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Abstract
In this paper, we analyze a stochastic SIRC model with Ornstein–Uhlenbeck process.
Firstly, we give the existence and uniqueness of global solution of stochastic SIRC
model and prove it. In addition, the existence of ergodic stationary distributions for
stochastic SIRC system is proved by constructing a suitable series of Lyapunov func-
tions. A quasi-endemic equilibrium related to endemic equilibrium of deterministic
systems is defined by considering randomness. And we obtain the probability den-
sity function of the linearized system near the equilibrium point. After the proof of
probability density function, the sufficient condition of disease extinction is given and
proved. We prove the theoretical results in the paper by numerical simulation at the
end of the paper.

Keywords Stochastic SIRC epidemic model · Cross immunity · Ornstein–Uhlenbeck
process · Stationary distribution

1 Introduction

Until now, COVID-19 has been considered the most devastating infectious disease
to affect humans worldwide. Infected persons transmit the disease to others mainly
through person-to-person transmission [1], including airborne transmission and con-
tact transmission. Therefore, it is essential to study the spread and control ofCOVID-19
and determine the conditions for the extinction of the epidemic [2].

Since 1972,Kermack andMckendrick began to link the spread of infectious diseases
to mathematics [3]. At present, the construction of mathematical models of infectious
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diseases and epidemics has become an important tool for analyzing and investigating
the characteristics of diseases. Accurate and precise mathematical model plays an
important part in decision making [4]. For the spread of COVID-19, we consider the
most standard epidemic-susceptible-recovered(SIR) epidemic model [5].

If you’re vaccinated against a particular virus and you develop immunity to another
virus, we call this cross-immunity. In the spread of COVID-19, some vaccines also
provide cross-immunity to the novel coronavirus. Casagnandi [6] and Rihan et al.
[7] introduced the SIRC model to analyze different infectious behavior by inserting
a new state C between Susceptible (S) and Recovered (R). Compartment C is used
to describe COVID-19 infected persons in a state of cross-immunity. In terms of
cross-immunity, Kwang et al. [8] developed a two-strain SIR model for inferring the
cross-immune responses of different strains. Shrock et al. [9] suggest that perhaps
previous CoV infection infers an “immune response memory”. Therefore, we study
a stochastic SIRC epidemiological model that includes cross-immune states. Based
on the existing literature, we know that few scholars have considered the impact of
cross-immune status on COVID-19 transmission [10].

The rest of this article is structured as follows. In the part 2, we show the stochastic
SIRC model including the mean reversion process Ornstein–Uhlenbeck process. The
existence and uniqueness of stochastic systems (4) are proved in the part 3. In the part
4, the existence of ergodic stationary distribution of stochastic system (4) is proved
by constructing a suitable Lyapunov function. In the part 5, we use the corresponding
Foker-Planck equation to derive the explicit expression of the probability density
function for the stationarydistributionπ (.) of the stochastic SIRCsystem (4). Sufficient
conditions for the extinction of infectious diseases are given and proved in Sect. 6.
Finally, we prove the theoretical results through numerical simulation and summarize
the work of the whole paper at the end of the paper, and further give the research
direction of related problems.

2 Model Formulation and Local Stability of the Equilibrium States

2.1 Mathematical Model

In this paper, we use the SIRC model that includes cross-immune status because it
can effectively describe the transmission mechanism of COVID-19 [11]. SIRC model
adopts the following form: [7, 10]

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ(t) = η(1 − S(t)) − ξ S(t)I (t) + βC(t),
İ (t) = ξ S(t)I (t) + σξC(t)I (t) − (η + α)I (t),
Ṙ(t) = (1 − σ)ξC(t)I (t) + α I (t) − (η + γ )R(t),
Ċ(t) = γ R(t) − ξC(t)I (t) − (η + β)C(t),

(1)

where S(t), I (t), R(t), C(t) represent the density of susceptible individuals, infected
individuals, recovered individuals and cross-immune individuals from the disease at
time t , respectively. η denotes the natural mortality rate, which is equal to the rate of
newborns.β represents the rate of cross-immune individualsC(t) becomes susceptible
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individuals S(t). ξ denotes the infection rate of susceptible individuals S(t) infected
with infectious disease to become infected individuals I (t).σ is the average reinfection
probability of a cross-immune individuals, where we assume that σ < 1. α denotes
the recovery rate of infected individuals I (t) to recovered individuals R(t). γ is the
rate at which the recovered individuals R(t) becomes the cross-immune individuals
C(t) and moves from total to partial immunity. All of the parameters β, ξ , σ , α, γ are
assumed to be positive.

For the system (1) mentioned above, we can get

d(S(t) + I (t) + R(t) + C(t)) = [η − η(S(t) + I (t) + R(t) + C(t))]dt .

Then we obtain

S(t) + I (t) + R(t) + C(t) ≡ 1 i f S(0) + I (0) + R(0) + C(0) = 1.

Let Rn be an n-dimensional Euclidean space and R
n+ = {(x1, . . . , xn) ∈ R

n|xi >

0, 1 ≤ i ≤ n}. Thus the region

	0 = {(S, I , R,C) ∈ R
4+ : S + I + R + C = 1}

is a positively invariant set of system (1), then, model (1) is simplified to analyze a
three-dimensional system as follows:

⎧
⎨

⎩

İ (t) = ξ(1 − I (t) − R(t) − C(t))I (t) + σξC(t)I (t) − (η + α)I (t),
Ṙ(t) = (1 − σ)ξC(t)I (t) + α I (t) − (η + γ )R(t),
Ċ(t) = γ R(t) − ξC(t)I (t) − (η + β)C(t).

(2)

The above system has two equilibria, where the basic regeneration number is defined
as R0 = ξ

η+α
, the disease-free equilibrium is defined as E0 = (I0, R0,C0)=(0,0,0).

In addition, if R0 > 1, we can easily get a unique endemic equilibrium point E∗ =
(I∗, R∗,C∗), I∗, R∗,C∗ are defined as follows:

R∗ = α I∗(ξ I∗ + η + β)

[(η + γ ) − (1 − σ)γ ]ξ I∗ + (η + β)(η + γ )
,

C∗ = γα I∗
[(η + γ ) − (1 − σ)γ ]ξ I∗ + (η + β)(η + γ )

,

and the value of I∗ is the root of the following equation h1 I 2∗ + h2 I∗ + h3 = 0, where

h1 = ηξ(η + α + σγ ),

h2 = ηξ [α(2η + γ + β) + (η + β)(η + γ ) + (η + σγ )(η − ξ)],
h3 = η(η + β)(η + γ )(η + α)(1 − R0).
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2.2 Stochastic Model

However, in real life, according to the existing literature, the spread of infectious dis-
eases and the formulation of control policies are affected by random factors [12]. For
example, Nadjat et al. [13] showed that population density is an important factor affect-
ing the spread of COVID-19. In [14], Wilfried Allaerts proposed that national public
media and government advisory bodies play an important role in policy formulation.
Therefore, we have to consider the influence of random factors on the mathemati-
cal model. The stochastic model has gradually become the core of various scholars’
research on the behavior of infectious diseases. To simulate the stochastic effects, we
usually introduce stochastic models with linear perturbations [15–20].

For the linear perturbation, we assume that both ξ(t) and β(t) are influenced by the
linear white noises: so we get

ξ(t) = ξ̄ + σ1dB1(t)

dt
, β(t) = β̄ + σ2dB2(t)

dt
. (3)

By calculating two equations E[ξ(t)] = ξ̄ and E[β(t)] = β̄, give the average values
of ξ(t) and β(t) respectively. Bi (t)(i = 1, 2) are two independent standard Brownian
motions, and σi (i = 1,2) are the strength of each Brownian motion.

However, linear perturbation and (3) are something irrational. Our biological expla-
nation for this is as follows: for any time interval [0, t], integrating (3) from 0 to t, then
we have

1

t

∫ t

0
ξ(s)ds = ξ̄ + σ1

B1(t)

t
∼ N

(

ξ̄ ,
σ 2
1

t

)

,

1

t

∫ t

0
β(s)ds = β̄ + σ2

B2(t)

t
∼ N

(

β̄,
σ 2
2

t

)

.

This states that as t → 0, the variance of ξ(t) and β(t) will go to infinity, which
produces the unreasonable result that ξ(t) and β(t) fluctuations will become larger in
a small time interval.

In this paper, a new method for simulating random disturbances is presented.
Ornstein–Uhlenbeck process [21–25] plays an important role in the exchange rate
of money, sale price of commodities and interest rate in economics. Dixit and Pindyck
[26] analyzed Ornstein–Uhlenbeck process (Dixit & Pindyck model) for the first time
in finance, which was inspired by it. We use the Ornstein–Uhlenbeck process in this
paper to simulate the interference of random factors in the mathematical model in the
biological population. In [27], Zhou et al., in their paper, studied a stochastic non-
autonomous population model of two mean-reverting Ornstein–Uhlenbeck processes.
Song et al. [28] studied a stochastic SVEIS infectious disease model with Ornstein–
Uhlenbeck processes and presented the conditions for the stationary distribution and
extinction of the stochastic model, which also inspired me. Here we assume that the
contact or transmission rate ξ and the rate at which the cross-immune population
becomes susceptible again β in the system (2) satisfy Ornstein–Uhlenbeck process.
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Then we have the results of ξ(t) and β(t) under the influence of the mean-reverting
Ornstein–Uhlenbeck process.

dξ(t) = θ1(ξ̄ − ξ(t))dt + σ1dB1(t), dβ(t) = θ2(β̄ − β(t))dt + σ2dB2(t).

According to the conclusion in reference [29], we obtain that ξ(t) andβ(t) have unique
explicit solutions of the form defined as follows

ξ(t) = ξ̄ + (ξ(0) − ξ̄ )e−θ1t + σ1

∫ t

0
e−θ1(t−s)dB1(s),

β(t) = β̄ + (β(0) − β̄)e−θ2t + σ2

∫ t

0
e−θ2(t−s)dB2(s).

According to the above formula and references [29], it shows that ξ(t) follows the
Gaussian distribution N(E(ξ(t)), Var(ξ(t))) on [0, t],where E(ξ(t)) = ξ̄ + (ξ(0) −
ξ̄ )e−θ1t and Var(ξ(t)) = σ 2

1
2θ1

(1 − e−2θ1t ). Because of limt→∞ E(ξ(t)) = ξ̄ and

lim limt→∞ Var(ξ(t)) = σ 2
1

2θ1
. Obviously, ξ(t) follows the Gaussian distribution

N(ξ̄ ,
σ 2
1

2θ1
) as t tends to infinity.

Similarly, the correlation analysis of β(t) is similar to that of ξ(t), thus we can

conclude thatβ(t) also follows theGaussian distributionN(β̄,
σ 2
2

2θ2
) as t tends to infinity.

In summary, in this article, it is reasonable to characterize random factors in infec-
tious disease models by introducing Ornstein–Uhlenbeck processes. Therefore, define
an invariant set

	 =
{

(I , R,C, ξ, β) ∈ R
3+ × R

2 : I + R + C < 1

}

,

then we get the following stochastic IRC system incorporating Ornstein–Uhlenbeck
process:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

İ (t) = ξ+(1 − I (t) − R(t) − C(t))I (t) + σξ+C(t)I (t) − (η + α)I (t),
Ṙ(t) = (1 − σ)ξ+C(t)I (t) + α I (t) − (η + γ )R(t),
Ċ(t) = γ R(t) − ξ+C(t)I (t) − (η + β+)C(t),
dξ(t) = θ1(ξ̄ − ξ(t))dt + σ1dB1(t),
dβ(t) = θ2(β̄ − β(t))dt + σ2dB2(t),

(4)

where ξ+(t) = max{ξ(t), 0}, in the same way, β+(t) = max{β(t), 0}. In addition,
we write a ∧ b as min{a, b}, similarly, we write a ∨ b as max{a, b}.

3 Existence and Uniqueness of the Global Positive Solution

Theorem 3.1 For any initial value (I (0), R(0),C(0), ξ(0), β(0)) ∈ 	, there exists a
unique solution (I (t), R(t),
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C(t), ξ(t), β(t)) to the system (4) on t≥ 0 and the solution will remain in 	 with
probability one, namely, the solution (I (t), R(t),C(t), ξ(t), β(t)) ∈ 	 for all t≥ 0
almost surely (a.s.).

Proof For any initial value (I (0), R(0),C(0), ξ(0), β(0)) ∈ 	, the coefficients of
system (4) are locally Lipschitz continuous [30], so there is a unique local solution
(I (t), R(t),C(t), ξ(t), β(t)) ∈ 	 on t∈ [0,τe], where τe is an explosion time [31]. To
testify that (I (t), R(t),C(t), ξ(t), β(t)) is global, we need to prove that τe = ∞ a.s.
Set s0 > 0 big enough to make that each element of (I (0), R(0),C(0), ξ(0), β(0))
are all on the interval [ 1

s0
,s0]. For each integer s ≥ s0, let Z(t) = (I (t), R(t),C(t)),

and let’s define the stopping time τs as follows [32]

τs = inf

{

t ∈ (0, τe) |min{Z(t), eξ(t), eβ(t)} ≤ 1

s
or max{Z(t), eξ(t), eβ(t)} ≥ s

}

,

where throughout our paper, we set inf{∅} = ∞. Obviously, τs is increasing as s→ ∞.
Set τ∞ = lims→∞ τs , then we derive that τ∞ ≤ τe a.s. If we show that τ∞ = ∞ a.s.,
then τe = ∞ a.s., then (I (t), R(t),C(t), ξ(t),
β(t)) ∈ 	 a.s. for all t ≥0.

If τ∞ < ∞, suppose there is that a pair of constants t̃ > 0 and ε ∈ (0, 1) such that
P{τ∞ ≤ t̃} > ε, so there is an integer s1 ≥ s0, which makes

P{τs ≤ t̃} ≥ ε, (5)

for all s≥ s1. We define a non-negative C2-function V: R3+ × R
2 → R+,

V (I (t), R(t),C(t), ξ(t), β(t)) = (I − 1 − ln I ) + (R − 1 − ln R) + (C − 1 − lnC)

+[(1 − I − R − C) − 1 − ln(1 − I − R − C)]
+ξ2

2
+ β2

2
.

Using Itô’s formula [30], we get

dV = LVdt + σ1ξdB1(t) + σ2βdB2(t).

In Appendix B of the article by Zhou et al. [15], the definition of differential operators
L is given, then

LV =
(

−1

I

)

[ξ+(1 − I − R − C)I + σξ+C I − (η + α)I ]

+
(

− 1

R

)

[(1 − σ)ξ+C I + α I − (η + γ )R] +
(

− 1

C

)

[γ R − ξ+C I − (η + β+)C]

+
(

1

1 − I − R − C

)

[ξ+(1 − I − R − C) − η(I + R + C) − β+C]

+θ1ξ(ξ̄ − ξ) + σ 2
1

2
+ θ2β(β̄ − β) + σ 2

2

2
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≤ 3η + 2ξ+ + α + γ + β+ + σ 2
1

2
+ σ 2

2

2
+ θ1ξ(ξ̄ − ξ) + θ2β(β̄ − β)

≤ 3η + 2|ξ | + |β| + α + γ + σ 2
1 + σ 2

2

2
− θ1ξ

2(t) + θ1ξ̄ |ξ | − θ2β
2 + θ2β̄|β|

≤ 3η + α + γ + σ 2
1 + σ 2

2

2
+ (θ1ξ̄ + 2)2

4θ1
+ (θ2β̄ + 1)2

4θ2
:= K ,

where K is a constant satisfying the condition independent of S, I , R,C and t . The
rest of the proof is similar to Mao et al. [33]’s article and hence is omitted. So we have
completed the proof of Theorem 3.1. �

4 Existence of a Stationary Distribution

In this part, we are concerned about the existence of a stationary distribution in the
system (4), whichmatterswhether infectious diseaseswill continue to spread. To prove
the existence of a stationary distribution for system (4), we first introduce Lemma 4.1
before the proof.

Let X(t) be a homogeneous Markov process in l (l denotes the l-dimensional
Euclidean space) satisfying the following stochastic differential equation.

dX(t) = b(t, X(t))dt +
k∑

j=1

σ j (t, X(t))dB j (t). (6)

Lemma 4.1 (Khasminskii [34]). Let the vectors b(s, x), σ1(s, x), . . . , σk(s, x)(s ∈
[t0, T ], x ∈ R

k) be continuous functions of (s,x), such that for some constant B the
following conditions hold in the entire domain of definition:

|b(s, x) − b(s, y)| +
k∑

j=1

|σ j (s, x) − σ j (s, y)| ≤ B|x − y|,

|b(s, x)| +
k∑

j=1

|σ j (s, x)| ≤ B(1 + |x |).

Moreover, there exists a non-negative function V ∗(x) such that

LV ∗(x) ≤ −1, ∀x ∈ R
k\H,

where H is a compact subset defined on R
k .

Then the Markov process (6) has at least one stationary solution X(t), which has a
stationary distribution � (.) on R

k .
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Define a critical value,

Rh
0 = ξ̄

η + α + σ1√
2θ1

.

Theorem 4.2 Assume that Rh
0 > 1. For any initial value (I (0), R(0),C(0), ξ(0), β(0))

∈ 	, the system (4) has a stationary distribution π .

Proof First we give a definition of a C2-function V1 as follows

V1 = − ln I + a1(R + C) + a2

(
(ξ − ξ̄ )2

2

)

,

where a1 and a2 are positive constants, and they will be fixed later. Using Itô’s formula
[30], we have

LV1 = −ξ+(1 − I − R − C) − σξ+C + (η + α) + a1(α I − ηR − ηC − σξ+C I )

+ a2

(

θ1
(
ξ − ξ̄

)2 + σ 2
1

2

)

≤ −ξ̄ (1 − I − R − C) + |ξ̄ − ξ+|(1 − I − R − C) + η + α

+ a1(α I − ηR − ηC) + a2

(

−θ1(ξ − ξ̄ )2 + σ 2
1

2

)

,

where a1 = ξ̄
η
, a2 = 1

σ1
√
2θ1

, then

LV1 ≤ −ξ̄ + η + α + ξ̄ I + a1α I + |ξ − ξ̄ | − a2θ1(ξ − ξ̄ )2 + a2σ 2
1

2

≤ −ξ̄ + η + α + ξ̄ I + a1α I + 1

4a2θ1
+ a2σ 2

2

2

≤ −(Rh
0 − 1)

(

η + α + σ1√
2θ1

)

+ (ξ̄ + a1α)I .

Denote

V2 = − ln R, V3 = − lnC, V4 = − ln(1 − I − R − C), V5 = ξ2

2
+ β2

2
.

LV2 = −α I

R
+ (η + γ ) − (1 − σ)ξ+C I

R
≤ −α I

R
+ η + γ,

LV3 = −γ R

C
+ ξ+ I + η + β+,

LV4 = ξ+ I − β+C
1 − (I + R + C)

− η(I + R + C)

1 − (I + R + C)
≤ ξ+ I − ηI

1 − (I + R + C)
,
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LV5 = θ1ξ(ξ̄ − ξ) + θ2β(β̄ − β) + σ 2
1 + σ 2

2

2
.

Define a C2-function W: R3+ × R
2 → R,

W (I , R,C, ξ, β) = MV1 − ln R − lnC − ln(1 − I − R − C) + ξ2

2
+ β2

2
:= MV1 + V2 + V3 + V4 + V5,

where M > 0 is a sufficiently large number such that the inequality (7) holds.
We give a definition of a non-negative C2-function W as follows

W (I , R,C, ξ, β) = W (I , R,C, ξ, β) − W (X0),

where W(X) is a continuous function, X0 is a minimum point (I 0,R0,C0,ξ0,β0) in the
interior domain of 	. Using Itô’s formula, we obtain

LW ≤ −M(Rh
0 − 1)

(

η + α + σ1√
2θ1

)

+ M(ξ̄ + a1α)I + 2ξ+ I + 2η + γ

−α I

R
− γ R

C
+ β+ − ηI

1 − (I + R + C)
− θ1ξ(ξ − ξ̄ ) − θ2β(β − β̄)

+σ 2
1

2
+ σ 2

2

2

≤ −M(Rh
0 − 1)

(

η + α + σ1√
2θ1

)

+ M(ξ̄ + a1α)I + 2η + γ + 2|ξ | + |β|

−α I

R
− γ R

C

+β+ − ηI

1 − (I + R + C)
− θ1ξ

2 + θ1|ξ |ξ̄ − θ2β
2 + θ2|β|β̄ + σ 2

1 + σ 2
2

2

≤ −M(Rh
0 − 1)

(

η + α + σ1√
2θ1

)

+ M(ξ̄ + a1α)I + 2η + γ − α I

R
− γ R

C

− ηI

1 − (I + R + C)
+ σ 2

1 + σ 2
2

2
+ (θ1ξ̄ + 2)2

2θ1

+ (θ2β̄ + 1)2

2θ2
− θ1ξ

2

2
− θ2β

2

2
.

We choose a positive constant M that satisfies the following conditions

− Mμ1 + μ2 ≤ −2, (7)

where

μ1 = (Rh
0 − 1)

(

η + α + σ1√
2θ1

)

,
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μ2 = 2η + γ + σ 2
1 + σ 2

2

2
+ (θ1ξ̄ + 2)2

2θ1
+ (θ2β̄ + 1)2

2θ2
.

Define μ3 = M(ξ̄ + a1α). Next, in order for the conditions of Lemma 4.1 to hold,
we construct a compact subset Dε. The form of bounded closed set we establish is as
follows

Dε =
(

I , R,C, ξ, β ∈ 	|I ≥ ε, R ≥ ε2,C ≥ ε3, I + R + C ≤ 1 − ε2, |ξ | ≤ 1

ε
, |β| ≤ 1

ε

)

,

where ε is a small enough constant to satisfy the following conditions

− 2 + μ3ε ≤ −1, (8)

−2 + μ3 − α

ε
≤ −1, (9)

−2 + μ3 − γ

ε
≤ −1, (10)

−2 + μ3 − η

ε
≤ −1, (11)

−2 + μ3 − θ1

2ε2
≤ −1, (12)

−2 + μ3 − θ2

2ε2
≤ −1. (13)

For the sake of clarity, we split (	)\Dε into the following six domains,

Dc
1 = {(I , R,C, ξ, β) ∈ 	|I < ε},

Dc
2 = {(I , R,C, ξ, β) ∈ 	|I ≥ ε, R < ε2},

Dc
3 = {(I , R,C, ξ, β) ∈ 	|R ≥ ε2,C < ε3},

Dc
4 = {(I , R,C, ξ, β) ∈ 	|I ≥ ε, I + R + C > 1 − ε2},

Dc
5 =

{

(I , R,C, ξ, β) ∈ 	||ξ | >
1

ε

}

,

Dc
6 =

{

(I , R,C, ξ, β) ∈ 	||β| >
1

ε

}

.

Obviously, Dc
ε = ⋃6

i=1 D
c
i , Case 1: if (I , R,C, ξ, β) ∈ Dc

1, according to (8), we get

LW ≤ −2 + μ3ε ≤ −1.

Case 2: if (I , R,C, ξ, β) ∈ Dc
2, according to (9), we get

LW ≤ −2 + μ3 − α

ε
≤ −1.
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Case 3: if (I , R,C, ξ, β) ∈ Dc
3, according to (10), we get

LW ≤ −2 + μ3 − γ

ε
≤ −1.

Case 4: if (I , R,C, ξ, β) ∈ Dc
4, according to (11), we get

LW ≤ −2 + μ3 − η

ε
≤ −1.

Case 5: if (I , R,C, ξ, β) ∈ Dc
5, according to (12), we get

LW ≤ −2 + μ3 − θ1

2ε2
≤ −1.

Case 6: if (I , R,C, ξ, β) ∈ Dc
6, according to (13), we get

LW ≤ −2 + μ3 − θ2

2ε2
≤ −1.

By the above proof, obviously, there admits a sufficiently small ε, such that

LW (I , R,C, ξ, β) ≤ −1 f or all (I , R,C, ξ, β) ∈ Dc
ε .

So that proves the conditions in the Lemma 4.1. Thus, system (4) has a stationary
distribution π(·). We have completed the proof of Theorem 4.2. �

5 Density Function of Stochastic Epidemic Model

In Sect. 4, we prove that the system (4) has at least one stationary distribution. Next,
we analyze the local probability density function of the system (4).

Firstly, we give the following definition of the quasi-positive equilibrium E∗ of
system (4), where

E∗ = (I ∗, R∗,C∗, ξ̄ , β̄) ∈ 	,

the quasi-endemic equilibrium E∗ is the same as the endemic equilibrium E∗ in the
ordinary differential equation if there is no fluctuations.

Next, we perform an equilibrium offset transformation, let y1 = I − I ∗, y2 =
R − R∗, y3 = C −C∗, y4 = ξ − ξ̄ , y5 = β − β̄, we get the linearized system (14) of
system (4) [35, 36],

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dy1 = −a11y1 − a11y2 − a13y3 + a14y4,
dy2 = a21y1 − a22y2 + a13y3 + a24y4,
dy3 = −a31y1 + a32y2 − a33y3 − a34y4 − a35y5,
dy4 = −a44y4 + σ1dB1(t),
dy5 = −a55y5 + σ2dB2(t),

(14)
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where

a11 = ξ̄ I ∗, a13 = (1 − σ)ξ̄ I ∗, a14 = (1 − I ∗ − R∗ − C∗)I ∗ + σC∗ I ∗,
a21 = α + (1 − σ)ξ̄C∗, a22 = η + γ, a24 = (1 − σ)I ∗C∗, a31 = ξ̄C∗,
a32 = γ, a33 = ξ̄ I ∗ + (η + β̄), a34 = C∗ I ∗, a35 = C∗, a44 = θ1, a55 = θ2.

According to the definition of the quasi-endemic equilibrium point E∗, we can con-
clude that the values of all the above parameters are positive.

Theorem 5.1 For any initial value I (0), R(0),C(0), ξ(0), β(0)) ∈ 	, when

(1 − σ)

[

ξ2C∗ I ∗ + γ ξ I ∗ + ξC∗(η + γ ) − [(1 − σ)ξC∗ + α]γ
]

< [η + γ + α + (1 − σ)ξC∗](ξ I ∗ + η + β), (15)
(1 − σ)ξ I ∗

<

(ξ I ∗ + η + γ )

(

(ξ I ∗ + η + β)(2ξ I ∗ + 2η + γ + β) + ξ I ∗(η + γ + α + (1 − σ)ξC∗)
)

(η + γ )γ + ξC∗(ξ I ∗ + η + β) + (ξ I ∗ + η + β)γ + (
(1 − σ)ξC∗ + α

)
γ

,

(16)

(1 − σ)ξC∗ >
(η + γ )(1 − σ)I ∗C∗

(1 − I ∗ − R∗ − C∗)I ∗ + σC∗ I ∗ − α, (17)

system (4) has a probability density �(y1, y2, y3, y4, y5) around the quasi-endemic
equilibrium E∗. � is a positive definite matrix, and the special form of � is given as
follows.

Case 1, if w4 �= 0,we get

� = ρ2
1 (M1 J4 J3 J2 J1)

−1�1[(M1 J4 J3 J2 J1)
−1]T

+ρ2
2 (M3 J̃3 J̃2 J̃1)

−1�2[(M3 J̃3 J̃2 J̃1)
−1]T .

Case 2, if w4 = 0,we get

� = ρ2
1w(M2 J4 J3 J2 J1)

−1�̃1[(M2 J4 J3 J2 J1)
−1]T

+ρ2
2 (M3 J̃3 J̃2 J̃1)

−1�2[(M3 J̃3 J̃2 J̃1)
−1]T ,

where

w1 = a21 + a11a24
a14

+ (−a22 + a11a24
a14

)
a24
a14

, w2 = −a31 + a32a24
a14

− a34a11
a24

+ a33a34
a14

,

w3 = a21 − a22a24
a14

, w4 = a32 − a11a34
a14

− w2

w3

(

−a22 + a11a24
a14

)

−w2

w3

(

a33 + a13a34
a14

+ w2

w3
(a13 + a13a24

a14
)

)

ρ1 = w3w4a14σ1, ρ1w = w3a14σ1, ρ2 = −a35a13g3σ2,
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J1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, J2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 − a24

a14
1 0 0

0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

J3 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 a34

a14
0 1 0

0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, J4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −−w2

w3
1 0

0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

J̃1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

, J̃2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

J̃3 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

w3w4a14 w3w4( f1 + f3 + f5) e1 e2 e3
0 w3w4 w4( f3 + f5) w4 f4 + f 25 − f5a35 + a35a55
0 0 w4 f5 −a35
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

and

e1 = w3w4 f2 + w4 f3( f3 + f5) + w4(w4 f4 + f 25 ),

e2 = −w3w4a13 + w4 f4( f3 + f5) + f5(w4 f4 + f 25 ),

e3 = −a35(w4 f4 + f 25 ) + a35a55 f5 − a35a
2
55,

f1 = −a11 − a11a24
a14

+ a13a34
a14

, f2 = −a11 − a13w2

w3
,

f3 = −a22 + a11a24
a14

+ w2

w3

(

a13 + a13a24
a14

)

, f4 = a13 + a13a24
a14

,

f5 = −a33 − a13a34
a14

− w2

w3

(

a13 + a13a24
a14

)

,

M2 =

⎛

⎜
⎜
⎜
⎜
⎝

a14w3 w3( f1 + f3) w3 f2 + f 23 −a13w3 + f4( f3 + f5) −a35 f4
0 w3 f3 f4 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

M3 =

⎛

⎜
⎜
⎜
⎜
⎝

−a35a13g3 g3a13(−a33 + g2 + g4) h1 h2 h3
0 g3a13 g3(g2 + g4) g3a21 + g24 g3a24 + g4g5 − a44g5
0 0 g3 g4 g5
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,
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where

g1 = a32 + a31, g2 = −a22 − a21, g3 = −a22 − a21,

g4 = −a11 + a21, g5 = −a34 + a24.

h1 = g1a13g3 + g2g3(g2 + g4) + g3(g3a21 + g24),

h2 = −g3a13a31 + g3a21(g2 + g4) + g4(g3a21 + g24),

h3 = −g3a13a34 + g3a24(g2 + g4) + g5(g3a21 + g24) − a44(g3a24 + g4g5 − g5a44),

�1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1a4−a2a3
�1

0 a3
�1

0 0
0 − a3

�1
0 a1

�1
0

a3
�1

0 − a1
�1

0 0
0 a1

�1
0 a3−a1a2

�1
0

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and

�1 = 2(a4a
2
1 − a2a1a3 + a23),

�̃1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− b2
2(b3−b1b2)

0 1
2(b3−b1b2)

0 0
0 − 1

2(b3−b1b2)
0 0 0

1
2(b3−b1b2)

0 − b1
2(b3−b1b2)

0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

�2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c1c4−c2c3
�2

0 c3
�2

0 0
0 − c3

�2
0 c1

�2
0

c3
�2

0 − c1
�2

0 0
0 c1

�2
0 c3−c1c2

c4�2
0

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

among them

�2 = 2(c4c
2
1 − c2c1c3 + c23),

a1, a2, a3, a4, c1, c2, c3, c4, b1, b2 and b3 will be described below.

Proof For convenience, we define the matrix as follows

A =

⎛

⎜
⎜
⎜
⎜
⎝

−a11 −a11 −a13 a14 0
a21 −a22 a13 a24 0

−a31 a32 −a33 −a34 −a35
0 0 0 −a44 0
0 0 0 0 −a55

⎞

⎟
⎟
⎟
⎟
⎠

.
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G = diag(0, 0, 0, σ1, σ2), B(t) = (0, 0, 0, B1(t), B2(t)), then the linearized system
(14) can be simplified to

dY = AYdt + GdB(t).

By the relevant theory of Gardiner and the continuous Markov processes theory [37],
the probability density function can be given by the following Fokker–Planck equation
[38],

− σ 2
1

2

∂2�

∂ y24
− σ 2

2

2

∂2�

∂ y25
+ ∂

∂ y1
[(−a11y1 − a11y2 − a13y3 + a14y4)�]

+ ∂

∂ y2
[(a21y1 − a22y2 + a13y3 + a24y4)�]

+ ∂

∂ y3
[(−a31y1 + a32y2 − a33y3 − a34y4 − a35y5)�]

+ ∂

∂ y4
(−a44y4�) + ∂

∂ y5
(−a55y5�) = 0

,

and it can be approximated by a Gaussian distribution

�(y1, y2, y3, y4, y5) = φ0e
− 1

2 (y1,y2,y3,y4,y5)Q(y1,y2,y3,y4,y5)T ,

where φ0 is a positive constant, which is obtained by the normalized condition∫

R5 �(Y )dy1dy2dy3dy4dy5 = 1, and Q is a real symmetric matrix satisfying the
following equation

QG2Q + AT Q + QA = 0.

If Q is still an inverse matrix, let Q−1 = �, the above equation can be rewritten as

G2 + A� + �AT = 0.

According to the finite independent superposition principle in [39], the above equation
is equivalent to the sum of the following two equations

G2
i + A�i + �i A

T = 0 (i = a, b),

whereGa = (0, 0, 0, σ1, 0),Gb = (0, 0, 0, 0, σ2),� = �a +�b andG2 = G2
a +G2

b.
Before proving the positive definiteness of �, we firstly verify that all the eigenvalues
of A have negative real parts. The corresponding characteristic polynomial of A is
defined by

ϕA(λ) = (λ + a44)(λ + a55)(λ
3 + q1λ

2 + q2λ + q3),
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where q1, q2 and q3 has been defined as follows:

q1 = a11 + a22 + a33,

q2 = a11a21 + a11a22 + a11a33 + a22a33 − a13(a31 + a32),

q3 = a11a22a33 + a11a21a33 + a13(a21a32 − a22a31 − a11a32 − a11a31),

By simple calculation, we can have q1 > 0 and q2 > a11a22 +a22a33 > 0. According
to (15), then we can simplify q3 to get q3 > 0, and similarly, from (16) we can simplify
to get q1q2 > q3. Then we have that matrix A has all negative real-part eigenvalues.

Next, we prove the positive characterization of � in two steps. Step1 Consider the
algebraic equation

G2
a + A�a + �a A

T = 0. (18)

By letting A1 = J1AJ
−1
1 , we have

A1 =

⎛

⎜
⎜
⎜
⎜
⎝

−a44 0 0 0 0
a14 −a11 −a11 −a13 0
a24 a21 −a22 a13 0

−a34 −a31 a32 −a33 −a35
0 0 0 0 −a55

⎞

⎟
⎟
⎟
⎟
⎠

.

Next, let A2 = J4 J3 J2A1(J4 J3 J2)−1, we get

A2 =

⎛

⎜
⎜
⎜
⎜
⎝

−a44 0 0 0 0
a14 f1 f2 −a13 0
0 w3 f3 f4 0
0 0 w4 f5 − a35
0 0 0 0 −a55

⎞

⎟
⎟
⎟
⎟
⎠

,

where according to (17), we have w3 = a21 − a22a24
a14

> 0.
Dependent on the value of w4, so we’re going to have two cases.
Case(I) If w4 �= 0, based on the method given in the references [36], let A3 =

M1A2M
−1
1 , where the standardized transformation matrix

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

w3w4a14 w3w4( f1 + f3 + f5) e1 e2 e3
0 w3w4 w4( f3 + f5) w4 f4 + f 25 − f5a35 + a35a55
0 0 w4 f5 −a35
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,
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then we have

A3 =

⎛

⎜
⎜
⎜
⎜
⎝

−a1 −a2 −a3 −a4 −a5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −a55

⎞

⎟
⎟
⎟
⎟
⎠

,

where

a1 = q1 + a44 > 0, a2 = q2 + q1a44 > 0,

a3 = q3 + q2a44 > 0, a4 = q3a44 > 0,

So with conditions (15) and (16), we verify that

a1(a2a3 − a1a4) − a23 > 0.

Since the value of a5 has no influence on the results of this paper, we omit the value
of a5 here. Equation (18) can be equivalently transformed into

(M1 J4 J3 J2 J1)G
2
a(M1 J4 J3 J2 J1)

T + A3[(M1 J4 J3 J2 J1)�a(M1 J4 J3 J2 J1)
T ]

+[(M1 J4 J3 J2 J1)�a(M1 J4 J3 J2 J1)
T ]AT

3 = 0.

Let �1 = ρ−2
1 (M1 J4 J3 J2 J1)�a(M1 J4 J3 J2 J1)T , where ρ1 = w3w4a14σ1, it can be

simplified as

G2
0 + A3�1 + �1A

T
3 = 0.

By solving the equation above, we get

�1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1a4−a2a3
�1

0 a3
�1

0 0
0 − a3

�1
0 a1

�1
0

a3
�1

0 − a1
�1

0 0
0 a1

�1
0 a3−a1a2

a4�1
0

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
(

�x 0
0 0

)

,

where

�1 = 2(a4a
2
1 − a2a1a3 + a23).

From the reference [40], we can conclude that �1 is a semi-positive definite matrix.
In the same way, we also get that �x is a positive definite matrix. Therefore,

�ax = ρ2
1 (M1 J4 J3 J2 J1)

−1�x [(M1 J4 J3 J2 J1)
−1]T .
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It is also a positive definite matrix. Similarly,

�a = ρ2
1 (M1 J4 J3 J2 J1)

−1�1[(M1 J4 J3 J2 J1)
−1]T .

It is also a semi-positive definite matrix.
Let n1 be the minimum eigenvalue of the matrix �x , then

�ax ≥ n1

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

and so,

�a ≥ n1

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Case(II) If w4 = 0, let A3w = M2A2M
−1
2 , where the standardized transformation

matrix is

M2 =

⎛

⎜
⎜
⎜
⎜
⎝

a14w3 w3( f1 + f3) w3 f2 + f 23 −a13w3 + f4( f3 + f5) −a35 f4
0 w3 f3 f4 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Using the same method, we can get

A3w =

⎛

⎜
⎜
⎜
⎜
⎝

−b1 −b2 −b3 −b4 −b5
1 0 0 0 0
0 1 0 0 0
0 0 0 f5 −a35
0 0 0 0 −a55

⎞

⎟
⎟
⎟
⎟
⎠

,

where

b1 = q1 + a44 + f5 > 0, b2 = q2 + q1a44 + f5b1 > 0,

b3 = q3 + q2a44 + f5b2 > 0.

By direct calculation, we have

b1b2 − b3 > 0.
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Since the value of b4 and b5 has no influence on the results of this paper, we omit the
value of b4 and b5 here. Meanwhile, equation (18) can be equivalently transformed
into

(M2 J4 J3 J2 J1)G
2
a(M2 J4 J3 J2 J1)

T + A3w[(M2 J4 J3 J2 J1)�a(M2 J4 J3 J2 J1)
T ]

+[(M2 J4 J3 J2 J1)�a(M2 J4 J3 J2 J1)
T ]AT

3w = 0.

Let �̃1 = ρ−2
1w (M2 J4 J3 J2 J1)�a(M2 J4 J3 J2 J1)T , whereρ1w = w3a14σ1,we similarly

obtain

G2
0 + A3w�̃1 + �̃1A

T
3w = 0.

By solving the equation above, we have

�̃1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− b2
2(b3−b1b2)

0 1
2(b3−b1b2)

0 0
0 − 1

2(b3−b1b2)
0 0 0

1
2(b3−b1b2)

0 − b1
2(b3−b1b2)

0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

From the reference [40], we can conclude that �̃1 is a semi-positive definite matrix.
Hence,

�a = ρ2
1w(M2 J4 J3 J2 J1)

−1�̃1[(M2 J4 J3 J2 J1)
−1]T .

It is also a semi-positive definite matrix. Therefore, we get that �a is semi-positive
definite and there is a positive constant n2 such that

�a ≥ n2

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Step2 For the following algebraic equation

G2
b + A�b + �b A

T = 0. (19)

We first let B1 = J̃1AJ̃1
−1

, and then define B2 = ( J̃3 J̃3)B1( J̃3 J̃2)−1, where

J̃1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

, B1 =

⎛

⎜
⎜
⎜
⎜
⎝

−a55 0 0 0 0
0 −a11 −a11 −a13 a14
0 a21 −a22 a13 a24

−a35 −a31 a32 −a33 −a34
0 0 0 0 −a44

⎞

⎟
⎟
⎟
⎟
⎠

,
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J̃2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, J̃3 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

B2 =

⎛

⎜
⎜
⎜
⎜
⎝

−a55 0 0 0 0
−a35 −a33 g1 −a31 −a34
0 a13 g2 a21 a24
0 0 g3 g4 g5
0 0 0 0 −a44

⎞

⎟
⎟
⎟
⎟
⎠

.

Let B3 = M3B3M
−1
3 , we construct the following standardized transformation matrix

M3 =

⎛

⎜
⎜
⎜
⎜
⎝

−a35a13g3 g3a13(−a33 + g2 + g4) h1 h2 h3
0 g3a13 g3(g2 + g4) g3a21 + g24 g3a24 + g4g5 − a44g5
0 0 g3 g4 g5
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

According to the same method above, we can get directly

B3 =

⎛

⎜
⎜
⎜
⎜
⎝

−c1 −c2 −c3 −c4 −c5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −a44

⎞

⎟
⎟
⎟
⎟
⎠

,

where

c1 = q1 + a55 > 0, c2 = q2 + q1a55 > 0,

c3 = q3 + q2a55 > 0, c4 = q3a55 > 0.

Similarly, we have

c1(c2c3 − c1c4) − c23 > 0.

Since the value of c5 has no influence on the results of this paper, we omit the value
of c5 here. Similarly to the method in Step1, equation (19) can be equalized to

(M3 J̃3 J̃2 J̃1)G
2
b(M3 J̃3 J̃2 J̃1)

T + B3[(M3 J̃3 J̃2 J̃1)�b(M3 J̃3 J̃2 J̃1)
T ]

+[(M3 J̃3 J̃2 J̃1)�b(M3 J̃3 J̃2 J̃1)
T ]BT

3 = 0.

Let �2 = ρ−2
2 (M3 J̃3 J̃2 J̃1)�b(M3 J̃3 J̃2 J̃1)T , where ρ2 = −a35a13g3σ2, we similarly

obtain

G2
0 + B3�2 + �2B

T
3 = 0.
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After direct calculation of the above equation, we have

�2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c1c4−c2a3
�2

0 c3
�2

0 0
0 − c3

�2
0 c1

�2
0

c3
�2

0 − c1
�2

0 0
0 c1

�2
0 c3−c1c2

c4�2
0

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

According to reference [40] and its proof, we get�2 is a semi-positive definite matrix.
It can be concluded from the above proof, �b = ρ2

2 [(M3 t i tleJ3 J̃2 J̃1)−1

�2(M3 t i tleJ3 J̃2 J̃1)−1]T is also a semi-positive definite matrix and there is a positive
constant n3 such that

�b ≥ n3

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Now let’s discuss the above situation in two cases. Case(I) If w4 �= 0, then the
covariance matrix

� = �a + �b ≥ n1

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

+ n3

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

≥ (n1 ∧ n3)

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

And then we can prove that � is positive definite.
Case(II) If w4 = 0, similarly, then the covariance matrix

� = �a + �b ≥ n2

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

+ n3

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠
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≥ (n2 ∧ n3)

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Similarly, we can show that � is positive definite.
In summary, we have now shown that � is a positive definite matrix, and that the

form of � = �a + �b is determined by the steps above. By the positive definiteness

of �, we can compute that φ0 = (2π)− 5
2 |�|− 1

2 . System (4) has a probability density
�(y1, y2, y3, y4, y5) around the quasi-endemic equilibrium E∗.

We have completed the proof of Theorem 5.1. �

6 Extinction of the Disease

Next, we’ll talk about the extinction of diseases.

Theorem 6.1 For any initial value (I (0), R(0),C(0), ξ(0), β(0)) ∈ 	, if Rd
0 < 1,

then the solution (I (t), R(t),C(t), ξ(t), β(t)) of system (4) follows

lim
t→∞ sup

ln I (t)

t
≤ (η + α)(Rd

0 − 1) < 0, a.s.

where

Rd
0 =

ξ̄�

(
ξ̄
√
2θ1

σ1

)

+ σ1
2
√

θ1π
e
− ξ̄2θ1

σ21

η + α
.

Proof Employing Itô′s formula to ln I (t), we get

d ln I (t) = [ξ+(1 − I − R − C) + σξ+C − (η + α)]dt
= [ξ+(1 − I − R) + (σ − 1)ξ+C − (η + α)]dt
≤ [ξ+ − (η + α)]dt .

(20)

Let’s integrate both sides of this inequality (20) from 0 to t, and divide by t, we get

ln I (t) − ln I (0)

t
≤ 1

t

∫ t

0
[ξ+(u) − (η + α)]du

= 1

t

∫ t

0
ξ+(u)du − (η + α).

(21)
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Taking the superior limit of t → ∞ on both sides of the inequality (21), because of

ξ+ ∼ N (ξ̄ ,
σ 2
1

2θ1
). By the strong law of large numbers [41], we get

lim
t→∞

1

t

∫ t

0
ξ+(u)du =

∫ ∞

0
x

√
θ1√

πσ1
e
− θ1x

2

σ21 dx

= σ1

2
√

θ1π
e
− ξ̄2θ1

σ21 + ξ̄

[

�(∞) − �

(

− ξ̄
√
2θ1

σ1

)]

= ξ̄�

(
ξ̄
√
2θ1

σ1

)

+ σ1

2
√

θ1π
e
− ξ̄2θ1

σ21 ,

where �(x) = ∫ x
−∞

1√
2π

e− u2
2 du, according to limt→∞ ln I (0)

t = 0, then we get

lim
t→∞ sup

ln I (t)

t
≤ (η + α)(Rd

0 − 1),

where

Rd
0 =

ξ̄�

(
ξ̄
√
2θ1

σ1

)

+ σ1
2
√

θ1π
e
− ξ̄2θ1

σ21

η + α
.

If Rd
0 < 1, then lim supt→∞

ln I (t)
t < 0, which means that the epidemic of system (4)

will go to extinction with probability 1.
Thus the Theorem 6.1 is proved. �

7 Numerical Simulations

In order to verify the theoretical results in the paper, we conduct numerical simulation
on it in this section. Making use of the common higher-order method developed by
Milstein’sHigherOrderMethodmentioned in [42],we have the discretization equation
of system (4),

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I i+1 = I i + [ξ i (1 − I i − Ri − Ci )I i + σξ iCi I i − (η + α)I i ]�t,
Ri+1 = Ri + [(1 − σ)ξ iCi I i + α I i − (η + γ )Ri ]�t,
Ci+1 = Ci + [γ Ri − ξ iCi I i − (η + β+)Ci ]�t,

ξ i+1 = ξ i + θ1(ξ̄ − ξ i )�t + σ1ζi
√

� + σ 2
1
2 (ζ 2

i − 1)�t,

β i+1 = β i + θ2(β̄ − β i )�t + σ2ιi
√

�t + σ 2
2
2 (ι2i − 1)�t,

(22)

where�t > 0 denotes the time increment, ζi and ιi are the Gaussian random variables
which follows the distribution N (0, 1).
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Fig. 1 When Rh
0 = 1.9299 > 1, simulations of the solution in the stationary distribution of stochastic

system (4). On the left, the blue and red lines represent simulations of the stochastic system (4) and the
deterministic system (2), respectively, where the stochastic system is perturbed by the Ornstein–Uhlenbeck
process. The picture on the right means the density of the stochastic system (4) (color figure online)

Case(1) Consider the parameters θ1 = 0.1, θ2 = 0.09, σ1 = 0.1, σ2 = 0.1,
η = 0.09, β = 0.05, σ = 0.9, γ = 0.09, α = 0.36, ξ = 1.3. According to
the Theorem 4.2, system (4) has a stationary distribution which can be proved by
numerical simulation as shown in Fig. 1.

Case(2) Consider the parameters θ1 = 0.1, θ2 = 0.09, σ1 = 0.1, σ2 = 0.1,
η = 0.09, β = 0.05, σ = 0.9, γ = 0.09, α = 0.45, ξ = 0.58. By the Theorem 5.1, it
verifies the conclusion that the disease will be extinct.

To sum up, we verified the conclusion through numerical simulation in Figs. 1, 2
and 3. In Fig. 1, the blue and red lines represent the simulations for the stochastic
system (4) and the deterministic system (2), respectively. The picture on the right
shows the density of the stochastic system (4). In Fig. 2, when Rd

0 < 1, system (4)
will be extinct with the data of Case(2). From the right of the Fig. 3, it displays the
curve tend to zero point. It also means that the system (4) will be extinct.

In the process of numerical simulation, the change of the important parameters ξ̄ ,
α, η have a great influence on the change of the curve of the system (4). We apply
the method of control variables, by changing the different values of an important
parameter, with the change of the curve to show the effect of simulation, examples
can be found in Figs. 4 and 5.
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Fig. 2 When Rd
0 = 0.5830 < 1, simulations of the system (4) will be extinct. On the left,The blue and red

lines represent simulations of the stochastic system (4) and the deterministic system (2), respectively, where
the stochastic system is perturbed by the Ornstein–Uhlenbeck process. The picture on the right means the
density of the stochastic system (4) (color figure online)

Case(3) Consider the parameters θ1 = 0.1, θ2 = 0.09, σ1 = 0.1, σ2 = 0.1,
η = 0.09, β = 0.05, σ = 0.9, γ = 0.09, α = 0.36. And

Rh
0 = 2.9691, when ξ̄ = 2.0.

Rh
0 = 2.5237, when ξ̄ = 1.7.

Rh
0 = 1.9299, when ξ̄ = 1.3.

Rd
0 = 0.7442, when ξ̄ = 0.3.

Which implies that for ξ̄ = 2.0, ξ̄ =1.7, ξ̄ =1.3, the diseases will persist, and then when
ξ̄ = 0.3, the diseases will be extinct. In Fig. 4, we can clearly observe the image
changes caused by parameters change.

Case(4) Consider the parameters θ1 = 0.1, θ2 = 0.09, σ1 = 0.1, σ2 = 0.1,
η = 0.09, β = 0.05, σ = 0.9, γ = 0.09, ξ̄ = 1.3. And

Rd
0 = 0.8457, when α = 1.44.

Rh
0 = 1.2577, when α = 0.72.

Rh
0 = 1.9299, when α = 0.36.

Rh
0 = 2.6337, when α = 0.18.
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Fig. 3 Simulations of the solution I (t), R(t), and C(t) in system (4) under the different value of ξ̄

Similarly, which implies that for α = 0.72, α = 0.36, α = 0.18, the diseases will persist,
and then when α = 1.44, the diseases will be extinct. The variation of these parameters
can be clearly observed in Fig. 5.

Case(5) Consider the parameters θ1 = 0.1, θ2 = 0.09, σ1 = 0.1, σ2 = 0.1,
α = 0.36, β = 0.05, σ = 0.9, γ = 0.09, ξ̄ = 1.3. And

Rd
0 = 0.9028, when η = 1.08.

Rh
0 = 1.5229, when η = 0.27.

Rh
0 = 1.9299, when η = 0.09.

Rh
0 = 2.0681, when η = 0.045.

Similarly, which implies that for η = 0.27, η = 0.09, η = 0.045, the diseases will
persist, and then when η = 1.08, the diseases will be extinct. The effect of different
changes in the value of η is clearly reflected in Fig. 5.

8 Conclusions

In this article, we analyze a stochastic SIRCmodel with Ornstein–Uhlenbeck process.
We first give the theoretical result that the stochastic SIRC system (4) has a unique
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Fig. 4 Simulations of the solution I (t), R(t), and C(t) in system (4) under the different value of α

global positive solution and prove it. Then, the theoretical results on the existence of
ergodic stationary distributions for random SIRC systems (4) are given. We prove the
theoretical results by constructing a series of suitable Lyapunov functions. It reveals the
influence of Ornstein–Uhlenbeck process on the existence of stationary distribution.
In addition, the theoretical results of probability density function are obtained and
proved. In addition, we derive the sufficient conditions for the extinction of the disease,
providing a theoretical basis for the prevention and control of infectious diseases.
Finally, we use numerical simulation to simulate the theoretical results in order to
verify the theoretical results in the paper.

However, there are still many questions about this article to be resolved. In this
paper, we only get the local probability density expression of stochastic systems, and
the global probability density expression is still a problem to be considered. In addition,
whether other types of random disturbances are more suitable for solving the problem
also needs further verification.
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Fig. 5 Simulations of the solution I (t), R(t), and C(t) in system (4) under the different value of η
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