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Abstract
A tuberculosis (TB) epidemic model with Beddington–DeAngelis incidence and
distributed delay is proposed to characterize the interaction between latent period,
endogenous reactivation, treatment of latent TB infection, as well as relapse. The
basic reproduction number R0 is defined, and the globally asymptotic stability of
disease-free equilibrium is shownwhenR0 < 1, while if R0 > 1 the globally asymp-
totic stability of endemic equilibrium is also acquired. Theoretical results are validated
through performing numerical simulations, whereinwe detect that TB dynamic behav-
ior between models with discrete and distributed delays could be same and opposite,
and TB is more persistent in the model with distributed delay. Besides, increasing the
protection level of susceptible and infectious individuals is crucial for the control of
TB.

Keywords Distributed delay · Tuberculosis · Beddington–DeAngelis incidence ·
Global stability · Endogenous reactivation

1 Introduction

Tuberculosis, which results from Mycobacterium tuberculosis (MTB), is the leading
lethal disease from a single infectious pathogen worldwide [1]. In light of the global
TB report 2021 from the WHO, about a quarter of the population around the world
has been infected with MTB, meanwhile, the prevention and treatment of TB has
been facing new risks and challenges since the COVID-19 became pandemic [2]. TB
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treatment has savedmore than 60million deaths since 2000 [1], whichmainly includes
the Bacille Calmette–Gurin (BCG) vaccination for children [3] and treatment of LTBI
[4]. However, TB still remains a great risk and challenge to the global public health,
mainly due to the recurrent TB, which usually includes two types, one is the relapse
of the original strain, and the other is the reinfection with a new strain [5].

Once infected with MTB, individuals will enter a variable latent period, which
lasts from months to decades [6]. If individuals become infectious in a relatively short
length of time after infection, they are considered to turn into infectious individuals
directly without going through a latent period, which is called the fast progression
of TB. If not, it is considered that the individuals become the latent individuals after
infection, which is called a slow progression of TB [7]. During the slow progression,
a small fraction of latent individuals will develop to infectious individuals, which is
called as endogenous reactivation [8]. Many scholars [7, 9–11] have studied infectious
diseases related to the fast and slow progression, among them, Blower et al. [9] initially
developed the following model of TB transmission,

⎧
⎪⎨

⎪⎩

Ṡ(t) = λs − βSI − μN S,

Ė(t) = (1 − p)βSI − σ E − μN E,

İ (t) = pβSI + σ E − dT B I − μN I ,

(1)

where S(t), E(t), I (t) denote susceptible, latent and infectious individuals separately;
β is the transmission rate between susceptible and infectious individuals; λs repre-
sents the recruitment rate of susceptible individuals; σ is progression rate from latent
compartment to infectious compartment; μN is the natural mortality rate; dT B is the
death rate due to TB; p denotes the proportion of susceptible individuals developing to
infectious individuals(fast progression). They found that TB would persist for a long
time to stay at a stable state.

Subsequently, Castillo-Chavez and Feng [12] investigated the following TB model
with treatment and reinfection,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) =λs − βSI

N
− μN S,

Ė(t) =βSI

N
+ β ′T I

N
− (μN + σ + γl)E,

İ (t) =σ E − (μN + dT B + γI )I ,

Ṫ (t) =γl E + γI I − β ′T I

N
− μN T

(2)

where T (t) denotes treated individuals; N (t) implies the total population; β ′ is the
transmission rate between treated and infectious individuals; γl , γI represent the treat-
ment rates for LTBI and infectious individuals separately. They found that treatment
reduced prevalence and increased proportion of uninfected population.
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It is shown in model (2) that all individuals come into latent period after being
infected, and all new infectious individuals come from the rate of disease progression
σ . But in fact, the probability of latent individuals to become infectious during the first
few years after infection is relatively high, whereas over time, it decreases. Meanwhile
the individuals who do not become infectious during these few years may remain
latently infected for many years or even whole life [13]. Employing the parameter p to
distinguish individuals between fast and slow progression, though there are advantages
such as concise and direct, there are also disadvantages, such as it is very difficult to
measure the real value of p and ignoring the latency of individuals who account for the
proportion p, etc. Therefore, Colign et al. [13] incorporated the compartment L1(t)
and time delay τL1 of fast-progressing latency into theirmodelling process. During this
period, the infected individuals die at rate μN and progress to infectious individuals
at rate pl . The individual number of compartment L1(t) at time t is shown by

L1(t) =
∫ t

t−τL1

βS(s)I (s)e−(μN+pl )(t−s)ds,

then by differentiating L1(t), the term βS(t − τL1)I (t − τL1)e
−(μN+pl )τL1 represents

the number of individuals of L1(t) who enters the latency L(t) of slow progression.
Meanwhile they assumed that individuals of L1(t) who progress to infectious indi-
viduals all experience a latency no more than τL1 after infection, then the infectious
compartment I (t) gains a term βS(t − τL1)I (t − τL1)e

−μN τL1 (1 − e−plτL1 ), where
1−e−plτL1 represents the proportion of the number of those individuals. Thereby, they
developed the TB model with discrete delay and slow-progressing latency as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) =λs − βS(t)I (t) − μN S(t),

L̇(t) =βS(t − τL1)I (t − τL1)e
−(μN+pl )τL1 + β I (t − τL1)(L(t − τL1)

+ T (t − τL1))e
−(μN+pr )τL1 − βL(t)I (t) − kl L(t) − μN L(t) + rs I (t),

İ (t) =βS(t − τL1)I (t − τL1)e
−μN τL1 (1 − e−plτL1 ) + β I (t − τL1)(L(t − τL1)

+ T (t − τL1))e
−μN τL1 (1 − e−pr τL1 ) + kl L(t) + θT T (t)

− (rs + dT B + γI )I (t),

Ṫ (t) =γI I (t) − β I (t)T (t) − (θT + μN )T (t),

(3)

where the latent and treated individuals contact with the infectious individuals again
and become infectious with a rate pr ; rs denotes the self-recovery rate of infectious
individuals; kl denotes the endogenous reactivation rate of latent individuals; θT rep-
resents the relapse rate of treated individuals. They found that contact heterogeneity
could lead to local outbreaks in the presence of declining epidemics. Okuonghae [14]
carried out some qualitative analysis on the model (3), found that a backward bifurca-
tion existed with exogenous reinfection, criteria on the local stability and a necessary
condition for the global stability of disease-free equilibrium (DFE) was obtained as
well.
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Recently, in addition to the work mentioned above, there has been plenty of other
important work of TB models [15–19] focusing on various aspects e.g., vaccination,
multi-strain infection, and co-infection with other diseases, etc., which mainly dis-
cussed the stability of equilibria (or periodic solution), the persistence (or extinction)
of disease, bifurcation and chaos etc.

As well known, incidence function performs a vital role in epidemic models to
characterize the interaction between susceptible and infectious individuals, and usually
includes bilinear and non-linear incidences etc. [20], in which nonlinear incidences
such as saturated, ratio-dependent and Beddington–DeAngelis incidences have been
proven that are more appropriate and exact to describe the complicated interactive
course of disease transmission [21–25]. However, most TB epidemic models usually
used bilinear [6, 13, 14, 26] and standard incidences [12, 27, 28], while very few
considered non-linear incidence. Xu et al. [23, 29] introduced ratio-dependent and
saturated incidences into epidemic models respectively to describe the transmission
of TB, influenza, measles etc., and the globally asymptotic stability of equilibria was
attained. Baba et al. [30] presented a TB epidemic model with saturated incidence,
showed that effective control strategies would give rise to a reduction of infectious
population. Additionally, the Beddington–DeAngelis incidence function βSI

1+ηs S+ηI I
containing the inhibitory effect of susceptible and infectious individuals, has been
gradually employed in epidemic models [21, 24], which could include the bilinear
incidence function βSI (ηs = 0, ηI = 0) and saturated incidence function βSI

1+ηI I
(ηs = 0) as special cases.

Furthermore, time delays are normally used to describe a required time period
for an individual from infection to be infectious [31]. Meanwhile, distributed delay
which describes infectivity as a function of duration since infection [32] is assumed
to be better than discrete delay to model variable latency [17] and the long-term
disease infection [22, 33]. Beretta and Takeuchi [34, 35] pioneered epidemic mod-
els with distributed delay, Feng et al. [17] developed an SEI model with distributed
delay describing TB transmission dynamics, and argued that distributed latency would
not turn the qualitative dynamics of TB. Based on the method in [13], considering
Beddington–DeAngelis incidence and distributed delay, the latent compartment L1(t)
of fast progression could shown as follows,

L1(t) =
∫ t

t−κ

∫ τL1

0

βS(s)I (s)

1 + ηs S(s) + ηI I (s)
e−(μN+pl )(t−s) f (κ)dκds.

Thus,

L̇1(t) = −(μN + pl)L1(t) + βS(t)I (t)

1 + ηs S(t) + ηI I (t)

−
∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−(μN+pl )κ f (κ)dκ,
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the term

∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−(μN+pl )κ f (κ)dκ

leaves L1(t) and enters the latent compartment L(t) of slow progression. Then we also
assume that the progression from fast-progressing latency to infectious compartment
all take place within a time τL1 after infection, then the infectious compartment I (t)
gains a delayed term

∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−μN κ(1 − e−plκ) f (κ)dκ,

where,
∫ τL1
0 f (κ)dκ = 1, f (κ) is the distribution function satisfying f (κ) ≥ 0 for all

κ ∈ [0,+∞).
Moreover, Several studies [36, 37] have shown that relapse of TB accounts for

a higher proportion of TB infection than reinfection. Therefore we incorporate the
relapse of TB along with the treatment of LTBI and endogenous reactivation in the
modelling process, propose the TB epidemic model (4) with distributed delay and
Beddington–DeAngelis incidence,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) =λs − βS(t)I (t)

1 + ηs S(t) + ηI I (t)
− μN S(t),

L̇(t) =
∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−(μN+pl )κ f (κ)dκ

− (μN + kl + γl)L(t),

İ (t) =
∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−μN κ(1 − e−plκ) f (κ)dκ + kl L(t)

− (μN + dT B + γI )I (t) + θT T (t),

Ṫ (t) =γl L(t) + γI I (t) − μN T (t) − θT T (t),

(4)

where, ηs > 0, ηI > 0 is the protection level against the disease of susceptible and
infectious individuals respectively. All parameters are positive constants.

The following is how the remaining of this article is structured. In Sect. 2, the
positivity and boundedness of solutions for model (4) are discussed. In Sect. 3, the
basic reproduction number R0 is defined, and the existence and locally asymptotic
stability of equilibria are obtained. In Sect. 4, the globally asymptotic stability of
equilibria is proved. In Sect. 5, theoretical results are validated through performing
numerical simulations, sensitivity analysis on some parameters is also conducted.
Finally, we give a brief summary.
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2 Basic properties

The nonnegativity and boundedness of solutions for model (4) are shown in this
section. The initial conditions of model (4) are

S(ν) = �1(ν), L(ν) = �2(ν), I (ν) = �3(ν), T (ν) = �4(ν), ν ∈ [−τL1 , 0], (5)

where � = (�1,�2,�3,�4)
T ∈ B([−τL1 , 0], R4+), �i (ν) ≥ 0 (−τL1 ≤ ν ≤

0, i = 1, 2, 3, 4), andB is the Banach space of continuous functions� : [−τL1 , 0] →
R4+ with ‖ � ‖= max−τL1≤ν≤0 | �(ν) |.
Theorem 1 The arbitrary solution (S(t), L(t), I (t), T (t))T of model (4) with initial
conditions (5) is non-negative and ultimately bounded on [0,+∞).

Proof Since the theorem of functional differential equations [38], a unique solution
(S(t), L(t), I (t), T (t))T of model (4) with initial conditions (5) exsists on maximum
existing interval [0, Tmax), where Tmax ≤ ∞. Assume that there exists ts ∈ [0, Tmax)

satisfying S(ts) = 0, and that for any t ∈ [0, ts), S(t) > 0 holds, thereby Ṡ(ts) ≤ 0.
However, it is easy to see that Ṡ(ts) = λs > 0, which leads to a contradiction, so
S(t) > 0 holds for any t ∈ [0, Tmax). Assume existence of t2 ∈ [0, Tmax) satisfying
I (t2) = 0, and that for any t ∈ [0, t2), I (t) > 0 holds, thus İ (t2) ≤ 0. However, it
holds that

İ (t2) =
∫ τL1

0

βS(t2 − κ)I (t2 − κ)

1 + ηs S(t2 − κ) + ηI I (t2 − κ)
e−μN κ(1 − e−plκ) f (κ)dκ

+ kl L(t2) + θT T (t2),

I (t) =
∫ t

0

[∫ τL1

0

βS(ξ − κ)I (ξ − κ)

1 + ηs S(ξ − κ) + ηI I (ξ − κ)
e−μN κ(1 − e−plκ) f (κ)dκ

+kl L(ξ) + θT T (ξ)] e−(μN+dT B+γI )(t−ξ)dξ + I (0)e−(μN+dT B+γI )t , (6)

L(t) =
∫ t

0

∫ τL1

0

βS(ξ − κ)I (ξ − κ)

1 + ηs S(ξ − κ) + ηI I (ξ − κ)
e−(μN+pl )κ f (κ)dκ

× e−(μN+kl+γl )(t−ξ)dξ + L(0)e−(μN+kl+γl )t , (7)

T (t) =
∫ t

0
[γl L(ξ) + γI I (ξ)]e−(μN+θT )(t−ξ)dξ + T (0)e−(μN+θT )t . (8)

It is obvious that I (t2 − κ), S(t2 − κ), L(t2), T (t2) > 0, where t2 ∈
[0, Tmax), and κ ∈ (0, τL1). Hence, we have İ (t2) > 0, which induce a contra-
diction. Therefore, I (t) > 0 holds for any t ∈ [0, Tmax). Further from Eqs. (7) and
(8), L(t), T (t) > 0 hold for any t ∈ [0, Tmax). Hence, (S(t), L(t), I (t), T (t))T is
non-negative on [0, Tmax).

Next, we demonstrate the boundedness of model (4). Obtainable from the first
equation of model (4),

Ṡ(t) = λs − βS(t)I (t)

1 + ηs S(t) + ηI I (t)
− μN S(t) ≤ λs − μN S(t).
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In accordance with the comparison theorem, we get lim
t→∞ sup S(t) ≤ λs

μN
, then S(t)

is ultimate bounded. Define

A(t) =
∫ τL1

0
S(t − κ) f (κ)e−μN κdκ + L(t) + I (t) + T (t),

we have

Ȧ(t) = λs

∫ τL1

0
f (κ)e−μN κdκ − μN

∫ τL1

0
f (κ)e−μN κ S(t − κ)dκ − μN L(t)

− (μN + dT B)I (t) − μN T (t)

< λs

∫ τL1

0
f (κ)e−μN κdκ − μN A(t).

By the same discussion as above, it implies that A(t) is bounded on t ∈ [0, Tmax)

and thus L(t), I (t), T (t) are ultimate bounded on t ∈ [0, Tmax). Therefore, from
the extension theorem of solutions we see Tmax = +∞. So the arbitrary solution
(S(t), L(t), I (t), T (t))T of model (4) with initial conditions (5) is non-negative and
ultimately bounded on [0,+∞). 	


3 Existence and local stability of equilibria

It is clear that there is a DFE E0( λs
μN

, 0, 0, 0) of model (4). Denoting

ρ(τL1) = (kl(μN + θT ) + θT γl)

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

+ (μN + θT )(μN + kl + γl)

∫ τL1

0
e−μN κ(1 − e−plκ) f (κ)dκ,

then we can get the endemic equilibrium (EE) Ẽ(S̃, L̃, Ĩ , T̃ ) of model (4), where

Ĩ = ρ(τL1)(λs − μN S̃)

(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] ,

T̃ = λs − μN S̃

(μN + θT )(μN + kl + γl)

[

γl

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

+ γIρ(τL1)

((μN + θT )(μN + dT B + γI ) − θT γI )

]

,

L̃ =
∫ τL1
0 e−(μN+pl )κ f (κ)dκ(λs − μN S̃)

μN + kl + γl
,

S̃ = (μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] + ηIλsρ(τL1)

(β + μNηI )ρ(τL1) − ηs(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] .
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Define basic reproduction number of model (4) as

R0 = βλsρ(τL1)

(μN + ηsλs)(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] .

Then when R0 > 1,we have

S̃ = βλs(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] + βηIλ
2
sρ(τL1)

(μN + ηsλs)(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ]
× 1

(β + μNηI )[R0 − ηsβλs
(β+μN ηI )(μN+ηsλs )

]
> 0,

and

λs − μN S̃

= (μN + ηsλs)(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ](R0 − 1)

(β + μNηI )ρ(τL1) − ηs(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ]
= βλs(R0 − 1)

(β + μNηI )[R0 − ηsβλs
(β+μN ηI )(μN+ηsλs )

] > 0.

Theorem 2 The DFE E0( λs
μN

, 0, 0, 0) of model (4) is locally asymptotically stable if
R0 < 1.

Proof The characteristic equation of model (4) at E0( λs
μN

, 0, 0, 0) is

(λ1 + μN )[(λ1 + μN + kl + γl )((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )

− (λ1 + μN + θT )(λ1 + μN + kl + γl )
βλs

μN + ηsλs

∫ τL1

0
e−μN κ (1 − e−plκ ) f (κ)dκ

× e−λ1τL1 − (λ1 + μN + θT )kl
βλs

μN + ηsλs

∫ τL1

0
e−(μN+pl )κ f (κ)dκe−λ1τL1

− θT γl
βλs

μN + ηsλs

∫ τL1

0
e−(μN+pl )κ f (κ)dκe−λ1τL1 ] = 0.

(9)

Obviously, the characteristic equation (9) has a negative characteristic root λ0 =
−μN , and the other characteristic roots depend on

p(λ1) = (λ1 + μN + kl + γl )((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )

− (λ1 + μN + θT )(λ1 + μN + kl + γl )
βλs

μN + ηsλs

∫ τL1

0
e−μN κ (1 − e−plκ )

× f (κ)dκe−λ1τL1 − (λ1 + μN + θT )kl
βλs

μN + ηsλs

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

× e−λ1τL1 − θT γl
βλs

μN + ηsλs

∫ τL1

0
e−(μN+pl )κ f (κ)dκe−λ1τL1 .

(10)
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When R0 < 1, from p(λ1) = 0, we have

1 =
βλs

μN+ηsλs
(λ1 + μN + θT )

∫ τL1
0 e−μN κ(1 − e−plκ) f (κ)dκe−λ1τL1

(λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI

+
βλs

μN+ηsλs
(λ1 + μN + θT )kl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

(λ1 + μN + kl + γl)((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )

+
βλs

μN+ηsλs
θT γl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

(λ1 + μN + kl + γl)((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )
.

Let λ1 = a + ib, a, b ∈ R, if a ≥ 0, then it follows that

1 = |
βλs

μN+ηsλs
(λ1 + μN + θT )

∫ τL1
0 e−μN κ (1 − e−plκ ) f (κ)dκe−λ1τL1

(λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI

+
βλs

μN+ηsλs
(λ1 + μN + θT )kl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

(λ1 + μN + kl + γl )((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )

+
βλs

μN+ηsλs
θT γl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

(λ1 + μN + kl + γl )((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )
|

≤ βλs

μN + ηsλs

∫ τL1

0
e−μN κ (1 − e−plκ ) f (κ)dκ

× | (λ1 + μN + θT )e−λ1τL1

(λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI
|

+ klβλs

μN + ηsλs

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

× | (λ1 + μN + θT )e−λ1τL1

(λ1 + μN + kl + γl )((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )
|

+ βλs

μN + ηsλs
θT γl

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

× | e−λ1τL1

(λ1 + μN + kl + γl )((λ1 + μN + θT )(λ1 + μN + dT B + γI ) − θT γI )
|

≤ βλs

μN + ηsλs

∫ τL1

0
e−μN κ (1 − e−plκ ) f (κ)dκ

(μN + θT )

(μN + θT )(μN + dT B + γI ) − θT γI

+ βλs

μN + ηsλs

(kl (μN + θT ) + θT γl )
∫ τL1
0 e−(μN+pl )κ f (κ)dκ

(μN + kl + γl )((μN + θT )(μN + dT B + γI ) − θT γI )

= R0 < 1,

which leads to a contradiction. Hence, ifR0 < 1, then we have a < 0. Therefore, E0

is locally asymptotically stable. 	
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Theorem 3 TheEE Ẽ(S̃, L̃, Ĩ , T̃ ) ofmodel (4) is locally asymptotically stable if R0 >

1.

Proof The characteristic equation for model (4) at EE is obtained as

(λ1 + μN + β Ĩ (1 + ηI Ĩ )

(1 + ηs S̃ + ηI Ĩ )2
)(λ1 + μN + kl + γl)[(λ1 + μN + dT B + γI )

× (λ1 + μN + θT ) − θT γI ] − (λ1 + μN )(λ1 + μN + kl + γl)(λ1 + μN + θT )

× β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−μN κ(1 − e−plκ) f (κ)dκe−λ1τL1 − kl(λ1 + μN )

× (λ1 + μN + θT )
β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−(μN+pl )κ f (κ)dκe−λ1τL1

− θT γl(λ1 + μN )
β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−(μN+pl )κ f (κ)dκe−λ1τL1 = 0.

(11)

Then,

λ1 + μN + β Ĩ (1+ηI Ĩ )
(1+ηs S̃+ηI Ĩ )2

λ1 + μN

=
(λ1 + μN + θT )

∫ τL1
0 e−μN κ(1 − e−plκ) f (κ)dκe−λ1τL1

β S̃(1+ηs S̃)

(1+ηs S̃+ηI Ĩ )2

((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )

+
(λ1 + μN + θT )kl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

β S̃(1+ηs S̃)

(1+ηs S̃+ηI Ĩ )2

(λ1 + μN + kl + γl)((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )

+
θT γl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

β S̃(1+ηs S̃)

(1+ηs S̃+ηI Ĩ )2

(λ1 + μN + kl + γl)((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )
.

Note that

O =
λ1 + μN + β Ĩ (1+ηI Ĩ )

(1+ηs S̃+ηI Ĩ )2

λ1 + μN

W =
(λ1 + μN + θT )

∫ τL1
0 e−μN κ(1 − e−plκ) f (κ)dκe−λ1τL1

β S̃(1+ηs S̃)

(1+ηs S̃+ηI Ĩ )2

((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )

+
(λ1 + μN + θT )kl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

β S̃(1+ηs S̃)

(1+ηs S̃+ηI Ĩ )2

(λ1 + μN + kl + γl)((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )

+
θT γl

∫ τL1
0 e−(μN+pl )κ f (κ)dκe−λ1τL1

β S̃(1+ηs S̃)

(1+ηs S̃+ηI Ĩ )2

(λ1 + μN + kl + γl)((λ1 + μN + d + γI )(λ1 + μN + θT ) − θT γI )
.
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Let λ1 = a + ib, a, b ∈ R, if a ≥ 0, then we have | O |> 1. However,

| W | ≤ β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−μN κ (1 − e−plκ ) f (κ)dκ

× | (λ1 + μN + θT )e−λ1τL1

(λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI
|

+ kl
β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

× | (λ1 + μN + θT )e−λ1τL1

(λ1 + μN + kl + γl )((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )
|

+ θT γl
β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−(μN+pl )κ f (κ)dκ

× | e−λ1τL1

(λ1 + μN + kl + γl )((λ1 + μN + dT B + γI )(λ1 + μN + θT ) − θT γI )
|

≤ β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−μN κ (1 − e−plκ ) f (κ)dκ

× μN + θT

(μN + dT B + γI )(μN + θT ) − θT γI
+ kl

β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1

0
e−(μN+pl )κ

× f (κ)dκ
μN + θT

(μN + kl + γl )((μN + dT B + γI )(μN + θT ) − θT γI )

+ θT γl
β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

∫ τL1
0 e−(μN+pl )κ f (κ)dκ

(μN + kl + γl )((μN + dT B + γI )(μN + θT ) − θT γI )

=
[

(μN + θT )
∫ τL1
0 e−μN κ (1 − e−plκ ) f (κ)dκ

((μN + dT B + γI )(μN + θT ) − θT γI )

+ (kl (μN + θT ) + θT γl )
∫ τL1
0 e−(μN+pl )κ f (κ)dκ

(μN + kl + γl )((μN + dT B + γI )(μN + θT ) − θT γI )

]
β S̃(1 + ηs S̃)

(1 + ηs S̃ + ηI Ĩ )2

= β S̃ Ĩ (1 + ηs S̃)

(λs − μN S̃)(1 + ηs S̃ + ηI Ĩ )2

= 1 + ηs S̃

1 + ηs S̃ + ηI Ĩ
< 1,

which leads to a contradiction, so we have a < 0. Therefore, ifR0 > 1, Ẽ exists and
is locally asymptotically stable. 	
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4 Global stability of equilibria

Theorem 4 The DFE E0( λs
μN

, 0, 0, 0) of model (4) is globally asymptotically stable if
R0 < 1.

Proof Define S0 = λs
μN

and Lyapunov function H1(t), where

H1(t) = S0

1 + ηs S0
ρ(τL1)(

S(t)

S0
− 1 − ln

S(t)

S0
) + [kl(μN + θT ) + θT γl ]L(t)

+ (μN + θT )(μN + kl + γl)I (t) + θT (μN + kl + γl)T (t) +U1(t),

where

U1(t) = [kl(μN + θT ) + θT γl ]
∫ τL1

0

∫ t

t−κ

βS(t − ξ)I (t − ξ)

1 + ηs S(t − ξ) + ηI I (t − ξ)

× e−(μN+pl )κ f (κ)dξdκ + (μN + θT )(μN + kl + γl)

×
∫ τL1

0

∫ t

t−κ

βS(t − ξ)I (t − ξ)

1 + ηs S(t − ξ) + ηI I (t − ξ)
e−μN κ(1 − e−plκ) f (κ)dξdκ.

Differentiating U1(t) along with any positive solution of model (4), we have

U̇1(t) = ρ(τL1)
βS(t)I (t)

1 + ηs S(t) + ηI I (t)
− [kl(μN + θT ) + θT γl ]

×
∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−(μN+pl )κ f (κ)dκ − (μN + θT )(μN

+ kl + γl)

∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−μN κ(1 − e−plκ) f (κ)dκ.

Then, it follows that

Ḣ1(t) = ρ(τL1)(S(t) − S0)

(1 + ηs S0)S(t)
(λs − βS(t)I (t)

1 + ηs S(t) + ηI I (t)
− μN S(t)) + [kl(μN + θT )

+ θT γl ]
[∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−(μN+pl )κ f (κ)dκ − (μN

+kl + γl)L(t)
] + (μN + θT )(μN + kl + γl)

×
[∫ τL1

0

βS(t − κ)I (t − κ)

1 + ηs S(t − κ) + ηI I (t − κ)
e−μN κ(1 − e−plκ) f (κ)dκ + klŁ(t)

− (μN + dT B + γI )I (t) + θT T (t)

]

+ θT (μN + kl + γl)[γl L(t) + γI I (t)

− (μN + θT )T (t)] + U̇1(t)

= −μNρ(τL1)(S(t) − S0)2

(1 + ηs S0)S(t)
− ρ(τL1)(S(t) − S0)

(1 + ηs S0)S(t)

βS(t)I (t)

1 + ηs S(t) + ηI I (t)
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+ ρ(τL1)
βS(t)I (t)

1 + ηs S(t) + ηI I (t)
− (μN + kl + γl)

× [(μN + θT )(μN + dT B + γI ) − θT γI ]I (t)

≤ −μNρ(τL1)(S(t) − S0)2

(1 + ηs S0)S(t)
+ ρ(τL1)

βλs

μN + ηsλs
I (t) − (μN + kl + γl)

× [(μN + θT )(μN + dT B + γI ) − θT γI ]I (t)

= −μNρ(τL1)(S(t) − S0)2

(1 + ηs S0)S(t)
+ (μN + kl + γl)

× [(μN + θT )(μN + dT B + γI ) − θT γI ]I (t)(R0 − 1) ≤ 0.

Then it holds that Ḣ1(t) ≤ 0 when R0 < 1, and Ḣ1(t) = 0 when and only
when S(t) = S0, L(t) = 0, I (t) = 0, T (t) = 0. Let � be the largest invariant set
{(φ1, φ2, φ3, φ4)

T ∈ R+
4 , Ḣ1(t) = 0}, thenwehave� = {E0}. Therefore,when R0 <

1, E0( λs
μN

, 0, 0, 0) is globally asymptotically stable from the LaSalle’s invariance
principle [39]. 	

Theorem 5 The EE Ẽ(S̃, L̃, Ĩ , T̃ ) of model (4) is globally asymptotically stable if
R0 > 1.

Proof For convenience, denoting

X(S(α), I (α)) = βS(α)I (α)

1 + ηs S(α) + ηI I (α)
, X(S̃, Ĩ ) = β S̃ Ĩ

1 + ηs S̃ + ηI Ĩ
,

Y (m(t)) = m(t) − 1 − lnm(t)

Define Lyapunov function H2(t) as below,

H2(t) = H0(t) +U2(t),

where

H0(t) = ρ(τL1)

[

S(t) − S̃ −
∫ S(t)

S̃

1 + ηsξ + ηI Ĩ

1 + ηs S̃ + ηI Ĩ

S̃

ξ
dξ

]

+ [kl (μN + θT ) + θT γl ]

× L̃

[

Y

(
L(t)

L̃

)]

+ (μN + θT )(μN + kl + γl ) Ĩ

[

Y

(
I (t)

Ĩ

)]

+ θT (μN + kl + γl )T̃

[

Y

(
T (t)

T̃

)]

,

U2(t) =[kl (μN + θT ) + θT γl ]X(S̃, Ĩ )
∫ τL1

0

∫ t

t−κ

[

Y

(
X(S(ξ), I (ξ))

X(S̃, Ĩ )

)]

× f (κ)e−(μN+pl )κdξdκ + (μN + θT )(μN + kl + γl )X(S̃, Ĩ )

×
∫ τL1

0

∫ t

t−κ

[

Y

(
X(S(ξ), I (ξ))

X(S̃, Ĩ )

)]

f (κ)e−μN κ (1 − e−plκ )dξdκ.
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Differentiating U2(t) along with any positive solution of model (4), we have

U̇2(t) = ρ(τL1)X(S(t), I (t)) − [kl (μN + θT ) + θT γl ]
∫ τL1

0
X(S(t − κ), I (t − κ)) f (κ)

× e−(μN+pl )κdκ − (μN + θT )(μN + kl + γl )

∫ τL1

0
X(S(t − κ), I (t − κ)) f (κ)

× e−μN κ (1 − e−plκ )dκ + [kl (μN + θT ) + θT γl ]X(S̃, Ĩ )
∫ τL1

0
f (κ)

× e−(μN+pl )κ ln

(
X(S(t − κ), I (t − κ))

X(S(t), I (t))

)

dκ + (μN + θT )(μN + kl + γl )

× X(S̃, Ĩ )
∫ τL1

0
ln

(
X(S(t − κ), I (t − κ))

X(S(t), I (t))

)

f (κ)e−μN κ (1 − e−plκ )dκ.

Hence,

Ḣ2(t) = ρ(τL1)

[

1 − (1 + ηs S(t) + ηI Ĩ )S̃

(1 + ηs S̃ + ηI Ĩ )S(t)

]

[λs − X(S(t), I (t)) − μN S(t)] + [kl (μN

+ θT ) + θT γl ](1 − L̃

L(t)
)

[∫ τL1

0
X(S(t − κ), I (t − κ))e−(μN+pl )κ f (κ)dκ

−(μN + kl + γl )L(t)
] + (μN + θT )(μN + kl + γl )(1 − Ĩ

I (t)
)

×
[∫ τL1

0
X(S(t − κ), I (t − κ))e−μN κ (1 − e−plκ ) f (κ)dκ + kl L(t)

− (μN + dT B + γI )I (t) + θT T (t)

]

+ θT (μN + kl + γl )(1 − T̃

T (t)
)[γl L(t)

+ γI T (t) − (μN + θT )T (t)] + U̇2(t)

= −ρ(τL1)
μN (1 + ηI Ĩ )(S(t) − S̃)2

(1 + ηs S̃ + ηI Ĩ )S(t)
− ρ(τL1)

S̃(1 + ηs S(t) + ηI Ĩ )

(1 + ηs S̃ + ηI Ĩ )S(t)
X(S̃, Ĩ )

+ ρ(τL1)X(S̃, Ĩ ) + ρ(τL1)
S̃(1 + ηs S(t) + ηI Ĩ )

(1 + ηs S̃ + ηI Ĩ )S(t)
X(S(t), I (t)) − [kl (μN + θT )

+ θT γl ] L̃

L(t)

∫ τL1

0
X(S(t − κ), I (t − κ))e−(μN+pl )κ f (κ)dκ + (μN + kl + γl )

× [kl (μN + θT ) + θT γl ]L̃ − (μN + θT )(μN + kl + γl )
Ĩ

I (t)

×
∫ τL1

0
X(S(t − κ), I (t − κ)e−μN κ (1 − e−plκ ) f (κ)dκ − kl (μN + θT )

× (μN + kl + γl ) Ĩ
L(t)

I (t)
− (μN + θT )(μN + kl + γl )(μN + dT B + γI )I (t)

+ (μN + θT )(μN + kl + γl )(μN + dT B + γI ) Ĩ − θT (μN + θT )(μN + kl

+ γl ) Ĩ
T (t)

I (t)
+ θT γI (μN + kl + γl )I (t) − θT γl (μN + kl + γl )T̃

L(t)

T (t)
− θT (μN

+ kl + γl )γI T̃
I (t)

T (t)
+ θT (μN + θT )(μN + kl + γl )T̃ + [kl (μN + θT ) + θT γl ]
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× X(S̃, Ĩ )
∫ τL1

0
ln

(
X(S(t − κ), I (t − κ))

X(S(t), I (t))

)

f (κ)e−(μN+pl )κdκ

+ (μN + θT )(μN + kl + γl )X(S̃, Ĩ )
∫ τL1

0
ln

(
X(S(t − κ), I (t − κ))

X(S(t), I (t))

)

× f (κ)e−μN κ (1 − e−plκ )dκ

= −ρ(τL1)
μN (1 + ηI Ĩ )(S(t) − S̃)2

(1 + ηs S̃ + ηI Ĩ )S(t)
− ρ(τL1)X(S̃, Ĩ )

×
[

Y

(
S̃(1 + ηs S(t) + ηI Ĩ )

(1 + ηs S̃ + ηI Ĩ )S(t)

)]

− [kl (μN + θT ) + θT γl ]X(S̃, Ĩ )

×
∫ τL1

0

[

Y

(
X(S(t − κ), I (t − κ))L̃

X(S̃, Ĩ )L(t)

)]

f (κ)e−(μN+pl )κdκ

− (μN + θT )(μN + kl + γl )X(S̃, Ĩ )
∫ τL1

0

[

Y

(
X(S(t − κ), I (t − κ)) Ĩ

X(S̃, Ĩ )I (t)

)]

× f (κ)e−μN κ (1 − e−plκ )dκ − kl (μN + θT )X(S̃, Ĩ )
∫ τL1

0

[

Y

(
Ĩ L(t)

I (t)L̃

)]

× f (κ)e−(μN+pl )κdκ − θT γl X(S̃, Ĩ )
∫ τL1

0

[

Y

(
T (t) Ĩ

I (t)T̃

)

+ Y

(
L(t)T̃

T (t)L̃

)]

× f (κ)e−(μN+pl )κdκ − θT γI (μN + kl + γl ) Ĩ

[

Y

(
T (t) Ĩ

I (t)T̃

)

+ Y

(
I (t)T̃

T (t) Ĩ

)]

− ρ(τL1)X(S̃, Ĩ )

[

Y

(
1 + ηs S(t) + ηI I (t)

1 + ηs S(t) + ηI Ĩ

)]

+ ρ(τL1)X(S̃, Ĩ )

×
[
1 + ηs S(t) + ηI I (t)

1 + ηs S(t) + ηI Ĩ
− 1 + (1 + ηs S(t) + ηI Ĩ )I (t)

Ĩ (1 + ηs S(t) + ηI I (t))
− I (t)

Ĩ

]

,

where

1 + ηs S(t) + ηI I (t)

1 + ηs S(t) + ηI Ĩ
− 1 + (1 + ηs S(t) + ηI Ĩ )I (t)

Ĩ (1 + ηs S(t) + ηI I (t))
− I (t)

Ĩ

= −ηI (1 + ηs S(t))(I (t) − Ĩ )2

Ĩ (1 + ηs S(t) + ηI Ĩ )(1 + ηs S(t) + ηI I (t))
≤ 0.

Since the function Y (m(t)) = m(t) − 1 − lnm(t) ≥ 0, and Y (m(t)) = 0 when
and only when m(t) = 1, thereby Ḣ2(t) ≤ 0, and Ḣ2(t) = 0 implies that S(t) =
S̃, L(t) = L̃, I (t) = Ĩ , T (t) = T̃ . Therefore, in accordance with the LaSalle’s
invariance principle [39], when R0 > 1, equilibrium Ẽ of the model (4) exits and is
globally asymptotically stable. 	
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5 Numerical simulations

In this section, several numerical simulations are performed to demonstrate the validity
of theoretical results of model (4). We compare the effect of discrete and distributed
delays as well as different incidence functions on dynamic behavior of TB. Next, sen-
sitivity analysis is conducted on the treatment rates of LTBI and infectious individuals,
relapse rate, endogenous reactivation rate, protection level against disease of suscep-
tible and infectious individuals separately. Finally, comparison between simulation
results with model (4) and actual data of annual new TB cases in China is shown.

As a special case of model (4), the corresponding discrete delay TB model could
be formulated as model (12),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = λs − βS(t)I (t)

1 + ηs S(t) + ηI I (t)
− μN S(t),

L̇(t) = βS(t − τL1)I (t − τL1)

1 + ηs S(t − τL1) + ηI I (t − τL1)
e−(μN+pl )τL1 − (μN + kl + γl)L(t),

İ (t) = βS(t − τL1)I (t − τL1)

1 + ηs S(t − τL1) + ηI I (t − τL1)
e−μN τL1 (1 − e−plτL1 ) + kl L(t)

− (μN + dT B + γI )I (t) + θT T (t),

Ṫ (t) = γl L(t) + γI I (t) − μN T (t) − θT T (t).

(12)

By calculation as same as model (4), the basic reproduction number of model (12)
is formulated as

R̂0 = βλse
−μN τL1 (kl(μN + θT ) + θT γl)e

−plτL1

(μN + ηsλs)(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ]
+ βλse

−μN τL1 (μN + θT )(μN + kl + γl)(1 − e−plτL1 )

(μN + ηsλs)(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] ,

and the DFE and EE of model (12) are Ê0 = ( λs
μN

, 0, 0, 0) and Ê = (Ŝ, L̂, Î , T̂ ),
where

Ŝ = λs − e(μN+pl )τL1 (μN + kl + γl)L̂

μN
,

L̂ = e−(μN+pl )τL1βλs(R̂0 − 1)

(β + μNηI )(μN + kl + γl)[R̂0 − ηsβλs
(μN+ηsλs )(β+μN ηI )

] ,

Î = ((μN + θT )(μN + kl + γl)e
plτL1 − μN (μN + θT + γl))L̂

(μN + θT )(μN + dT B + γI ) − θT γI
,

T̂ = [(μN + θT )(μN + dT B + γI ) − θT γI ]γl
(μN + θT )[(μN + θT )(μN + dT B + γI ) − θT γI ] L̂
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Table 1 Values of parameters Parameter Value References

γl 0.1 [26]

γI
1
6 [28]

μN
1
78 [26]

pl 0.03 [13]

θT 0.05 [13]

kl 0.00527 [9]

dT B 0.12 [26]

+ γI ((μN + θT )(μN + kl + γl)e
plτL1 − μN (μN + θT + γl))

(μN + θT )[(μN + θT )(μN + dT B + γI ) − θT γI ] L̂.

For convenience, we take

f (κ) = 1

τL1

, 0 < τL1 < κ,

then we have

∫ τL1

0
f (κ)dκ =

∫ τL1

0

1

τL1

dκ = 1.

Hence the basic reproduction number of model (4) is rewritten as

R0 = βλs(μN + θT )(1 − e−μN τL1 )

μN τL1(μN + ηsλs)[(μN + θT )(μN + dT B + γI ) − θT γI ] + 1

(μN + pl)

× βλsμN (μN + θT + γl)(e
−(μN+pl )τL1 − 1)

τL1(μN + ηsλs)(μN + kl + γl)[(μN + θT )(μN + dT B + γI ) − θT γI ] .
(13)

The values of parameters are taken as shown in Table 1, and the other parameters
λs, β, ηs, ηI , τL1 are chosen as given in the cases.

1. When β = 0.023, λs = 10, ηs = 0.08, ηI = 0.04, τL1 = 74, we have R0 =
0.9444 < 1, as shown in Fig. 1a, b, the DFE E0 = (780, 0, 0, 0) of model is
globally asymptotically stable. Therefore, the result of Theorem 4 is true.

2. When β = 0.023, λs = 10, ηs = 0.08, ηI = 0.04, τL1 = 5, we have R0 =
1.2132 > 1, the endemic equilibrium Ẽ = (130.4, 35.7, 63.5, 195.8) of model
(4) is globally asymptotically stable as shown in Fig. 1e, f. Therefore, the result
of Theorem 5 is true.

Next, we compare the difference of the reproduction number between models (4)
and (12) as τL1 changes. It can be seen that the following conclusion holds, and the
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Fig. 1 Time series phases of solutions (S(t), L(t), I (t), T (t))T and 3-dimension phases of solutions S(t),
L(t), I (t) of model (4). a, b: τL1 = 74 with initial functions (S(ν, L(ν), I (ν), T (ν)) = (10 + 2 sin(ν) +
40k, 5+ 2sin(ν) + 10k, 5+ 2sin(ν) + 10k, 5+ 2sin(ν) + 35k), k = 1, 2, . . . , 20, for all ν ∈ [−74, 0]; c,
d: τL1 = 35 with initial functions (S(ν), L(ν), I (ν), T (ν)) = (80+ 2 sin(ν)+ 12k, 5+ 2sin(ν)+ 5k, 5+
2sin(ν)+4k, 100+2sin(ν)+12k), k = 1, 2, . . . , 20, for all ν ∈ [−35, 0]; e, f : τL1 = 5with initial functions
(S(ν), L(ν), I (ν), T (ν)) = (100+2 sin(ν)+10k, 10+2sin(ν)+6k, 10+2sin(ν)+5k, 80+2sin(ν)+12k),
k = 1, 2, . . . , 20, for all ν ∈ [−5, 0]
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Fig. 2 Time series phases of solutions (S(t), L(t), I (t), T (t))T and 3-dimension phases of solutions S(t),
L(t), I (t) of model (12). a, b: τL1 = 74 with initial functions (S(ν), L(ν), I (ν), T (ν)) = (200+2 sin(ν)+
25k, 10+2sin(ν)+12k, 10+2sin(ν)+10k, 20+2sin(ν)+32k), k = 1, 2, . . . , 20, for all ν ∈ [−74, 0]; c,d:
τL1 = 35with initial functions (S(ν), L(ν), I (ν), T (ν)) = (200+2 sin(ν)+25k, 10+2sin(ν)+12k, 10+
2sin(ν)+10k, 20+2sin(ν)+32k), k = 1, 2, . . . , 20, for all ν ∈ [−35, 0]; e, f : τL1 = 5with initial functions
(S(ν), L(ν), I (ν), T (ν)) = (80+2 sin(ν)+5k, 5+2sin(ν)+8k, 5+2sin(ν)+5k, 120+2sin(ν)+6k),
k = 1, 2, . . . , 20, for all ν ∈ [−5, 0]
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values of other parameters are chosen as Case 1 and 2.

⎧
⎪⎪⎨

⎪⎪⎩

R0 ≥ 1, R̂0 ≥ 1, 0 < τL1 < 32.44.

R0 ≥ 1, R̂0 ≤ 1, 32.44 < τL1 < 62.69.

R0 ≤ 1, R̂0 ≤ 1, τL1 > 62.69.

(14)

If τL1 = 74, we can see R0 = 0.9512 < 1, as shown in Fig. 1a, b, the DFE
E0 = (780, 0, 0, 0) of model (4) is globally asymptotically stable; and R̂0 =
0.6367 < 1, the DFE Ê0 = (780, 0, 0, 0) of model (12) is globally asymptotically
stable (Fig. 2a, b). If τL1 = 35, we can see R0 = 1.1193 > 1, the endemic equilib-
rium Ẽ = (198.5, 29.5, 32.7, 130.3) of model (4) is globally asymptotically stable
(Fig. 1c, d); and R̂0 = 0.9762 < 1, the DFE Ê0 = (780, 0, 0, 0) of model (12) is
globally asymptotically stable (Fig. 2c, d). If τL1 = 5, we can seeR0 = 1.2132 > 1,
the endemic equilibrium Ẽ = (130.4, 35.7, 63.5, 195.8) of model (4) is globally
asymptotically stable (Fig. 1e, f); and R̂0 = 1.2055 > 1, the endemic equilib-
rium Ê = (134.1, 56.6, 35.3, 183.7) of model (12) is globally asymptotically stable
(Fig. 2e, f).

The details of above numerical simulations for both models (4) and (12) are as in
Table 2,

We find that there exists evident difference of dynamics between models (4) and
(12).When the latency delay τL1 increases, the dynamical behavior of model (12) with
discrete delay is as same as that of model (4) with distributed delay under the same
conditions when 0 < τL1 < 32.44 or τL1 > 62.69. There may also exist the opposite
dynamical behavior between model (4) and model (12), i.e., if 32.44 < τL1 < 62.69,
the disease inmodel (12) is extinct,while it continues to spread inmodel (4).Obviously,
the disease is more persistent in the model (4) with distributed delay than the model
(12) with discrete delay.

It can be seen from Fig. 3a, R0 increases as the protection level ηs against the
disease of susceptible individuals decreases. When ηs > 0, the incidence function is
Beddington–DeAngelis type, while it is saturated incidence function for the infectious
when ηs = 0. In particular, as ηs decreases from 0.1 to 0, susceptible individuals
no longer take any protection, the incidence function changes from Beddington–
DeAngelis type to saturated incidence function and the value of R0 increases from
1.27 to around 100, which is quite high.

In Fig. 3b, it shows that a lower value of β is required to maintain the same value
of R0 when ηs decreases, which means when the susceptible individuals take no
protection, their contact rate with infectious individuals needs to be controlled for the
purpose of reducing the transmission rate so thatR0 can be kept at the same threshold
level.

It can be seen from representation (13) of R0, the protection level ηI against the
disease of infectious individuals is not related toR0. However, it is shown that raising
the protection level of infectious individuals will bring about a reduction of infectious
population in Fig. 3c.



Global Stability for an Endogenous-Reactivated Tuberculosis… Page 21 of 26 89

Ta
bl
e
2

N
um

er
ic
al
si
m
ul
at
io
ns

fo
r
m
od
el
s
(4
)
an
d
(1
2)

τ
L
1

R̂
0

Ê
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Fig. 3 a: Effect of the protection level ηs on R0 with β = 0.03, all other parameters as in Case 2. b:
Contour plot ofR0 as a function of ηs , β, all other parameters as in Case 2. c: Effect of the protection level
ηI on the number of infectious individuals, all other parameters as in Case 2. d: Sensitivity indicators of
R0 for different parameters with kl = 0.01, θT = 0.005, all other parameters as in Case 2. e: The number
of new TB cases in China from 2015 to 2021



Global Stability for an Endogenous-Reactivated Tuberculosis… Page 23 of 26 89

Table 3 New cases from 2015 to 2021 in China

Year 2015 2016 2017 2018 2019 2020 2021

Persons 864015 836236 835193 823342 775764 670538 639548

Sensitivity indicators of R0 for parameter q is

rR0
q = ∂R0

∂q
× q

R0
.

In Fig. 3d, sensitivity indicators ofR0 for the cure rates γl , γI for LTBI and infectious
individuals, the relapse rate θT , the disease progression rate pl and the endogenous
reactivation rate kl of latent individuals is demonstrated. It should be mentioned that

∂R0

∂γl
= βλsμN (e−(μN+pl )τL1 − 1)(kl − θT )

τL1(μN + ηsλs)(μN + kl + γl)2[(μN + θT )(μN + dT B + γI ) − θT γI ]
× 1

(μN + pl)
.

Therefore, when kl > θT ,
∂R0
∂γl

< 0. However, when kl < θT ,
∂R0
∂γl

> 0, it means that
R0 increases with the increasing treatment rate γl of LTBI, which is not quite in line
with the commonly accepted view [4], mainly due to the model assumption and the
higher relapse rate.

Next, a simulation of annual newTB cases in China from 2015 to 2021 is performed
with model (4). We choose the recruitment rate λs = 1.661×107, N (0) = 1.36782×
109, S(0) = 7.4546 × 108, I (0) = 6.2927 × 106, T (0) = 2.7067 × 107 which is
calculated in the literature [40], thus L(0) = N (0)−S(0)− I (0)−T (0) = 5.89×108.
The value of natural mortality rate is chosen as μN = 1/76.34 in accordance with
the China Statistical Yearbook [41], time delay τL1 of fast-progressing latency is 5
years [13] and the value of the remaining parameters are taken as in Table 1. The
actual data is obtained from the Chinese Center for Disease Control and Prevention
[42] as in Table 3 and the number of new TB cases is represented by function g(t) =
∫ τL1
0

βS(t−κ)I (t−κ)
1+ηs S(t−κ)+ηI I (t−κ)

e−μN κ f (κ)dκ . Then when β = 0.0058, ηs = 0.318, ηI =
0.65, the comparison between the simulation results and the actual data of the number
of annual new TB cases in China is shown in Fig. 3e. It can be seen that the simulation
results are well consistent with the actual data, which means that model (4) is also
consistent with the real circumstance of TB transmission.

6 Conclusion

In this article, an endogenous-reactivated TBmodel with Beddington–DeAngelis inci-
dence, distributed delay and relapse is proposed. We prove the local (and global)
stability of equilibria on the basis of the basic reproduction number R0. We find that
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the DFE is globally asymptotically stable whenR0 < 1, meanwhile the EE is globally
asymptotically stable whenR0 > 1. Comparing models (4) and (12), we find that the
dynamic behavior between distributed and discrete delays may be same or opposite,
and TB is more persistent in the model with distributed delay than a model with dis-
crete delay. Besides, we find that increase the protection level ηs , ηI of susceptible
and infectious individuals is very crucial for the control of TB. Finally, we discuss the
effect of treatment rate γl for LTBI, treatment rate γI for infectious individuals, the
relapse rate θT , the the disease progression rate pl , and the endogenous reactivation
rate kl respectively. The results suggest that increasing the treatment rates is beneficial
to disease control, while the higher relapse rate and disease progression rate could
accelerate the spread of TB. The comparison between simulation results and actual
data of annual new TB cases in China from 2015 to 2021 demonstrate the feasibility
of the model we construct.

In fact, TB transmission is very complicated in reality, especially, we have not yet
considered exogenous reinfection in model (4), which is an essential factor of TB
transmission and could cause backward bifurcations [6, 13–15]. Therefore, model (4)
with exogenous reinfection would be amoremeaningful research subject in the future.
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