a
solution to the problem. Several examples are provided in Sect. 4 to demonstrate our
main results. The last section is a conclusion.

2 Variational Structure

The variational method will be applied to show the existence of solutions to BVP (1),
(2). That is why we should introduce a suitable variational structure.

Let H be a vector space defined by

H := {x : [−1, T + 2]Z → R : �k x(−1) = �k x(T − 1), k = 0, 1, 2, 3}.
Rewriting the conditions given by (2) as follows

x(−1) = x(T − 1),

x(0) = x(T ),

x(1) = x(T + 1),

x(2) = x(T + 2),

we obtain that H is isomorphic to R
T and can be equipped with the scalar product

and norm defined in the standard way, i.e., for x, y ∈ H

(x, y) :=
T∑

t=1

x(t)y(y)

and

‖x‖ :=
(

T∑

t=1

(x(t))2
) 1

2

.

Let us define the functional on H in the following way

F(x) := 1

2

T∑

t=1

p1(t)
(
�(p2(t)�x(t))

)2 + 1

2

T∑

t=1

q(t)(�x(t))2

+
T∑

t=1

r(t)
∫ x(t)

0
g(s)ds +

T∑

t=1

f (t)x(t). (4)

If g is a locally integrable function on R, then F ∈ C1(H ,R) and it is easy to check
that
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∂F

∂x(t)
= �(p2(t − 1)�(p1(t − 2)�(p2(t − 2)�x(t − 2))))

−�(q(t − 1)�x(t − 1)) + r(t)g(x(t)) + f (t), t ∈ [1, T ]Z. (5)

It means that ∂F
∂x(t) = 0 if and only if the Eq. (1) holds. In other words, function x ∈ H

is a solution of the BVP given by (1), (2) if and only if x is a critical point of the
functional F on H .

We can rewrite the functional F using the matrix notation. Let A and B be square
matrices of the size T defined as follows. For T = 2, let

A =
[

(p1(2) + p1(1))(p2(2) + p2(1))2 −(p1(2) + p1(1))(p2(2) + p2(1))2

−(p1(2) + p1(1))(p2(2) + p2(1))2 (p1(2) + p1(1))(p2(2) + p2(1))2

]

and

B =
[

q(2) + q(1) −q(2) − q(1)

−q(2) − q(1) q(2) + q(1)

]
.

For T = 3, let

A = [ai j ]3×3,

where

a11 = p1(2)(p2(3))
2 + p1(3)(p2(3) + p2(1))

2 + p1(1)(p2(1))
2,

a22 = p1(2)(p2(2))
2 + p1(3)(p2(1))

2 + p1(1)(p2(1) + p2(2))
2,

a33 = p1(2)(p2(3) + p2(2))
2 + p1(3)(p2(3))

2 + p1(1)(p2(2))
2,

a12 = a21 = p1(2)p2(3)p2(2) − p1(3)p2(1)(p2(3) + p2(1))

−p1(1)p2(1)(p2(1) + p2(2)),

a23 = a32 = −p1(2)p2(2)(p2(2) + p2(3)) + p1(3)p2(3)p2(1)

−p1(1)p2(2)(p2(1) + p2(2)),

a13 = a31 = −p1(2)p2(3)(p2(2) + p2(3)) − p1(3)p2(3)(p2(3) + p2(1))

+p1(1)p2(1)p2(2).

For T = 4, let

A = [ai j ]4×4,

where

a11 = p1(3)(p2(4))
2 + p1(4)[p2(1) + p2(4)]2 + p1(1)(p2(1))

2,

a22 = p1(4)(p2(1))
2 + p1(1)[p2(1) + p2(2)]2 + p1(2)(p2(2))

2

a33 = p1(1)(p2(2))
2 + p1(2)[p2(2) + p2(3)]2 + p1(3)(p2(3))

2

a44 = p1(2)(p2(3))
2 + p1(3)[p2(3) + p2(4)]2 + p1(4)(p2(4))

2

a12 = a21 = −p1(4)p2(1)[p2(1) + p2(4)] − p1(1)p2(1)[p2(2) + p2(1)]
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a13 = a31 = p1(3)p2(4)p2(3) + p1(1)p2(2)p2(1)

a14 = a41 = −p1(3)p2(4)[p2(4) + p2(3)] − p1(4)p2(4)[p2(1) + p2(4)]
a23 = a32 = −p1(1)p2(2)[p2(2) + p2(1)] − p1(2)p2(2)[p2(3) + p2(2)]
a24 = a42 = p1(4)p2(1)p2(4) + p1(2)p2(3)p2(2)

a34 = a43 = −p1(3)p2(3)[p2(4) + p2(3)] − p1(2)p2(3)[p2(3) + p2(2)]

For T ≥ 5, let

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m(1) n(1) p(1) 0 . . . 0 p(T − 1) n(T )

n(1) m(2) n(2) p(2) . . . 0 0 p(T )

p(1) n(2) m(3) n(3) . . . 0 0 0
0 p(2) n(3) m(4) . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . n(T − 3) p(T − 3) 0
0 0 0 0 . . . m(T − 2) n(T − 2) p(T − 2)

p(T − 1) 0 0 0 . . . n(T − 2) m(T − 1) n(T − 1)
n(T ) p(T ) 0 0 . . . p(T − 2) n(T − 1) m(T )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

m(k) = p1(k − 2)(p2(k − 1))2 + p1(k − 1)[p2(k) + p2(k − 1)]2 + p1(k)(p2(k))
2,

n(k) = −p1(k − 1)p2(k)[p2(k) + p2(k − 1)] − p1(k)p2(k)[p2(k) + p2(k + 1)],
p(k) = p1(k)p2(k)p2(k + 1),

k = 1, 2, . . . , T .
For T ≥ 3, let

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(T ) + q(1) −q(1) 0 . . . −q(T )

−q(1) q(1) + q(2) −q(2) . . . 0

0 −q(2) q(2) + q(3) . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . −q(T − 1)

−q(T ) 0 0 . . . q(T − 1) + q(T )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

IntroducingM := A+B, we are in a position to rewrite the functional F as follows

F(x) = 1

2
x∗Mx +

T∑

t=1

r(t)
∫ x(t)

0
g(s)ds +

T∑

t=1

f (t)x(t), (6)

whereby x∗ we denote the transpose of a vector x . One can easily check the following
property of matrices A and M .

Notice 1 For each row of the matrix A, its elements’ sum equals zero.
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Proof For T = 2, the thesis is obvious. Let us now consider the case T ≥ 5. Since,
by assumption (3), the following equalities hold

m(1) = m(T + 1), n(1) = n(T + 1), p(1) = p(T + 1),
p(−1) = p(T − 1), p(0) = p(T ), n(0) = n(T ),

then from the definition of matrix A, we obtain that

T∑

j=1

ak+2, j = p(k) + n(k + 1) + m(k + 2) + n(k + 2) + p(k + 2)

for k = 0, 1, . . . , T − 1. Here
∑T

j=1 aT+1, j denotes
∑T

j=1 a1 j . Let us rewrite the
above sum as follows

T∑

j=1

ak+2, j = p1(k)a(k) + p1(k + 1)a(k + 1) + p1(k + 2)a(k + 2),

where

a(k) = p2(k)p2(k + 1) − p2(k + 1)(p2(k + 1) + p2(k)) + (p2(k + 1))2

= 0,

a(k + 1) = (p2(k + 2) + p2(k + 1))2 − p2(k + 1)(p2(k + 1) + p2(k + 2))

−p2(k + 2)(p2(k + 1) + p2(k + 2))

= 0,

a(k + 2) = (p2(k + 2))2 − p2(k + 2)(p2(k + 2) + p2(k + 3))

+p2(k + 3)p2(k + 3)

= 0,

which ends the proof in this case.
For T = 3, 4, we can show the thesis by similar direct calculations. To illustrate

that, let us consider the first row of the matrix A when T = 3. The sum of its elements
can be written as follows

3∑

j=1

a1 j = p1(1)a(1) + p1(2)a(2) + p1(3)a(3),

where

a(1) = p2(1)p2(2) − p2(1)(p2(1) + p2(2)) + (p2(1))
2

= 0,

a(2) = (p2(3))
2 + p2(3)p2(2) − p2(3)(p2(2) + p2(3))
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= 0,

a(3) = (p2(3) + p2(1))
2 − p2(1)(p2(3) + p2(1)) − p2(3)(p2(3) + p2(1))

= 0.

��
Having the above fact, we immediately conclude that the same property is also

valid for matrix M .

Notice 2 For each row of the matrix M , the elements’ sum equals 0.

Lemma 1 Assume that p1(t) ≥ 0, p2(t) ≥ 0, q(t) ≥ 0 for any t ∈ [1, T ]Z. Then M
is positive semidefinite matrix.

Proof Let x ∈ R
T and let x∗ denote its transpose.

For T = 2, 3, 4, it is easy to check that A and B are positive semidefinite matrices
by direct calculations.

For T ≥ 5, we have
2

x∗Ax =
T∑

i=1

p1(i) (p2(i)xi − (p2(i) + p2(i + 1)) xi+1 + p2(i + 1)xi+2)
2 ≥ 0,

and

x∗Bx =
T∑

i=1

q(i)(xi − xi+1)
2 ≥ 0.

The sum of any two positive semidefinite matrices of the same size is positive semidef-
inite. Hence, M is the positive semidefinite matrix for any T . ��
In 2009, Stehlík in Lemma 1 [24] showed that matrix A is positive semidefinite, but
his proof is based not on the definition but Gerschgorin Circle Theorem.

3 Main Results

As we mentioned, the critical point of the functional F is a solution of BVP given by
(1), (2). Therefore, let us recall the following suitable result.

Theorem 1 Let H be a Hilbert space. Let F : H → R be a weakly sequentially lower
semi-continuous and weakly coercive functional. Then F is bounded from below on
H and there exists x0 ∈ H such that F(x0) = min F(x). Moreover, if the Frechet
derivative exists, then

F ′(x0) = 0. (7)

Theorem 2 Assume that the following conditions hold

(A0) p1(t) > 0, p2(t) > 0, q(t) ≥ 0 for [1, T ]Z,
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(A1) r is a positive function on [1, T ]Z,

(A2) g ∈ L1
loc(R) and there exists constant α > 0 such that for any w ∈ R the

function g satisfies

∫ w

0
g(s)ds ≥ αw2.

Then the BVP (1), (2) has a solution.

Proof As we observe, the integrability of function g yields that the functional F is
continuous. That is why it only remains to show the weak coercivity of the functional
F . Since matrix M is positive semidefinite, we have that for any x ∈ H we have
x∗Mx ≥ 0, then

lim‖x‖→∞ F(x) ≥ lim‖x‖→∞

(
T∑

t=1

r(t)
∫ x(t)

0
g(s)ds +

T∑

t=1

f (t)x(t)

)

≥ lim‖x‖→∞

(
T∑

t=1

rmin

∫ x(t)

0
g(s)ds −

T∑

t=1

| f (t)x(t)|
)

,

where

rmin = min{r(1), r(2), . . . , r(T )}.

The Hölder inequality gives us

T∑

t=1

| f (t)xn(t)| ≤
(

T∑

t=1

f 2(t)

) 1
2
(

T∑

t=1

x2n (t)

) 1
2

.

Applying the above and the assumption (A2) with α > 0, we get

lim‖x‖→∞ F(x) ≥ lim‖x‖→∞

⎛

⎜⎝
T∑

t=1

αrminx
2(t) −

(
T∑

t=1

f 2(t)

) 1
2

‖x‖
⎞

⎟⎠

= lim‖x‖→∞

⎛

⎜⎝αrmin‖x‖2 −
(

T∑

t=1

f 2(t)

) 1
2

‖x(t)‖
⎞

⎟⎠ .

Finally, by assumption (A1) we know that rmin > 0 and it implies that the functional
F is weakly coercive, which by Theorem 1 ends the proof. ��
To obtain the uniqueness of the solution, let us recall the following theorem.
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Theorem 3 If, in addition to assumptions of Theorem 1, the functional F is continuous
and strictly convex, then x0 satisfying (7) is uniquely determined.

The above theorem will be crucial in proving the uniqueness of the solution to the
BVP.

Theorem 4 If assumptions (A0)-(A2) hold and (A3) g is strictly increasing func-
tion, then there exists a unique solution to the BVP (1), (2).

Proof To apply Theorem 3, we have to prove that the functional F given by (6)
is strictly convex. Since M is positive semidefinite, we can conclude that x∗Mx is
convex. Obviously, the sum

∑T
t=1 f (t)x(t) is linear function of x , so in particular is

convex. Note that the functional F is strictly convex if the functional

F̃(x) =
T∑

t=1

r(t)
∫ x(t)

0
g(s)ds

is strictly convex. And that is what is only left to show. Now let us introduce notation
g̃(w) = ∫ w

0 g(s)ds. The assumption (A3) implies that g̃ is strictly convex. Hence, for
any x, y ∈ H and u ∈ (0, 1) we have

F̃(ux + (1 − u)y) =
T∑

t=1

r(t)
∫ ux(t)+(1−u)y(t)

0
g(s)ds

=
T∑

t=1

r(t)g̃(ux(t) + (1 − u)y(t))

<

T∑

t=1

r(t)[ug̃(x(t)) + (1 − u)g̃(y(t))]

= u
T∑

t=1

r(t)g̃(x(t)) + (1 + u)

T∑

t=1

r(t)g̃(y(t))

= u F̃(x) + (1 − u)F̃(y).

��
Corollary 1 Assume that p1(t) ≥ 0, p2(t) ≥ 0, q(t) ≥ 0 for any t ∈ [1, T ]Z. If for
any t ∈ [1, T ]Z there exists g−1( f (t)) and conditions (A1)-(A3) hold, then the thesis
of Theorem 4 is satisfied.

Remark 1 If in Theorem 4 condition (A0) is replaced by

p1(t) > 0, p2(t) �= 0, q(t) ≥ 0 for any t ∈ [1, T ]Z,

the thesis of Theorem 4 holds.
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Remark 2 If in Theorem 4 condition (A0) and (A1) are replaced by

p1(t) < 0, p2(t) �= 0, q(t) ≤ 0 for any t ∈ [1, T ]Z,

and

r is a negative function on [1, T ]Z
respectively, the thesis of Theorem 4 also holds.

Notice that presented here Theorems 3 and 4 improved and generalized the results
published by Liu, Zhou and Shi [25] in 2018. Taking p1 ≡ 1, p2(t) = p(t) for
t ∈ [1, T ]Z, and g(t) ≡ t for t ∈ R we obtain Theorem 3 from that paper. So more,
condition (M) from Theorem 3 [25] is always satisfied as a particular case of our
Notice 2, and condition (27) is redundant.

4 Examples

In the last section, we present six examples.

Example 1 Consider the difference equation

�4x(t − 2) − �2x(t − 1) + 2x(t) + 3
√
x(t) + f (t) = 0, (8)

where

f (t) = −43

6

(
t − 4

⌊
t

4

⌋)3

+ 15

2

(
t − 4

⌊
t

4

⌋)2

+ 41

3

(
t − 4

⌊
t

4

⌋)
− 5

with T = 4. One can check that all assumptions of the Theorem 4 hold (with p1 ≡ 1,
p2 ≡ 1, q ≡ 1 and r ≡ 1). It is easy to verify that x(1) = 0, x(2) = 0, x(3) =
1, x(4) = 0 is a solution of equation (8). Here function g(x) = 2x + 3

√
x is a strictly

increasing function, thus the given solution is the unique solution of the considered
BVP.

Example 2 For T = 5 consider Eq. (1) with coefficients

p1(1) = 1, p1(2) = 2, p1(3) = 3, p1(4) = 2, p1(5) = 1,

p2(1) = 4, p2(2) = 3, p2(3) = 4, p2(4) = 6, p2(5) = 5,

q(1) = 5, q(2) = 2, q(3) = 3, q(4) = 5, q(5) = 4,

satisfying assumptions (A0), and

r(1) = 1, r(2) = 2, r(3) = 4, r(4) = 3, r(5) = 1,

g(t) = 2t + π sin (π t),
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f (t) = −1903

6
t4 + 10942

3
t3 − 43012

3
t2 + 133981

6
t − 11323.

We have

A =

⎡

⎢⎢⎢⎢⎣

147 −64 12 60 −155
−64 83 −63 24 20
12 −63 155 −176 72
60 24 −176 404 −312

−155 20 72 −312 375

⎤

⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎣

9 −5 0 0 −4
−5 7 −2 0 0
0 −2 5 −3 0
0 0 −3 8 −5

−4 0 0 −5 9

⎤

⎥⎥⎥⎥⎦
,

and positive semidefinite matrix

M =

⎡

⎢⎢⎢⎢⎣

156 −69 12 60 −159
−69 90 −65 24 20
12 −65 160 −179 72
60 24 −179 412 −317

−159 20 72 −317 384

⎤

⎥⎥⎥⎥⎦
.

Note that all assumptions of Theorem 2 hold. Moreover, one can check that one of
the solutions of the boundary value problem (1), (2) is x(1) = 3, x(2) = 4, x(3) =
5, x(4) = 1, x(5) = 2.

Example 3 Let T = 7, and assume the following coefficients of equation (1)

p1(1) = 5, p1(2) = 4, p1(3) = 3, p1(4) = 2, p1(5) = 1, p1(6) = 7, p1(7) = 6,

p2(1) = 4, p2(2) = 6, p2(3) = 7, p2(4) = 8, p2(5) = 10 p2(6) = 2, p2(7) = 3,

q(1) = 1, q(2) = 2, q(3) = 3, q(4) = 2, q(5) = 1 q(6) = 2, q(7) = 2,

and

r(t) = 1, g(t) = 2t ,

f (t) = 18127

180
t6 − 47593

20
t5 + 795275

36
t4 − 1223993

12
t3

+21916469

90
t2 − 4193324

15
t + 117408.

Then

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

437 −368 120 0 0 42 −231
−368 740 −612 168 0 0 72
120 −612 1003 −679 168 0 0
0 168 −679 999 −648 160 0
0 0 168 −648 940 −480 20
42 0 0 160 −480 372 −94

−231 72 0 0 20 −94 233

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0 0 −2
−1 3 −2 0 0 0 0
0 −2 5 −3 0 0 0
0 0 −3 5 −2 0 0
0 0 0 −2 3 −1 0
0 0 0 0 −1 3 −2

−2 0 0 0 0 −2 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

440 −369 120 0 0 42 −233
−369 743 −614 168 0 0 72
120 −614 1008 −682 168 0 0
0 168 −682 1004 −650 160 0
0 0 168 −650 943 −481 20
42 0 0 160 −481 375 −96

−233 72 0 0 20 −96 237

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

All assumptions of Theorem 2 hold (for α = 1
2 ). The solution of considered BVP is

x(1) = 4, x(2) = 2, x(3) = 1, x(4) = 2, x(5) = 1, x(6) = 3, x(7) = 2. Since
function g is strictly increasing function, thus the solution is unique.

Example 4 Consider Eq. (1) for T = 100, taking p1(t) = 2 + sin 2π t
100 , p2(t) =

2 + cos 2π t
100 , q(t) = 1 − 2t(t − 100), g(t) = 4t3 + t , r(t) = t2, f (t) = −34t2.

The elements of matrices A and B are given by

m(k) =
(
2 + sin

2(k − 2)π

100

)(
2 + cos

2(k − 1)π

100

)2

+
(
2 + sin

2(k − 1)π

100

)[(
2 + cos

2kπ

100

)
+
(
2 + cos

2(k − 1)π

100

)]2

+
(
2 + sin

2kπ

100

)(
2 + cos

2kπ

100

)2

,

n(k) = −
(
2 + sin

2(k − 1)π

100

)(
2 + cos

2kπ

100

)[(
2 + cos

2kπ

100

)
+
(
2 + cos

2(k − 1)π

100

)]

−
(
2 + sin

2kπ

100

)(
2 + cos

2kπ

100

)[(
2 + cos

2kπ

100

)
+
(
2 + cos

2(k + 1)π

100

)]
,

p(k) =
(
2 + sin

2kπ

100

)(
2 + cos

2kπ

100

)(
2 + cos

2(k + 1)π

100

)
,

q(k) = 1 − 2k(k − 100), k = 1, 2, . . . , 100.

It is easy to verify that the assumptions of Theorem 4 hold and x(t) = 2 is the unique
solution to BVP.
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Example 5 Consider Eq. (1) for T = 1000, where p1(t) = 5 + (−1)t , p2(t) =
2 + (−1)t , q(t) ≡ 0, g(t) = t , r(t) = 320, f (t) = 640 cos(tπ) − 1600. Here

m(k) =
{
136, k ≡ 1 (mod 2)
124, k ≡ 0 (mod 2),

n(k) =
{−40, k ≡ 1 (mod 2)

−120, k ≡ 0 (mod 2),

p(k) =
{
12, k ≡ 1 (mod 2)
18, k ≡ 0 (mod 2),

for k = 1, 2, . . . , 1000. The assumptions of Theorem 4 hold and x(t) = 5+ (−1)t+1

is the unique solution to the considered equation.

Example 6 Consider Eq. (1) where T = 10, 000, p1(t) = p2(t) = q(t) = r(t) ≡ 1,
g(t) = t10001 + t , f (t) = 22 cos((t + 1)π). Here m(k) = 6, n(k) = −4, p(k) = 1
for k = 1, 2, . . . , 10, 000. It is easy to verify that the assumptions of Theorem 4 hold
and x(t) = (−1)t is the unique solution to the considered problem.

Conclusion

This paper studies the boundary value problem (1), (2).We obtain sufficient conditions
for the existence and uniqueness of a solution to consider BVP using variational
methods. Our results concern a more general equation than in the earlier studied
boundary problems since we introduce a second sequence to the quasidifference of
the fourth-order. At the same time, earlier studies dealt with boundary problems with
one sequence in this quasidifference. The examples illustrate the presented results.

An interesting topic is a possibility of generalizing the presented results to equa-
tions of higher-orders with one or more quasidifferences. The issues of providing
sufficient conditions for the existence of the BVP solution with the imposition of
other assumptions on nonlinear functions than those assumed in this work also require
further research.
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