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Abstract
We show that an invariant measure of a Markov operator that is contracting in the
Hutchison distance, acting on a space of Borel probability measures on a Polish space,
depends continuously on the given operator. In addition, we establish an estimate for
a distance between invariant measures. Some applications to the weak limit of iterates
of random-valued functions (in particular, the so-called random affine maps, occuring,
e.g., in perpetuities analysis) are also given.

Keywords Random iteration · Markov operator · Invariant measure · Hutchinson
distance · Fortet–Mourier distance · Continuous dependence on the given function ·
Perpetuities
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1 Introduction

Markov operators play important role for analyzing random dynamical systems
(shortly RDS, see [4, Chapter 1] for precise definition) including such systems with
random perturbations. Randomness of RDS allows us to considermovements of points
via the evolution of probability measures describing the distribution of points on the
state space X being a metric space, in general. Consequently, we can define a (linear)
transformation P acting on the spaceM1(X) of all Borel probability measures on X
into itself. A probability measure μ∗ such that Pμ∗ = μ∗ is said to be an invariant
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measure or stationary distribution with respect to P . In case of compactness of X , the
space M1(X) is compact with respect to the weak topology of measures (formally
weak∗ topology, since the space of measures is identified, via Riesz representation,
with the dual of some space of continuous functions), which follows from the tight-
ness ofM1(X), due to the Prokhorov theorem, and we can use the Markov–Kakutani
fixed point theorem or the Krylov-Bogolyubov theorem to obtain an invariant measure
for any continuous operator P : M1(X) → M1(X). The existence of an invariant
measure for RDS has many important consequences, for example, in ergodic theory.
There are many conditions which imply the uniqueness as well as ergodicity of invari-
ant measures. For a fuller context we refer the reader to [24, 31] and the references
given there.

Let � be a family of Markov operators and assume that μ∗
P denotes a (unique)

invariant measure for P ∈ �. By changing (in some sense) operators P ∈ � it is
of interest to know whether μ∗

P is changing continuously. Thus we shall consider an
operator

� � P �−→ μ∗
P (1.1)

and its continuity. Moreover, the aim of the paper is to establish some estimation of a
distance between stationary distributions μ∗

P , μ∗
Q of operators P and Q, respectively.

Our research problem is related to the study of strongly stable Markov chains, which
were first examined by Aïssani and Kartashov [1]. (The interested reader is referred
to [21] for further information; cf. also [22]). However, it should be emphasized that
our viewpoint sheds some new light on the problem of the stability of solutions to
linear iterative functional equations. Such a problem is investigated by Baron in [7,
8]. Generalizations of his results, based on theorems of our work, will appear in a
forthcoming paper written by the second author.

Recently in [11] the continuous dependence of an invariant measure of piecewise-
deterministic Markov processes has been established. Other studies of this type
were conducted in [6], where it was proved that the limit in law of the sequence
of iterates f n of contracting in average random-valued functions f depends con-
tinuously in the Fortet–Mourier metric on the given function. (To be more precise
see Corollary 4.1 and Remark 4.2 given below.) These iterates f n are prototype of
RDS; see Sect. 2 for details. One of the aims of the work is to obtain generaliza-
tions of the main results of [6], by introducing the Hutchinson distance in the space
{Pμ : P ∈ �, μ has the first moment finite} in case when � is a family of contractive
Markov operators.

The organization of our paper goes as follows. InSect. 2 somebasic notions and facts
concernigMarkov operators aswell as the iterates of random-valued functions are indi-
cated. Main results in general settings are contained in Sect. 3. It will be shown that a
parameterized version of the Banach fixed-point theorem allows us to get continuity of
operator (1.1). However, the classical Banach fixed-point theoremwill bring additional
information, which is important from the applications point of view. These apllications
presented in the last two sections concern random iterations and perpetuities.
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2 Notions and Basic Facts

Throughout the work we assume that (X , �) is a Polish space, i.e. a separable and
complete metric space. Let B(X) stand for the σ -algebra of all Borel subsets of X .
By M1(X) we denote the space of all probability measures on B(X). Let B(X)

denote the space of all real-valued bounded Borel–measurable functions equipped
with the supremum norm || · ||∞ and C(X) be the subspace of bounded continuous
functions. As abbreviation we will write

∫
ϕdμ instead of

∫
X ϕdμ, where ϕ ∈ B(X)

and μ ∈ M1(X). Recall that a sequence of measures (μn) converges weakly to μ,
if

∫
ϕdμn −−−→

n→∞
∫

ϕdμ for every ϕ ∈ C(X). It is well known (see [13, Theorem

11.3.3]) that this convergence is metrizable by the Lévy–Prokhorov metric or by the
Fortet–Mourier metric (known also as the bounded Lipschitz distance) [14]

dFM (μ, ν) = sup
{∣
∣
∣

∫
ϕdμ −

∫
ϕdν

∣
∣
∣ : ϕ ∈ Lip1(X), ||ϕ||∞ ≤ 1

}
,

where

Lip1(X) = {ϕ : X → R : |ϕ(x) − ϕ(y)| ≤ �(x, y), x, y ∈ X}.

Putting Lipb1(X) = Lip1(X) ∩ B(X) define now

dH (μ, ν) = sup
{∣
∣
∣

∫
ϕdμ −

∫
ϕdν

∣
∣
∣ : ϕ ∈ Lipb1(X)

}
.

Clearly, dH is a distance function, called the Hutchinson metric [18] (also called
the 1-Wasserstein distance or Kantorovich–Rubinstein distance [30]), however for
some arguments it may be infinite. Moreover dFM (μ, ν) ≤ dH (μ, ν) and in the case
when the space X is bounded we have dH (μ, ν) ≤ diam(X) × dFM (μ, ν) for any
μ, ν ∈ M1(X), i.e. metrics dFM , dH are equivalent. The classical work on metrics
on measures are [9, 10, 13].

Throughout this paper we shall consider a regularMarkov operator P : M1(X) →
M1(X), i.e. P is a linear operator (here linearity is restricted to coefficients that are
nonnegative and sum up to one only) and there exists (adjoint or dual) operator P∗ :
B(X) → B(X) such that

∫
ϕdPμ = ∫

P∗ϕdμ for any ϕ ∈ B(X) and μ ∈ M1(X).
Moreover, if P∗ : B(X) → B(X) is a linear operator, P∗1X = 1X , P∗ fn ↘ 0
for fn ↘ 0, and P∗ϕ ≥ 0 if ϕ ≥ 0, then the operator P given by Pμ(A) =∫
P∗1A(x)μ(dx), A ∈ B(X), is a Markov operator (with adjoint P∗). An operator P

is called asymptotically stable if there exists a stationary distribution μ∗ such that

Pnμ −−−→
n→∞ μ∗ weakly for every μ ∈ M1(X). (2.1)

Clearly, the stationary distribution μ∗ satisfying (2.1) is unique.
Assume that (�,A,P) is a probability space. A function f : X × � → X is said

to be random-valued function (shortly rv-function) if it is measurable with respect to
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the product σ -algebra B(X) ⊗A. Having an rv-function f we will examine a regular
Markov operator P : M1(X) → M1(X) defined by

Pμ(A) =
∫

X

∫

�

1A( f (x, ω))P(dω)μ(dx), μ ∈ M1(X), A ∈ B(X). (2.2)

One can show that P is a transition operator for a sequence of iterates of rv-functions in
the sense of Baron and Kuczma [5]; cf. [12]. More precisely, Pπn(x, ·) = πn+1(x, ·),
where

πn(x, B) = P
∞( f n(x, ·) ∈ B), B ∈ B(X),

denotes the distribution of the nth-iterate of f defined inductively as follows

f 0(x, ω) = x, f n(x, ω) = f ( f n−1(x, ω), ωn), (2.3)

for x from X andω = (ω1, ω2, . . . ) from�∞ being�N. Note that f n : X×�∞ → X
is an rv-function on the product probability space (�∞,A∞,P∞). More exactly, the
n-th iterate f n is B(X) ⊗ An-measurable, where An denotes the σ -algebra of all the
sets of the form

{(ω1, ω2, . . . ) ∈ �∞ : (ω1, ω2, . . . , ωn) ∈ A}

with A from the product σ -algebra An . The iterates f n are prototype of RDS; see [4,
Definition 1.1.1]. Namely, the formula ϕ(n, ω, x) = f n(x, ω) defines a special RDS
ϕ : N × �∞ × X → X over the flow θ(n) : �∞ → �∞ of iterates of the shift
θ(n)(ω1, ω2, . . . ) = (ωn+1, ωn+2, . . . ), n ∈ N.

3 General Approach

As it wasmentioned in Sect. 1 some kind of continuity of operator (1.1) can be obtained
using a parameterized version of Banach’s fixed-point theorem for contractive maps.
For the convenience of the reader we quote this claim from [16, p. 18], thus making
our exposition self-contained. Recall only that a family {Hγ : γ ∈ �} of maps acting
on a metric space (X , d) into itself is called λ-contractive, where 0 ≤ λ < 1, provided
for some M > 0 and some 0 < κ ≤ 1, we have

(i) d(Hγ (x), Hγ (y)) ≤ λd(x, y) for all γ ∈ � and x, y ∈ X
(ii) d(Hγ1(x), Hγ2(x)) ≤ M

(
σ(γ1, γ2)

)κ for all x ∈ X and γ1, γ2 ∈ �,

where σ stands for a metric on�. (Here and in the sequel all metric spaces are assumed
implicitly to be non-empty.)

Theorem 3.1 Let (X , d) be a complete metric space, (�, σ ) be a metric space and let
{Hγ : γ ∈ �} be a family of contractive maps of X into itself, i.e. for any γ the map
Hγ is Lipschitzian with contraction constant less than 1. Assume that for every x ∈ X
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the map � � γ �−→ Hγ (x) ∈ X is continuous and for every γ ∈ � let xγ be the
unique fixed point of Hγ . Then the map

� � γ �−→ xγ ∈ X (3.1)

is continuous whenever at least one of the following two conditions holds:

(i) the space X is locally compact,
(ii) the family {Hγ : γ ∈ �} is λ-contractive.

Remark 3.1 The continuity of (3.1) in case of (i) follows from [27, Theorem 2]. To
see that (ii) implies the continuity of (3.1) it is enough to observe that:

d(xγ1 , xγ2) ≤ d
(
Hγ1(xγ1), Hγ2(xγ1)

) + d
(
Hγ2(xγ1), Hγ2(xγ2)

)

≤ M
(
σ(γ1, γ2)

)κ + λd(xγ1 , xγ2),

and, in consequence,

d(xγ1 , xγ2) ≤ M

1 − λ

(
σ(γ1, γ2)

)κ
.

It is well known that the space (M1(X), dFM ) is compact if and only if X is. (Note
however that the local compactness X is not inherited by the spaceM1(X) in general.
To see this let us consider X = R for simplicity, and fix weak neighbourhoodO of the
Dirac measure δ0. Then we can find p, q ∈ (0, 1) such that p+q = 1 and pδ0+qδx ∈
O for every x ∈ X . Consequently, O � pδ0 + qδn −−−→

n→∞ pδ0 + qδ∞ /∈ M1(R), i.e.

the closure ofO is not compact. Cf. [26, 28] and [3, Remark 7.1.9].) According to this
fact we may use part (i) of Theorem 3.1 to get directly the following result concerning
some kind of continuity of operator (1.1).

Theorem 3.2 Assume that the space X is compact and T is a metric space and let {Pt :
t ∈ T } be a family of Markov operators which are contractions in the Fortet–Mourier
metric, i.e. for every t ∈ T there exists 0 ≤ λPt < 1 such that

dFM (Ptμ, Ptν) ≤ λPt dFM (μ, ν) for μ, ν ∈ M1(X).

Assume that μ∗
Pt

denotes the invariant measure for Pt . If for every μ ∈ M1(X) the
operator T � t �−→ Ptμ ∈ (M1(X), dFM ) is continuous, then

T � t �−→ μ∗
Pt ∈ (M1(X), dFM )

is also continuous.

In other theorems, we will not assume the compactness of X . Suppose now that
μ0 ∈ M1(X) is a fixed measure and define a setM(μ0) by

M(μ0) = {
μ ∈ M1(X) : dH (μ,μ0) < ∞}

. (3.2)
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We start with a result being a slight modification of [20, Theorem 4.1], which will be
needed in the proof of the main result of this section.

Proposition 3.1 Let P : M1(X) → M1(X) be a Markov operator and assume that
there exists λ ∈ [0, 1) such that

dH (Pμ, Pν) ≤ λ dH (μ, ν) for μ, ν ∈ M(μ0), (3.3)

where M(μ0) is given by (3.2). Assume moreover that

dH (μ0, Pμ0) < ∞. (3.4)

Then the operator P has a unique invariant measure μ∗ ∈ M(μ0). Furthermore, we
have a geometric rate of convergence, i.e

dH (Pnμ,μ∗) ≤ λn

1 − λ
dH (μ, Pμ) for n ∈ N, μ ∈ M(μ0). (3.5)

If, additionally,

dFM (Pμ, Pν) ≤ dFM (μ, ν) for μ, ν ∈ M1(X), (3.6)

then the operator P is asymptotically stable.

Proof Assume that P satisfies (3.3) with some λ ∈ [0, 1). Then it is easy to check that
condition (3.4) implies P(M(μ0)) ⊂ M(μ0). According to [20, Theorem 3.3] the
metric space (M(μ0), dH ) is complete. The use of the classical Banach fixed point
theorem shows that there is an invariant measure μ∗ ∈ M(μ0) and (3.5) holds.

Assume moreover (3.6). To prove asymptotic stability of P fix μ ∈ M1(X) and
ε > 0. Since the set M(μ0) is a dense subset of the space M1(X) with the Fortet–
Mourier metric (see [20, Theorem 3.3]; cf. also [25], p. 8) it follows that there is
ν ∈ M(μ0) such that dFM (μ, ν) < ε. By (3.5) we have dH (Pnν, μ∗) < ε for large
enough n ∈ N, say n ≥ n0. Then for n ≥ n0 we obtain

dFM (Pnμ,μ∗) ≤ dFM (Pnμ, Pnν) + dFM (Pnν, μ∗) ≤ dFM (μ, ν) + ε,

which ends the proof. ��
Consider the family � of all Markov operators P : M1(X) → M1(X) such that

(3.3) holds with λ = λP ∈ [0, 1), and (3.4) is fulfilled. On account of Proposition 3.1
operator P ∈ �has an invariantmeasureμ∗

P ∈ M(μ0), which is uniquely determined.
Therefore we have an operator

� � P �−→ μ∗
P ∈ M(μ0) (3.7)

and we are interested in its continuity.
Applying part (ii) of Theorem 3.1 and [20, Lemma 4.3] we obtain the continuity of

operator (3.7) on suitable subsets of �.
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Theorem 3.3 Let (T , σ ) be a metric space and let {Pt : t ∈ T } be a subset of � for
which supt∈T λPt < 1. Assume that for some M > 0 and some 0 < κ ≤ 1 we have

dH (Pt1μ, Pt2μ) ≤ M
(
σ(t1, t2)

)κ (3.8)

for all μ ∈ M(μ0) and t1, t2 ∈ T . Then

T � t �−→ μ∗
Pt ∈ (M(μ0), dH )

is continuous.

In next theorems we will not assume the Hölder’s condition (3.8). Furthermore, our
goal is to obtain some additional properties concerning continuity like estimation of
the distance between limit distributions.

From now on, N0 denotes the set of all nonnegative integers.

Theorem 3.4 If P, Q ∈ �, then

dH (μ∗
P , μ∗

Q) ≤ min

{
1

1 − λP
inf

μ∈M(μ0)
αP
Q(μ),

1

1 − λQ
inf

μ∈M(μ0)
α
Q
P (μ)

}

, (3.9)

where μ∗
P , μ∗

Q is the invariant measure for P, Q, respectively, and,

α
Q
P (μ) = sup

n∈N0

dH (QPnμ, Pn+1μ), αP
Q(μ) = sup

n∈N0

dH (PQnμ, Qn+1μ).

(3.10)

Proof Assume that P, Q ∈ � and fix μ ∈ M(μ0). Clearly, P satisfies condition
(3.5), by Proposition 3.1. In particular the sequence (Pnμ) converges in metric dH to
μ∗
P . The same concerns the sequence (Qnμ), which tends to μ∗

Q .
We will show that

dH (Pnμ, Qnμ) ≤
n∑

k=1

λk−1
P dH

(
P(Qn−kμ), Q(Qn−kμ)

)
(3.11)

for every n ∈ N. To do this it is enough to use an induction observing that if the
statement (3.11) holds for some arbitrarily fixed n, then it holds for n + 1, namely,

dH (Pn+1μ, Qn+1μ) ≤ dH
(
Pn+1μ, P(Qnμ)

)
+ dH

(
P(Qnμ), Qn+1μ

)

≤ λP dH
(
Pnμ, Qnμ

) + dH
(
P(Qnμ), Q(Qnμ)

)

≤
n+1∑

k=1

λk−1
P dH

(
P(Qn+1−kμ), Q(Qn+1−kμ)

)
.
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Therefore by (3.11) we have

dH (Pnμ, Qnμ) ≤
∞∑

k=1

λk−1
P αP

Q(μ) = 1

1 − λP
αP
Q(μ)

for every n ∈ N. By symmetry argument we obtain also

dH (Pnμ, Qnμ) ≤ 1

1 − λQ
α
Q
P (μ).

Consequently, passing to the limit we have

dH (μ∗
P , μ∗

Q) ≤ min

{
1

1 − λP
αP
Q(μ),

1

1 − λQ
α
Q
P (μ)

}

.

Taking infimum of all μ ∈ M(μ0) we get (3.9). ��
Remark 3.2 Note that in the proof of Proposition 3.1 as well as in the proof of The-
orem 3.4 we do not use linearity of Markov operators. Theorem 3.4 can be easily
reformulated to the case of a general abstract contraction mappings acting on any
(complete) metric space into itself. However our goal is to analyze random iteration,
thus we skip an abstract case.

Remark 3.3 Since

dH
(
Q(Pnμ), Pn+1μ

)
≤ dH

(
Q(Pnμ), Q(Pnμ∗

P )
) + dH

(
Qμ∗

P , μ∗
P

)

+ dH
(
Pn+1μ∗

P , Pn+1μ
)

≤ (λQ + λP ) dH (μ,μ∗
P ) + dH

(
Qμ∗

P , μ∗
P

)

it follows that αQ
P (μ) is finite for P, Q ∈ � and μ ∈ M(μ0).

Relying on [6, Remark 1], we note the following.

Remark 3.4 (i) Since dFM (μ, ν) ≤ min{dH (μ, ν), 2},we see that from (3.9)we have

dFM (μ∗
P , μ∗

Q) ≤ min

{
1

1 − λP
inf

μ∈M(μ0)
αP
Q(μ),

1

1 − λQ
inf

μ∈M(μ0)
α
Q
P (μ), 2

}

, (3.12)

where α
Q
P (μ), αP

Q(μ), are given by (3.10).
(ii) Note that the right-hand side of (3.9) and of (3.12) are optimal in the sense that if X

has at least two elements, then there are P, Q ∈ � such that a distance betweenμ∗
P

and μ∗
Q is positive and inequality in (3.9) as well as in (3.12) must actually be an
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equality. Indeed, let x, y be different and define P, Q ∈ � by Pμ = δx , Qμ = δy
for μ ∈ M1(X). Then λP = λQ = 0, μ∗

P = δx , μ∗
Q = δy and

α
Q
P (μ) = αP

Q(μ) = dH (δx , δy) = ρ(x, y), dFM (μ∗
P , μ∗

Q) = min{ρ(x, y), 2}.

��
Now we will show that the conditions of the above theorem can be expressed in

terms of the adjoint operators. To do this let us consider the family � of all regular
Markov operators P : M1(X) → M1(X)with adjoint operator P∗ : B(X) → B(X)

such that

|P∗ϕ(x) − P∗ϕ(y)| ≤ λP �(x, y) for x, y ∈ X and ϕ ∈ Lipb1(X) (3.13)

with λP ∈ [0, 1), and (3.4) is fulfilled.

Proposition 3.5 We have � ⊂ �. Moreover, if P ∈ �, then (3.6) holds and P is
asymptotically stable.

Proof Inclusion � ⊂ � follows from [20, Lemma 4.3]. If P ∈ � and ϕ ∈ Lip1(X),
||ϕ||∞ ≤ 1, then P∗ϕ ∈ Lip1(X), ||P∗ϕ||∞ ≤ 1 and consequently we have

∣
∣
∣

∫
ϕdPμ −

∫
ϕdPν

∣
∣
∣ ≤ dFM (μ, ν) for μ, ν ∈ M1(X),

which shows (3.6). To finish the proof it is enough to apply Proposition 3.1. ��
Remark 3.6 An assertion concerning asymptotic stability of P ∈ � is in fact a part
of [20, Theorem 4.1] and of [25, Theorem 3.2]. Proofs of Propositions 3.1, 3.5 are
based on ideas from [20].

According to Theorem 3.4 and Proposition 3.5 we have the following corollary,
which ensures an estimation of the limit distributions without assumption (3.8).

Corollary 3.1 If P, Q ∈ �, then

dH (μ∗
P , μ∗

Q) ≤ min

{
1

1 − λP
inf

μ∈M(μ0)
αP
Q(μ),

1

1 − λQ
inf

μ∈M(μ0)
α
Q
P (μ)

}

, (3.14)

holds, where μ∗
P , μ∗

Q is the invariant measures for P, Q, respectively, and,

α
Q
P (μ) = sup

{∣
∣
∣
∣

∫
ϕd(QPn − Pn+1)μ

∣
∣
∣
∣ : n ∈ N0, ϕ ∈ Lipb1(X)

}

, (3.15)

αP
Q(μ) = sup

{∣
∣
∣
∣

∫
ϕd(PQn − Qn+1)μ

∣
∣
∣
∣ : n ∈ N0, ϕ ∈ Lipb1(X)

}

. (3.16)
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4 Applications to Random-Valued Functions

Assume that f : X × � → X is a fixed rv-function. Recall that

πn(x, B) = P
∞( f n(x, ·) ∈ B) for x ∈ X , n ∈ N, B ∈ B(X).

Note that for any fixed x ∈ X and B ∈ B(X) the function π1(x, ·) is a probability
distribution on X and π1(·, B) is a Borel-measurable function. In consequence the
operator P∗ given by

P∗ϕ(x) =
∫

�

ϕ( f (x, ω))P(dω), ϕ ∈ B(X), x ∈ X , (4.1)

is adjoint to (2.2), and in addition,

πn(x, B) = P∗n1B(x) = Pnδx (B) (4.2)

for x ∈ X and B ∈ B(X).
Following [7] we consider the set ϒrv of all rv-functions f : X × � → X such

that

∫

�

ρ( f (x, ω), f (y, ω))P(dω) ≤ λ f ρ(x, y) for x, y ∈ X

with a λ f ∈ [0, 1), and
∫

�

ρ( f (x0, ω), x0)P(dω) < ∞ (4.3)

for some (thus for all) x0 ∈ X .
We say that f ∈ ϒrv is a kernel of P , if P∗ has form (4.1). Byϒ we will denote all

regular Markov operators with adjoint operator P∗ : B(X) → B(X) given by (4.1)
with kernel f ∈ ϒrv.

In the main result of this section a role of the familyM(μ0) given by (3.2) will be
played by a familyM1

1(X) defined as

M1
1(X) =

{
μ ∈ M1(X) :

∫
�(x, x0)μ(dx) < ∞

}
.

Note that the setM1
1(X) is independent of x0. This set consists of all Borel measures

on X with the first moment finite. One can show that M1
1(X) = M(δx0); see [20,

Lemma 3.1].

Theorem 4.1 We have ϒ ⊂ �. If P, Q ∈ ϒ, then (3.14) holds, where μ∗
P , μ∗

Q ∈
M1

1(X) are the invariant measures for P, Q, respectively, and α
Q
P (μ), αP

Q(μ) are
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defined by (3.15), (3.16). Moreover, if

α
g
f (x, n) =

∫

�∞

∫

�

ρ
(
g( f n(x, ω),�), f ( f n(x, ω),�)

)
P(d�)P∞(dω),

α
f
g (x, n) =

∫

�∞

∫

�

ρ
(
f (gn(x, ω),�), g(gn(x, ω),�)

)
P(d�)P∞(dω)

for n ∈ N0 and x ∈ X, then for any μ ∈ M1
1(X) we have

αP
Q(μ) ≤ sup

n∈N0

∫

X
α

f
g (x, n)μ(dx) and α

Q
P (μ) ≤ sup

n∈N0

∫

X
α
g
f (x, n)μ(dx),

(4.4)

where f , g ∈ ϒrv is a kernel of P and Q, respectively. In particular,

dH (μ∗
P , μ∗

Q) ≤ min

{
1

1 − λ f
inf
x∈X α

f
g (x),

1

1 − λg
inf
x∈X α

g
f (x)

}

, (4.5)

where

α
f
g (x) = supn∈N0α

f
g (x, n) and α

g
f (x) = supn∈N0α

g
f (x, n). (4.6)

Proof Assume that f , g ∈ ϒrv are as in the statement and fix ϕ ∈ Lipb1(X). Observe
that

|P∗ϕ(x) − P∗ϕ(y)| ≤
∫

�

ρ( f (x, ω), f (y, ω))P(dω) ≤ λ f ρ(x, y),

i.e. (3.13) holds. Moreover,

∣
∣
∣

∫
ϕdPδx0 −

∫
ϕdδx0

∣
∣
∣ = ∣

∣P∗ϕ(x0) − ϕ(x0)
∣
∣

≤
∫

�

∣
∣ϕ( f (x0, ω)) − ϕ(x0)

∣
∣P(dω)

≤
∫

�

ρ( f (x0, ω), x0)P(dω),

and by (4.3) we obtain (3.4) with μ = δx0 . Clearly, the same conclusion can be drawn
for any rv-function from ϒrv, which shows that ϒ ⊂ �.

Due to Corollary 3.1 we have (3.14), where λP = λ f , λQ = λg . In addition, an
easy calculation shows that

∣
∣
∣

∫
ϕdPQnμ −

∫
ϕdQn+1μ

∣
∣
∣

=
∣
∣
∣

∫

X
Qn∗(P∗ϕ)(x)μ(dx) −

∫

X
Qn∗(Q∗ϕ)(x)μ(dx)

∣
∣
∣
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=
∣
∣
∣

∫

X

∫

�∞
P∗ϕ(gn(x, ω))P∞(dω)μ(dx)

−
∫

X

∫

�∞
Q∗ϕ(gn(x, ω))P∞(dω)μ(dx)

∣
∣
∣

=
∣
∣
∣

∫

X

∫

�∞

∫

�

ϕ
(
f (gn(x, ω),�)

)
P(d�)P∞(dω)μ(dx)

−
∫

X

∫

�∞

∫

�

ϕ
(
g(gn(x, ω),�)

)
P(d�)P∞(dω)μ(dx)

∣
∣
∣,

hence

αP
Q(μ) = sup

{∣
∣
∣

∫
ϕd(PQn − Qn+1)μ

∣
∣
∣ : n ∈ N0, ϕ ∈ Lipb1(X)

}

≤ sup
n∈N0

∫

X
α

f
g (x, n)μ(dx),

i.e. (4.4) is fulfilled.
It is obvious that for any x ∈ X we have

αP
Q(δx ) ≤ sup

n∈N0

α
f
g (x, n)

hence,

inf
μ∈M1

1(X)

αP
Q(μ) ≤ inf

x∈X αP
Q(δx ) ≤ inf

x∈X α
f
g (x).

Since roles f and g are symmetrical, the proof is finished. ��
To illustrate our theorem, let us state a corollary, which is the main result of [6].

Recall only that by the convergence in distribution or in law of the sequence of iterates
( f n(x, ·)) we mean that the sequence (πn(x, ·)) converges weakly to a probability
distribution.

Corollary 4.1 If f , g ∈ ϒrv, then the sequences of iterates ( f n(x, ·)), (gn(x, ·)) are
convergent in law to the probability distributions π f , π g ∈ M1

1(X), respectively, the
limits do not depend on x ∈ X, and

dH (π f , π g) ≤ 1

1 − min
{
λ f , λg

} sup
x∈X

∫

�

ρ( f (x, ω), g(x, ω))P(dω). (4.7)

Proof Note that under above notation operators P, Q with kernels f , g are asymptot-
ically stable and according to (4.2) the sequences of iterates ( f n(x, ·)), (gn(x, ·))
converge in law to probability distributions π f , π g , which are in fact invariant
measures of P, Q, respectively. Moreover, according to (4.6) for any y ∈ X we
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have

αP
Q(δy) ≤ α

f
g (y) ≤ sup

x∈X

∫

�

ρ( f (x, ω), g(x, ω))P(dω).

In consequence, by Theorem 4.1 we have (4.7). ��
Remark 4.2 (i) Originally in [6], instead of metric dH , there was dFM . This has been

strengthened in the paper [7] to the Hutchinson metric in a vector case and the fact
that distributions π f , π g belong toM1

1(X).
(ii) As it was shown in [7, 8] there are many applications of Corollary 4.1. In next two

sections we enlarge possible applications of Theorem 4.1 (cf. Remark 5.1).

5 Applications to RandomAffineMaps and Perpetuities

Assume now that (X , || · ||) is a separable Banach space. An important class of rv-
functions is a family of so called random affine maps. Following [15] an rv-function
f : X × � → X is said to be a random affine map if it has a form

f (x, ω) = ξ f (ω)x + η f (ω) (5.1)

for some random variables ξ f : � → R, η f : � → X . We normally omit the
argument ω and just write f (x, ·) = ξ f x + η f . From now on we will use the symbols
E and E∞ to denote expectations with respect to P and P

∞, respectively. For any
random variable ζ : � → X on a probability space (�, ν) the symbol L(ζ ) will be
reserved for the distribution of ζ , i.e. L(ζ )(B) = ν(ζ ∈ B) for B ∈ B(X).

Denote by ϒaff the set of all random affine maps of the form (5.1) such that

E|ξ f | < 1, E||η f || < ∞. (5.2)

Clearly, ϒaff is included in ϒrv.

Remark 5.1 Suppose that X is unbounded. Let f (x, ·) = ξ f x+η f and g(x, ·) = ηgx+
ηg with integrable random variables ξ f , η f , ξg, ηg . Then, assuming P(ξ f �= ξg) > 0,
we see that

sup
x∈X

∫

�

∣
∣
∣
∣ξ f (ω)x + η f (ω) − ξg(ω)x − ηg(ω)

∣
∣
∣
∣P(dω)

≥ E|ξ f − ξg| sup
x∈X

||x || − E||η f − ηg|| = ∞.

Therefore

sup
x∈X

∫

�

∣
∣
∣
∣ f (x, ω) − g(x, ω)

∣
∣
∣
∣P(dω) < ∞

if and only if ξ f = ξg a.s. ��
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Above remark shows that Corollary 4.1 is useful for random affine maps f , g only
in the case, where ξ f = ξg with probability 1. Our goal is to omit this restriction by
the use of Theorem 4.1. The main result of this section reads as follows.

Theorem 5.1 If f , g ∈ ϒaff , then the sequences of iterates ( f n(x, ·)), (gn(x, ·)) are
convergent in law to some probability distributions π f , π g ∈ M1

1(X), respectively,
the limits do not depend on x ∈ X, and

dH (π f , π g) ≤ min
{ 1

1 − E|ξ f |
(

E||ηg||
1−E|ξg|α + β

)
,

1

1−E|ξg|
(

E||η f ||
1−E|ξ f |α + β

)}
,

(5.3)

with

α = E|ξ f − ξg|, β = E||η f − ηg||.

Proof Fix f , g ∈ ϒaff . On account of Corollary 4.1 the sequences ( f n(x, ·)),
(gn(x, ·)) are convergent in law to π f , π g ∈ M1

1(X), respectively. (Moreover
these probability distributions are attractive in geometric rate on M1

1(X); see
Propositions 3.1 and 3.5.)

Let ξn, ηn be random variables on �∞ defined as

ξn(ω) = ξg(ωn), ηn(ω) = ηg(ωn), ω = (ω1, ω2, . . . ),

for n ∈ N. Obviously, L(ξn) = L(ξg) and L(ηn) = L(ηg), hence

E∞|ξn| = E|ξg| and E∞||ηn|| = E||ηg|| for n ∈ N. (5.4)

By easy induction we have

gn(x, ·) = x
n∏

k=1

ξk + η1

n∏

k=2

ξk + η2

n∏

k=3

ξk + · · · + ηn−1ξn + ηn,

and, in particular

gn(0, ·) =
n∑

j=1

η j

n∏

k= j+1

ξk

for n ∈ N. Then

|| f (gn(0,ω),�) − g(gn(0, ω),�)||

≤ |ξ f (�) − ξg(�)|
n∑

j=1

||η j (ω)||
n∏

k= j+1

|ξk(ω)| + ||η f (�) − ηg(�)||
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for n ∈ N, ω ∈ �∞ and � ∈ �. Since η j , ξ j+1, . . . , ξn are independent, from the
above and (5.4) it follows that

∫

�∞

∫

�

|| f (gn(0, ω),�) − g(gn(0, ω),�)||P(d�)P∞(dω)

≤
∫

�∞

( ∫

�

|ξ f (�) − ξg(�)|P(d�)
) n∑

j=1

||η j (ω)||
n∏

k= j+1

|ξk(ω)|P∞(dω)

+
∫

�

||η f (�) − ηg(�)||P(d�)

= α

n∑

j=1

E∞||η j ||
n∏

k= j+1

E∞|ξk | + β = α E||ηg||
n∑

j=1

(
E|ξg|

)n− j + β

= α E||ηg|| 1 − (
E|ξg|

)n

1 − E|ξg| + β

for n ∈ N; it is also true for n = 0, since

∫

�∞

∫

�

|| f (g0(0, ω),�) − g(g0(0, ω),�)||P(d�)P∞(dω) = β.

By definition (4.6) this implies that

inf
x∈X α

f
g (x) ≤ α

f
g (0) ≤ α

E||ηg||
1 − E|ξg| + β.

Of course the same inequality holds if we replace the subscripts g by f and the
superscripts f by g. Combining these two inequalities and applying estimation (4.5)
from Theorem 4.1 with λ f = E|ξ f | and λg = E|ξg|, we obtain (5.3). ��

As we have seen in the preliminary section the sequence of iterates ( f n(x, ·)) is of
forward (or inner) iteration type. Let us consider an operator σn : �∞ → �∞ given
by

σn(ω1, ω2, . . . ) = (ωn, . . . , ω1, ωn+1, . . . ).

The sequence
(
f n(x, σn(·))

)
forms backward (known also as outer) iterations and

probability distribution of f n(x, σn(·)) coincides with πn(x, ·), because operator σn
preserves probability P∞. The advantage of using backward iterations lies in the fact
that they may converge almost sure to a limit. In the case of random affine map (5.1)
we have

f n(x, σn(·)) = x
n∏

k=1

ξk +
n∑

k=1

ηk

k−1∏

j=1

ξ j ,
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where ξn(ω) = ξ f (ωn), ηn(ω) = η f (ωn) for ω = (ω1, ω2, . . . ) ∈ �∞. It can be
shown that the sequence (

∏n
k=1 ξk)n∈N converges a.s. to zeroby theKolmogorov strong

law of large numbers, provided −∞ < E log |ξ f | < 0 in case P(ξ f = 0) = 0. If,
additionally E logmax{||η f ||, 1} < +∞, then the sequence

( ∑n
k=1 ηk

∏k−1
j=1 ξ j

)
n∈N

converges absolutely a.s., by the application of [17, Theorem 2] (cf. [15, Corollary
2.14]) to the i.i.d. sequence (ξn, ||ηn||). The limit is the sum of the series

∞∑

n=1

ηn

n−1∏

k=1

ξk, (5.5)

which is (in the case X = R) the probabilistic formulation of the actuarial notion of
a perpetuity. For more details and interesting examples of perpetuities we refer the
reader to [19]; papers [15, 17, 23, 29] provide complete characterizations of its a.s.
convergence.

Since distribution of (5.5) coincides with π f we will be able to use Theorem 5.1
to yield that perpetuities change continuously (of course, assumptions like (5.2) are
needed). So let us denote by � a family of all pairs of random variables ξ : � →
R, η : � → X such that

E|ξ | < 1, E||η|| < ∞. (5.6)

We henceforth identify (ξ, η) ∈ � with the series (5.5), where (ξn, ηn), n ∈ N, is
a sequence of independent random variables (on an arbitrary probability space, not
necessary on the product �∞), identically distributed as (ξ, η).

Suppose that (ξ, η) ∈ �. Let P(ξ = 0) = 0 holds. Assuming integrability of log |ξ |
by the Jensen inequality we obtain E log |ξ | ≤ logE|ξ | < 0. Moreover,

E logmax {||η||, 1} =
∫

{||η||≥1}
log ||η|| dP ≤

∫

{||η||≥1}
||η|| dP ≤ E ||η||.

Summarizing, we have −∞ < E log |ξ | < 0,E logmax {||η||, 1} < ∞ and due to
perpetuity convergence theorem series (5.5) converges a.s. However, it turns out that
to get the convergence of (5.5) it is enough to assume (5.6) without any additional
assumptions like P(ξ = 0) = 0 or integrability of log |ξ |. Namely, we have the
following lemma, which gives more information.

Lemma 5.1 Assume that (ξ, η) ∈ �. Let (ξn, ηn), n ∈ N, be a sequence of independent
random variables on an arbitrary probability space, say on (�,A,P), identically
distributed as (ξ, η). Then

E

( ∞∑

n=1

||ηn||
n−1∏

k=1

|ξk |
)

< ∞. (5.7)

In particular series (5.5) converges absolutely a.s.
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Proof Obviously,ηk+1, ξ1, . . . , ξk are independent,E|ξn | = E|ξ | andE||ηn|| = E||η||
for k, n ∈ N. Using the Lebesgue monotone convergence theorem we conclude that

E

( ∞∑

n=1

||ηn||
n−1∏

k=1

|ξk |
)

= lim
N→∞E

(
N∑

n=1

||ηn||
n−1∏

k=1

|ξk |
)

= lim
N→∞

N∑

n=1

E||ηn||
n−1∏

k=1

E|ξk |

= lim
N→∞

N∑

n=1

E||η||(E|ξ |)n−1 = E||η||
1 − E|ξ | < ∞,

i.e. (5.7) holds. Therefore
∑∞

n=1 ||ηn|| ∏n−1
k=1 |ξk | < ∞ a.s. ��

It is worth pointing out that under some additional assumptions condition (5.7) is
equivalent to (5.6) by [2, Theorem 1.4].

Applying Theorem 5.1 we will show how the Hutchinson distance between
perpetuities changes depending on the expected value of some random variables.

Proposition 5.1 If (ξ, η), (ζ, ϑ) ∈ �, then

dH

(

L
( ∞∑

n=1

ηn

n−1∏

k=1

ξk

)

,L
( ∞∑

n=1

ϑn

n−1∏

k=1

ζk

))

≤ min

{
1

1 − E|ξ |
(

E||ϑ ||
1 − E|ζ |α + β

)

,
1

1 − E|ζ |
(

E||η||
1 − E|ξ |α + β

)}

,

with

α = E|ξ − ζ |, β = E||η − ϑ ||.

Proof Observe that if (ξ, η) ∈ �, then the probability distribution of series (5.5)
depends only on the distributions of ξ and η. (Obviously, this series is a.s. convergent
by Lemma 5.1.) Indeed, assume that all ξn, ηn are defined on a probability space
(�,B) and have the same distribution as ξ, η, respectively, i.e. B ◦ ξ−1

n = P ◦ ξ−1 =
μ, B ◦ η−1

n = P ◦ η−1 = ν for any n ∈ N. Then

B

(

ηn

n−1∏

k=1

ξk ∈ B

)

= B
(
(ξ1, . . . , ξn−1, ηn) ∈ �−1(B)

) =
(
n−1⊗

k=1

μ

)

⊗ ν
(
�−1(B)

)
,

where �(x1, . . . , xn) = x1 · · · xn, B ∈ B(X), provided (ξn, ηn), n ∈ N, are inde-
pendent. From this it follows that the distribution of series (5.5) is just the same
as the distribution of perpetuity with ξn, ηn given on the product �∞ by ξn(ω) =
ξ(ωn), ηn(ω) = η(ωn). Thus we can apply Theorem 5.1 to get desired result. ��
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