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Abstract
It is awell-known fact that there are continua X such that the inverse limit of any inverse
sequence {X , fn} with surjective continuous bonding functions fn is homeomorphic
to X . The pseudoarc or any Cook continuum are examples of such continua. Recently,
a large family of continua X was constructed in such a way that X is 1

m -rigid and
the inverse limit of any inverse sequence {X , fn} with surjective continuous bonding
functions fn is homeomorphic to X by Banič and Kac. In this paper, we construct an
uncountable family of pairwise non-homeomorphic continua X such that X is 0-rigid
and prove that for any sequence ( fn) of continuous surjections on X , the inverse limit
lim←−{X , fn} is homeomorphic to X .

Keywords Continua · Cook continua · Rigid continua · Degree of rigidity · Stars of
continua · Simple fan of Cook continua · Inverse limits

Mathematics Subject Classification 54H25 · 37C25 · 37B45 · 54F15 · 54F65

1 Introduction

The rigidity of topological spaces has been studied in variousways by different authors,
e.g., [1–8, 10–12]. Cook continua are basic examples of non-degenerate continua that
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are rigid, and therefore, they play an important role in the study of rigid continua, also
in continuum theory and dynamical systems in general. There are many rigid continua
or continua that are not 0-rigid that are constructed using Cook continua, see [2, 6, 10],
where more references may be found. For example, in [2], Cook continua are used to
construct stars, paths, and cycles of Cook continua. They are all examples of continua
that are not 0-rigid. It was shown in [2] that for each positive integer m, X such that

1. X is 1
m -rigid, and

2. for any inverse sequence {X , fn} with surjective continuous bonding functions fn
the inverse limit lim←−{X , fn} is homeomorphic to X .

Note that for any Cook continuum X and for any sequence ( fn) of continuous
surjections on X , the inverse limit lim←−{X , fn} is homeomorphic to X (since each fn
is the identity on X ), while degrig(X) �= ∞ (since degrig(X) = 1).

The following problem is also presented in that paper.

Problem 1 [2, Problem 5.7] Find all non-degenerate continua X such that

1. degrig(X) = ∞,
2. lim←−{X , fn} is homeomorphic to X for any sequence ( fn) of continuous surjections

fn : X → X.

Note that the pseudoarc is one such continuum (see [2, Sect. 5] for a detailed
explanation).

The main goal of family of pairwise non-homeomorphic continua X such that

1. degrig(X) = ∞ (or, equivalently, X is 0-rigid), and
2. lim←−{X , fn} is homeomorphic to X for any sequence ( fn) of continuous surjections

fn : X → X .

We organize the paper in the followingway. In Sect. 2, definitions and notations that
are needed in the paper are given. In Sect. 3, we construct a large family of continua,
and we call each of them a simple fan of Cook continua. They are then used in Sect. 4,
where an uncountable family of pairwise non-homeomorphic continua X such that

1. X is 0-rigid, and
2. lim←−{X , fn} is homeomorphic to X for any sequence ( fn) of continuous surjections

fn : X → X

is constructed. This partially answers Problem 1.

2 Definitions and Notation

Definitions and notation mostly follow [2, 9]. Note that all functions in the paper are
assumed to be continuous.

A continuum is a non-empty connected compact metric space. A continuum is
degenerate if it consists of only a single point. Otherwise, it is non-degenerate. A
subcontinuum is a subspace of a continuum which itself is also a continuum.

Let (X , d) be a metric space. By BX (x, ε) we denote the open ball of radius ε > 0
with center x ∈ X .
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Definition 1 Let n be a positive integer, X a metric space, and f : X → X a function.
We use f n to denote the composition:

f n = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

.

Definition 2 An inverse sequence is a double sequence {Xn, fn}∞n=1 of metric spaces
Xn and functions fn : Xn+1 → Xn . The spaces Xn are called the coordinate spaces
and the functions fn are called the bonding functions. The inverse limit of an inverse
sequence {Xn, fn}∞n=1 is the subspace of the product space

∏∞
n=1 Xn that consists of

all points x = (x1, x2, x3, . . .) ∈ ∏∞
n=1 Xn such that xn = fn(xn+1) for each positive

integer n:

lim←−{Xn, fn}∞n=1 =
{

(x1, x2, x3, . . .) ∈
∞
∏

n=1

Xn | xn = fn(xn+1) for each n

}

.

Definition 3 Let n be a positive integer and let (x1, x2, . . . , xn, . . .) ∈ ∏∞
n=1[0, 1]. A

function πn : ∏∞
n=1[0, 1] → [0, 1] is defined as πn(x1, x2, . . . , xn, . . .) = xn .

Definition 4 A metric d on a Hilbert cube
∏∞

n=1[0, 1] is defined as

d(x, y) =
∞
∑

n=1

|xn − yn|
2n

,

for each x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .) ∈ ∏∞
n=1[0, 1].

Definition 5 Let X and Y be any metric spaces, S a subspace of X , and let f : X → Y
be a function. We use f |S to denote the restriction f |S : S → Y , defined by f |S(x) =
f (x) for any x ∈ S.

Definition 6 A non-degenerate continuum X is a Cook continuum if for any non-
degenerate subcontinuum S of X and any non-constant continuous function f : S →
X , we have that

f (x) = x

for any x ∈ S.

The identity function on a metric space X will be denoted by 1X .

Definition 7 Let n be a positive integer. A non-degenerate continuum X is 1
n -rigid, if

f n = 1X

for any continuous surjective function f : X → X . If a continuum X is not 1
n -rigid

for any positive integer n, then we say that X is 0-rigid. If a continuum X is 1
1 -rigid,

then we also say that X is 1-rigid.
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Definition 8 Let X be a continuum.The degree of rigidity, degrig(X), of the continuum
X is:

degrig(X) = min
({n ∈ N | X is 1

n -rigid} ∪ {∞}) .

In [2], examples of continua with the degree of rigidity equal to n for each positive
integer n can be found.

Definition 9 Let X be a continuum and let x0 ∈ X . The point x0 is called a cut-point
if X \ {x0} is not connected. Otherwise, it is called a non-cut point for the continuum
X .

In [2], one can find the following result.

Lemma 1 [2, Lemma 3.2] Let K be a Cook continuum and let x ∈ K be any point.
Then x is a non-cut point for K .

The following lemma is proved in [10].

Lemma 2 [10, Lemma 2.12]

1. Let K be a Cook continuum and S be a non-degenerate subcontinuum of K . Then
S is also a Cook continuum.

2. If two Cook continua K1 and K2 are homeomorphic, then they are uniquely home-
omorphic, i.e., there exists a unique homeomorphism ϕ : K1 → K2. Moreover, if
ψ : K1 → K2 is a continuous surjection, then ψ = ϕ.

We also use the following two propositions.

Proposition 1 Let K be any Cook continuum and let S be any non-degenerate sub-
continuum of K , such that S �= K. If f : K → S is a continuous function, then f is
a constant function.

Proof Let g : S → K be a continuous function such that g(x) = x for each x ∈ S.
Then g ◦ f : K → K is a continuous function. Since K is a Cook continuum, then
g ◦ f is either 1K or a constant function.

Since g(x) = x for each x ∈ S, then g( f (x)) = f (x) for each x ∈ K . Let
y ∈ K\S. Then g( f (y)) = f (y) �= y, therefore g ◦ f is a constant function. It
follows that g( f (x)) = f (x) = f (y) for each x ∈ K . Consequently, f is a constant
function. 	


The following proposition follows directly from Definition 6.

Proposition 2 Let K be any Cook continuum and let S be any non-degenerate sub-
continuum of K , such that S �= K. Then there does not exist a continuous surjective
function from S to K .

The following corollary follows from Propositions 1 and 2.
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Corollary 1 Let K be a Cook continuum and let (Kn)
∞
n=1 be a sequence of continua

satisfying K1 = K and Kn+1 is a proper subcontinuum of Kn for each positive integer
n. Then for any positive integers m and n, m �= n, it holds that there does not exist a
continuous surjective function f : Km → Kn.

Proof Let m and n be positive integers.
If n < m, then Km ⊆ Kn and Kn �= Km , therefore, by Proposition 1, there does

not exist a continuous surjective function f : Km → Kn .
If m < n, then Kn ⊆ Km and Kn �= Km , therefore, by Proposition 2, there does

not exist a continuous surjective function f : Km → Kn . 	


3 A Construction of Simple Fans of Cook Continua

In Construction 1, simple fans of Cook continua are constructed using any Cook con-
tinuum K . Each simple fan of Cook continua will be obtained from special sequence
(Kn) of non-degenerate subcontinua of K . The existence of such a sequence will be
guaranteed by the Boundary Bumping Theorem (its formulation and its proof may be
found in [9]).

Construction 1 Let (An)
∞
n=1 be a sequence of subsets of positive integers such that

1.
⋃∞

n=1 An is equal to the set of all positive integers,
2. for all positive integers m and n it holds that: m �= n if and only if Am ∩ An = ∅,

and
3. the set An is infinite for each positive integer n.

Moreover, each An we split into n sets A1
n, A

2
n, . . . , A

n
n such that

1.
⋃n

p=1 A
p
n = An,

2. for all positive integers p and q it holds that: p �= q ⇔ Ap
n ∩ Aq

n = ∅, and
3. the set Ap

n is infinite for each positive integer p.

Now, for each positive integer n and each p ∈ {1, 2, . . . , n}, let Q p
n ⊆ ∏∞

n=1[0, 1]
such that

πk(Q
p
n ) =

{

{0} ; k /∈ Ap
n ,

[0, 1
n ] ; k ∈ Ap

n ,

for each positive integer k.
Let K be a Cook continuum and let (Kn) be a sequence of non-degenerate continua,

such that

– K1 = K,
– Kn+1 is a proper subcontinuum of Kn for each positive integer n, and
– limn→∞ diam(Kn) = 0.

By Lemma 2, Kn is a Cook continuum for each positive integer n. The existence of
such a sequence of continua follows from Boundary Bumping Theorem.
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Fig. 1 A simple fan of Cook
continua
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Now, let {t0} = ⋂∞
n=1 Kn.

For each positive integer n and for each p ∈ {1, 2, . . . , n}, let H p
n : Kn → Qp

n
be an embedding such that H p

n (t0) = (0, 0, . . .). Such embeddings do exist since
∏∞

n=1[0, 1] is a homogeneous continuum.
Let X = ⋃∞

n=1
⋃n

p=1 H
p
n (Kn). Then X is called a simple fan of Cook continua.

To simplify the study of simple fans of Cook continua, we introduce the following
notation, which we use throughout the paper.

Notation: Let X be a simple fan of Cook continua. We denote

1. K p
n = H p

n (Kn),
2. Sn = ⋃n

q=1 K
q
n ,

3. h p
n is the homeomorphism from Kn to K p

n (note that there is precisely one such
homeomorphism), and

4. x0 = (0, 0, . . .),

for each positive integer n and for each p ∈ {1, 2, . . . , n}. The continuum Sn is also
called a star of continua K 1

n , K
2
n , . . . , Kn

n (Fig. 1).

Lemma 3 Let X be a simple fan of Cook continua. Then

lim
n→∞ diam(Sn) = 0.

Proof Since for each positive integer n and for each p ∈ {1, 2, . . . , n} it holds Sn ⊆
⋃n

q=1 Q
q
n , diam(Qp

n ) ≤ 1
n , and x0 ∈ ⋂n

q=1 Q
q
n , therefore limn→∞ diam(Sn) = 0. 	


The following observation follows directly from Construction 1 and Lemma 3.

Observation 2 Let X be a simple fan of Cook continua. Then X is a continuum.
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Observation 3 Let X be an arbitrary simple fan of Cook continua. Then x0 is the only
cut point for X.

The following corollary follows directly from Corollary 1 and Construction 1.

Corollary 2 Let K p
m and Kr

n be continua fromConstruction 1 for some positive integers
m and n such that m �= n, and for some p ∈ {1, 2, 3, . . . ,m} and r ∈ {1, 2, 3, . . . , n}.
Then there does not exist a continuous surjection from K p

m to Kr
n .

4 Properties of Simple Fan of Cook Continua

In this section, we partially answer Problem 1. We start with some results that are
needed to prove the main results, Theorem 2 and Corollary 5.

Lemma 4 Let X be any simple fan of Cook continua and let f : X → X be any
continuous surjection. Then

f (x0) = x0.

Proof Suppose f (x0) �= x0. Let n be a positive integer and p ∈ {1, 2, . . . , n} such
that f (x0) ∈ K p

n . Let ε = d(x0, f (x0))
3 . Since f is a continuous function, there exists

0 < δ <
d(x0, f (x0))

3 such that f (BX (x0, δ)) ⊆ BX ( f (x0), ε), where BX (x0, δ) and
BX ( f (x0), ε) are open balls in X .

Let m0 be a positive integer such that for each positive integer m ≥ m0, it holds
that diam(Sm) < δ. By Construction 1, diam(K p

m) < δ for each p ∈ {1, 2, . . . ,m}.
Moreover, by Construction 1 and since f is continuous, the following holds:

– n < m0,
– Km ⊆ Kn ,
– h p

n (Km) ⊆ K p
n ,

– diam(h p
n (Km)) < δ, and

– f (h p
n (Km)) ⊆ BX ( f (x0), ε),

for each positive integer m ≥ m0.
For each positive integer t and for each s ∈ {1, 2, . . . , t}, we define a function

ϕs
t : X → Ks

t by

ϕs
t (x) =

{

(hst ◦ (hba)
−1)(x) ; x ∈ Kb

a , a ≥ t, b ∈ {1, 2, . . . , a},
x0 ; x ∈ Kb

a , a ≤ t − 1, b ∈ {1, 2, . . . , a}

for each x ∈ X . Obviously, ϕs
t is a continuous function. Then ϕs

t ◦ f |Ks
t

: Ks
t → Ks

t
is a continuous function from a Cook continuum to itself. Therefore, ϕs

t ◦ f |Ks
t
is a

constant function or an identity function on Ks
t . We consider the following three cases

for t .
Case 1: t ≤ n. Let s ∈ {1, 2, . . . , t}. Since (ϕs

t ◦ f |Ks
t
)(x0) = (hst ◦

(h p
n )−1)( f (x0)) �= x0, it follows that ϕs

t ◦ f |Ks
t
is a constant function and

(ϕs
t ◦ f |Ks

t
)(x) = (hst ◦ (h p

n )−1)( f (x0))
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for each x ∈ Ks
t . Since Ks

t is a connected space and f is a continuous function, the
image f (Ks

t ) is also a connected space. Therefore,

f (Ks
t ) = { f (x0)}.

Case 2: n < t < m0. Let s ∈ {1, 2, . . . , t} and let y ∈ Ks
t such that d(x0, y) < δ

and y �= x0. Then f (y) ∈ BX ( f (x0), ε) ⊆ K p
n . Therefore, (ϕs

t ◦ f |Ks
t
)(y) = x0 and

it follows that, ϕs
t ◦ f |Ks

t
is a constant function. Therefore,

f (Ks
t ) ⊆

t−1
⋃

i=1

Si .

Case 3: t ≥ m0. Let s ∈ {1, 2, . . . , t}. Since Ks
t ⊆ BX (x0, δ), it holds that

f (Ks
t ) ⊆ BX ( f (x0), ε) ⊆ K p

n .

It follows from the above cases that

f (X) ⊆
m0−1
⋃

i=1

Si ,

which is a contradiction, since f is a surjective function.
	


Proposition 3 Let X be any simple fan of Cook continua and let f : X → X be any
continuous surjective function. Suppose S is a subcontinuum of K p

n for some positive
integer n and some p ∈ {1, 2, . . . , n}, such that x0 /∈ S. If x0 /∈ f (S), then there exist
exactly one positive integerm and exactly one r ∈ {1, 2, . . . ,m} such that f (S) ⊆ Kr

m.

Proof Since S is a continuum, f is a continuous function, and x0 is a cut-point of X ,
the proposition follows. 	

Lemma 5 Let X be any simple fan of Cook continua and let f : X → X be any
continuous surjective function. Then for each positive integer n and for each p ∈
{1, 2, . . . , n}, it holds that

f (K p
n ) ⊆ Sn .

Proof By Lemma 4, f (x0) = x0 and we use this fact until the end of this proof. We
prove the lemma inductively.

First, we prove that f (K 1
1 ) ⊆ S1 = K 1

1 . Suppose, f (K
1
1 ) � S1. Then there exists

y ∈ K 1
1\{x0} such that f (y) /∈ S1. We define a function ϕ1

1 : X → K 1
1 , where for

each positive integer m, for each r ∈ {1, 2, . . . ,m}, and for each x ∈ Kr
m ,

ϕ1
1(x) = (h11 ◦ (hrm)−1)(x).



Uncountable Family of 0-Rigid... Page 9 of 13 80

It is easy to see that ϕ1
1 is a continuous function. Therefore, ϕ1

1 ◦ f |K 1
1

: K 1
1 → K 1

1 is
also a continuous function, and since it maps from a Cook continuum to itself, it is a
constant function or an identity function on K 1

1 .
Obviously, (ϕ1

1 ◦ f |K 1
1
)(x0) = x0.

Let s ∈ h11(K1 \ K2) \ {y} be any point. We distinguish two cases for f (s).
Case 1: f (s) = s. Note that by Lemma 1, x0 is a non-cut point for K 1

1 , and by
Observation 3, x0 is a cut point for X . Since K 1

1 \ {x0} is connected and f continuous,
f (K 1

1 \ {x0}) is also connected. Consequently, there is z ∈ K 1
1\{x0, s, y} such that

f (z) = x0.
Then (ϕ1

1 ◦ f |K 1
1
)(z) = x0 �= z, and therefore, ϕ1

1 ◦ f |K 1
1
is a constant function with

the image {x0}. On the other hand, (ϕ1
1 ◦ f |K 1

1
)(s) = s �= x0, a contradiction.

Case 2: f (s) �= s. From Construction 1 and the definition of ϕ1
1 , it follows that

(ϕ1
1 ◦ f |K 1

1
)(s) �= s. Therefore, ϕ1

1 ◦ f |K 1
1
is a constant function. Consequently, (ϕ1

1 ◦
f |K 1

1
)(K 1

1 ) = {x0} and

f (K 1
1 ) = {x0} ⊆ S1.

Let n be a positive integer and suppose f (Kr
m) ⊆ Sm for each positive integer

m ≤ n and each r ∈ {1, 2, . . . ,m}. Now we prove that f (K p
n+1) ⊆ Sn+1 for each

p ∈ {1, 2, . . . , n + 1}.
Let p ∈ {1, 2, . . . , n + 1} be arbitrarily chosen. Suppose, f (K p

n+1) � Sn+1. Then
there exists y ∈ K p

n+1\{x0} such that f (y) /∈ Sn+1. For each q ∈ {1, 2, . . . , n + 1},
we define the function ϕ

q
n+1 : X → Kq

n+1 by

ϕ
q
n+1(x) =

{

(hqn+1 ◦ (hrn+1)
−1)(x) ; x ∈ Kr

n+1, r ∈ {1, 2, . . . , n + 1},
x0 ; x ∈ X \ Sn+1,

for each x ∈ X . Obviously, ϕq
n+1 is a continuous function for each q ∈ {1, 2, . . . , n +

1}. Thus, ϕ p
n+1 ◦ f |K p

n+1
: K p

n+1 → K p
n+1 is a continuous function and it maps from

a Cook continuum to itself. Therefore it is a constant function or an identity function
on K p

n+1. Since (ϕ
p
n+1 ◦ f |K p

n+1
)(y) = x0, it follows that ϕ

p
n+1 ◦ f |K p

n+1
is a constant

function.
Let a ∈ h p

n+1(Kn+1 \ Kn+2) \ {y}. Since f is surjective, there is b ∈ X such

that f (b) = a. From the induction assumption, it follows that b /∈
⋃n

m=1
Sm . We

distinguish the remaining cases for b.
Case A: There is a positive integer � > n + 1 and q ∈ {1, 2, . . . , �} such that

b ∈ Kq
� .

Let g : K� → Kn+1 be the function defined by

g(x) =
(

(h p
n+1)

−1 ◦ ϕ
p
n+1 ◦ f |Kq

�
◦ hq�

)

(x).



80 Page 10 of 13 M. Črepnjak, T. Kac

Obviously, g is a continuous function. Moreover, g(t0) = t0, g((h
q
� )−1(b)) =

(h p
n+1)

−1(a) �= t0, and g((hq� )−1(b)) = (h p
n+1)

−1(a) ∈ Kn+1\K�, a contradiction,
since K� ⊆ Kn+1, Kn+1 is a Cook continuum, and g is a continuous function.

Case B: There is a positive integer q1 ∈ {1, 2, . . . , n + 1} such that b ∈ Kq1
n+1.

Denote b1 = b. Note that ϕ
q1
n+1 ◦ f |Kq1

n+1
: Kq1

n+1 → Kq1
n+1 is a continuous function

and (ϕ
q1
n+1 ◦ f |Kq1

n+1
)(x0) = x0. Moreover, (ϕq1

n+1 ◦ f |Kq1
n+1

)(b1) = ϕ
q1
n+1(a) = (hq1n+1 ◦

(h p
n+1)

−1)(a) �= x0, therefore ϕ
q1
n+1 ◦ f |Kq1

n+1
is the identity function. Thus, (ϕ

q1
n+1 ◦

f |Kq1
n+1

)(b1) = (hq1n+1 ◦ (h p
n+1)

−1)(a) = b1.

Since f is surjective, there is b2 ∈ X such that f (b2) = b1. From the induc-
tion assumption and Case A it follows that b2 ∈ Kq2

n+1 ⊆ Sn+1, for some q2 ∈
{1, 2, . . . , n + 1}, and (hq2n+1 ◦ (hq1n+1)

−1)(b1) = b2.
Now we construct a finitely many elements b3, . . . , bn ∈ Sn+1 such that

1. f (bi ) = bi−1,
2. bi ∈ Kqi

n+1, for some qi ∈ {1, 2, . . . , n + 1},
3. (hqin+1 ◦ (hqi−1

n+1)
−1)(bi−1) = bi ,

for each i ∈ {3, . . . , n}.
We denote b0 = a and q0 = p. First, if there is i ∈ {1, 2, . . . , n} such that

bi = a, then f (a) = bi−1 and consequently, f (a) ∈ Sn+1. Otherwise, for each
i ∈ {1, 2, . . . , n} it holds that bi �= a. It is easy to see that bi �= b j for each i, j ∈
{0, 1, . . . , n} such that i �= j . Since f is surjective, there is bn+1 ∈ X such that
f (bn+1) = bn . From the induction assumption and Case A it follows that bn+1 /∈ Sk
for each positive integer k �= n + 1. Then there exists qn+1 ∈ {1, 2, . . . , n + 1}
satisfying bn+1 ∈ Kqn+1

n+1 , and (hqn+1
n+1 ◦ (hqnn+1)

−1)(bn) = bn+1. Clearly, there is j ∈
{0, 1, 2, . . . , n} such that qn+1 = q j . Since

f (bn+1) = bn =
(

hqnn+1 ◦ (hqn−1
n+1 )−1

)

(bn−1)

=
(

hqnn+1 ◦ (hqn−1
n+1 )−1 ◦ hqn−1

n+1 ◦ (hqn−2
n+1 )−1

)

(bn−2)

= . . .

=
(

hqnn+1 ◦ (h
q j
n+1)

−1
)

(b j )

and (hqnn+1 ◦ (hqn+1
n+1 )−1)(bn+1) = bn , it follows that b j = bn+1.

If j = 0, then f (a) = f (b0) = f (bn+1) = bn ∈ Sn+1. Otherwise, if j �= 0, then
f (bn+1) = bn and f (bn+1) = f (b j ) = b j−1, a contradiction, since f is a function
and b j−1 �= bn .

From the above, we conclude that there exists j ∈ {0, 1, 2, . . . , n} such that f (a) =
(h

q j
n+1 ◦ (h p

n+1)
−1)(a) = b j .

Recall that, ϕ p
n+1 ◦ f |K p

n+1
is a constant function. On the other hand,

(

ϕ
p
n+1 ◦ f |K p

n+1

)

(a) = ϕ
p
n+1(b j ) =

(

h p
n+1 ◦ (h

q j
n+1)

−1 ◦ h
q j
n+1 ◦ (h p

n+1)
−1

)

(a) = a,
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which is a contradiction since a �= x0.
Thus, f (y) ∈ Sn+1 and consequently, f (K p

n+1) ⊆ Sn+1.
	


The following corollary follows directly from Lemma 5.

Corollary 3 Let X be any simple fan of Cook continua and let f : X → X be any
continuous surjective function. Then for each positive integer n,

f (Sn) ⊆ Sn .

Theorem 1 Let X be any simple fan of Cook continua and let f : X → X be any
continuous surjective function. Then for each positive integer n and for each p ∈
{1, 2, . . . , n}, there exists r ∈ {1, 2, . . . , n} such that

f (K p
n ) = Kr

n .

Moreover, f (x) = (hrn ◦ (h p
n )−1)(x) for each x ∈ K p

n .

Proof The theorem follows directly fromConstruction 1, Corollary 3, and [2, Theorem
3.7]. 	

Corollary 4 Let X be any simple fan of Cook continua and let f : X → X be any
continuous surjective function. Then f is a homeomorphism.

Proof By Theorem 1, it holds that for each positive integer n and for each p ∈
{1, 2, . . . , n} there exists r ∈ {1, 2, . . . , n} such that f (x) = (hrn ◦ (h p

n )−1)(x) for
each x ∈ K p

n . Consequently, f is a homeomorphism. 	

Theorem 2 Let X be any simple fan of Cook continua. Then lim←−{X , fn} is homeomor-
phic to X for any sequence ( fn)∞n=1 of continuous surjective functions.

Proof Let ( fn)∞n=1 be an arbitrarily chosen sequence of continuous surjective func-
tions. By Corollary 4, fn is a homeomorphism for each positive integer n. Therefore,
lim←−{X , fn} is homeomorphic to X . 	

Theorem 3 Let X be any simple fan of Cook continua. Then

degrig(X) = ∞.

Proof We prove that X is not 1
n -rigid for each positive integer n.

Let n be any positive integer. We define a function f : X → X in the following
way:

f (x) =
{

(hr(mod(n+1))+1
n+1 ◦ (hrn+1)

−1)(x) ; x ∈ Kr
n+1, r ∈ {1, 2, 3, . . . , n + 1},

x ; x ∈ X \ Sn+1.

Obviously, f is a continuous surjective function. We prove that f n �= 1X .
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Let x ∈ K 1
n+1 \ {x0}.

f n(x) =
(

f n−1 ◦ h2n+1 ◦ (h1n+1)
−1

)

(x)

=
(

f n−2 ◦ h3n+1 ◦ (h2n+1)
−1 ◦ h2n+1 ◦ (h1n+1)

−1
)

(x)

=
(

f n−2 ◦ h3n+1 ◦ (h1n+1)
−1

)

(x)

= . . .

=
(

hn+1
n+1 ◦ (h1n+1)

−1
)

(x).

Therefore, f n(x) ∈ Kn+1
n+1 and f n(x) /∈ K 1

n+1. Consequently, f n(x) �= x and f n �=
1X .

We proved that X is not 1
n -rigid for each positive integer n. Thus, degrig(X) = ∞.

	

Corollary 5 There exists an uncountable family F of pairwise non-homeomorphic
continua such that for each X ∈ F it holds

1. degrig(X) = ∞,
2. lim←−{X , fn} is homeomorphic to X for any sequence ( fn) of continuous surjections

fn : X → X.

Proof It is known that there are uncountably many pairwise non-homeomorphic Cook
continua. Let K and ˜K be any non-homeomorphic Cook continua. Let X be a simple
fan of Cook continua obtained from K and let ˜X be a simple fan of Cook continua
obtained from ˜K .

With ∼ we denote the corresponding homeomorphisms, Cook continua, and x̃0 for
˜X . We prove that X and ˜X are non-homeomorphic.

Suppose X and ˜X are homeomorphic and let F : X → ˜X be a homeomorphism.
First we show, that F(x0) = x̃0.

If F(x0) �= x̃0, then there exists z0 ∈ X\{x0} such that F(z0) = x̃0. Since z0 is
non-cut point in X and F is a homeomorphism, then F(X \ {z0}) is connected and
F(X\{z0}) = ˜X\{̃x0}, a contradiction. Thus, F(x0) = x̃0. Moreover, from this it
also follows that for each positive integer n and for each p ∈ {1, 2, . . . , n}, there are
positive integers m and r ∈ {1, 2, . . . ,m} such that F(K p

n ) ⊆ ˜Kr
m .

Suppose n and m are positive integers, p ∈ {1, 2, . . . , n}, and r ∈ {1, 2, . . . ,m}
such that F(K 1

1 ) ⊆ ˜K p
n and F−1(˜K 1

1 ) ⊆ Kr
m . Now, we define α = (˜h p

n )−1 ◦ F ◦ h11 :
K1 → ˜K1 and β = (hrm)−1 ◦ F−1 ◦ ˜h11 : ˜K1 → K1. Obviously, α and β are
continuous injective functions, and therefore, α ◦ β and β ◦ α are also continuous
injective functions. Since K1 and ˜K1 are Cook continua, it follows that α ◦ β = 1

˜K1
and β ◦ α = 1K1 .

Note that if α was surjective, then α would be a homeomorphism. Since K1 =
K , ˜K1 = ˜K , K and ˜K are not homeomorphic, it follows that α is not surjective.
Therefore, there is y ∈ ˜K such that for each x ∈ K it holds that α(x) �= y. Moreover,
(α ◦ β)(y) �= y, a contradiction, since α ◦ β = 1

˜K1
.

By Theorems 2 and 3, each simple fan of Cook continua X satisfies
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1. degrig(X) = ∞,
2. lim←−{X , fn} is homeomorphic to X for any sequence ( fn) of continuous surjections

fn : X → X ,

and the corollary is proven. 	
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