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Abstract
We study the autonomous systems of quadratic differential equations of the form
ẋi (t) = x(t)TAix(t) + vTi x(t) with x(t) = (x1(t), x2(t), . . . , xi (t), . . . ) which, in
general, cannot be solved exactly. In the present paper, we introduce a subclass of
analytically solvable quadratic systems, whose solution is realized through a multi-
dimensional generalization of the inversion which transforms a quadratic system into
a linear one.We provide a constructive algorithmwhich, on one hand, decides whether
the system of differential equations is analytically solvable with the inversion trans-
formation and, on the other hand, provides the solution. The presented results apply
for arbitrary, finite number of variables.

Keywords Quadratic differential equation system · Analytical solution · Generalized
inversion
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1 Introduction

Linear, ordinary, autonomous systems of differential equations are celebrated for their
analytical integrabilitywhichmakes them excellent tools in almost all fields of science.
This solvability breaks down when entering the realm of non-linear ordinary differen-
tial equation systems where no general solution method exists. Integrable non-linear
systems are found only in the minority of cases including for example linearizable
planar systems [1, 2] or polynomial systems with isochronous centers [3, 4]. In most
cases, however, non-linear systems are handled with sophisticated numerical methods
such as Runge–Kutta schemes [5] or other advanced techniques [6].

Despite of the great accuracy of numerical methods, it is desirable to find analytical
techniques to solve non-linear systems [7]. Beside the inherent beauty of exact solu-
tions, they can also play the role of benchmark for numerical methods. In this work,
we focus on first-order, quadratic, autonomous differential equation systems (QDEs)
which emerge in various research fields including models of population dynamics
[8, 9], fluid dynamics [10], control systems [11] and even quantum dynamics [12].
Classification of two-variable quadratic systems has been studied extensively [13–18].

There exists no general method to find analytical solution of QDEs. Except for the
special case, when the number of variables is just one. By denoting this variable with
x(t), the quadratic differential equation is written as

ẋ = ax2 + vx (1)

with a �= 0 and v being constants. An additional constant term on the right-handside
could be eliminated by shifting x(t). By introducing y(t) = x(t)−1, the equation is
transformed to the linear equation of

ẏ = −a − vy (2)

and, hence, the quadratic differential equation (1) becomes exactly solvable.
In this paper, we investigate a class of QDEs with more than one variable which

can be solved exactly by transforming the QDE to a linear differential equation system
(LDE). The transformation is realized through a multi-variable extension of y(t) =
x(t)−1, similar to the generalized spherical inversions presented in Refs. [19, 20].

2 Generalized Inversion Transformation

Let us consider some differentiable functions x1(t), x2(t), . . . , xn(t) whose dynamics
is governed by the QDE

ẋi = xTAix + vTi x (3)

whereAi are n×n matrices which are chosen to be symmetric and vTi are row vectors
of n components. In the equation, x(t) is the column vector containing the functions
x1(t), x2(t), . . . , xn(t) consecutively. The entries of Ai and vi are independent from
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t and are assumed to be real without loss of generality.1 Our goal is to determine if
the variables xi (t) can be transformed with a multivariable variant of the inversion in
such a way that the QDE (3) is transformed to an LDE. The multivariable inversion is
defined as

yi (t) = xi (t)

x(t)TBx(t)
(4)

for some symmetric matrix B not depending on time. Note that we use the same B
matrix for all i . This ensures that the transformation is easily inverted by

xi (t) = yi (t)

y(t)TBy(t)
. (5)

The transformations (4) and (5) will henceforth be referred to as B-transformation
and inverse B-transformation, respectively. The variables yi (t) are expected to obey
the linear differential equations

ẏi = mT
i y + wi (6)

wheremT
i are time-independent row vectors andwi are scalars. Since Eq. (6) is exactly

solvable for arbitrary initial conditions, the QDE can also be solved by applying the
inverse B-transformation (5). The goal of the present paper is to provide a procedure
based on which one can decide whether a given QDE, defined through Ai and vi , can
be B-transformed to an LDE.

To start our study, let us calculate the time derivative of Eq. (5)

ẋi = ẏi
yTBy

− yi
(
yTBy

)2
(
ẏTBy + yTBẏ

)
. (7)

Substituting the LDE differential equations (6) and then transforming all yi variables
back to xi by means of Eq. (4), we obtain

ẋi = mT
i x + wi

(
xTBx

)
− xTBwxi − xiwTBx − xi

xT
(
MTB + BM

)
x

xTBx
(8)

with the matrix M built from the row vectors mT
i . In the formula, w is the column

vector consisting of the constants wi .
By comparing Eq. (8) with the original QDE (3), one can note that Eq. (8) is

not necessarily a quadratic differential equation. The last term has an x-dependent
denominator and, hence, is neither quadratic nor linear in general. This term scales
with x as a linear term but becomes an actual linear term only if

MTB + BM = −λB (9)

1 In case of complex entries, the differential equations can be split up to their real and imaginary parts.
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holds with some scalar −λ. The minus sign is chosen for later convenience. The
condition (9) means that B must be the eigenmatrix [21] of M with the eigenvalue of
−λ. In this case, the differential equations (8) become

ẋi =
(
mT

i + λeTi
)
x + xT

(
wiB − B

(
w ◦ eTi

)
−

(
ei ◦ wT

)
B

)
x (10)

where ◦ denotes dyadic product and eTi is the unit row vector with 1 in the i th entry and
zero otherwise. The equation is already a quadratic differential equation containing
quadratic and linear terms in x.

Comparing the linear terms of Eqs. (10) and (3), we find

V = M + λI (11)

where V is the n × n matrix whose rows are the row vectors vTi and I is the n × n
identity matrix. Substituting (11) into the condition (9), we obtain

VTB + BV = λB (12)

indicating that the matrix B must be a symmetric eigenmatrix of V as well.
Beside the linear terms, the quadratic terms of Eq. (10) and (3) must also equal.

Since both Ai and the kernel in the quadratic terms in Eq. (10) are symmetric, they
must equal

Ai = wiB − B
(
w ◦ eTi

)
−

(
ei ◦ wT

)
B (13)

for all i . Note that the second and third terms are matrices full of zeros except for the
i th row and i th column, respectively. Therefore, omitting the i th row and column in
the equation leads to the proportionality condition

Ãi
i = wi B̃i , (14)

where Ãi
i (B̃

i ) is the (n−1)×(n−1)matrix which is obtained fromAi (B) by skipping
the i th row and column. For the i th column of Eq. (13), we have

aii ≡ Aiei = wiBei − Bw −
(
eTi Bw

)
ei . (15)

To summarize, the QDE as given in Eq. (3) can be transformed with a B-
transformation to an LDE if we find a symmetric matrix B fulfilling Eq. (12) with
some constant λ and, at the same time, obeying Eqs. (14) and (15) with some con-
stants wi . The linear terms of the LDE can be calculated by expressing V from Eq.
(11).
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3 Algorithm

Let us provide a detailed description of the procedure based on the findings of the
previous section. The starting point of the algorithm is Eq. (3) determined by the
matrices Ai and vectors vi .

1. As a first step, one has to build up the matrixV from the row vectors vTi and find all
symmetric eigenmatrices based on VTB+BV = λB. Note that the eigenmatrices
are definite only up to an overall multiplication factor similarly to the case of usual
eigenvectors.
To obtain the eigenmatrices, one may calculate the vector-eigenvalues s j of VT

and the corresponding right-handside eigenvectors r j , i.e., VT r j = s jr j . The
sum of the geometric multiplicity of all eigenvalues is denoted by N . The matrix-
eigenvalues ofV are given by s1+s1, s1+s2, . . . , s1+sn , s2+s2, s2+s3, . . . , sN +
sN and the eigenmatrix corresponding to s j+sm isP jm =

(
r j ◦ rTm + rm ◦ rTj

)
/2.

Note that the number of symmetric eigenmatrices is N (N + 1)/2 which is utmost
n(n + 1)/2 when n eigenvectors are found.
In case of degenerate matrix eigenvalues λ, all linear combinations within the
subspace are potential B matrices. For an example, see Sect. 5.

2. For each potential eigenmatrix B, the proportionality condition (14) must be
checked for all i with some constants wi , which may also be zero. If Eq. (14)
cannot be fulfilled with any potential B matrix, then the QDE is not solvable by
B-transforming to an LDE. If Eq. (14) is satisfied with a B matrix and some wi

constants, one may proceed to Step 3.
3. For the potential pairs of B and w surviving Step 2, one has to check Eq. (15) for

all i . If it holds true for all i , then the QDE (3) can be transformed to an LDE of
the form of Eq. (6) where the constants wi are the coefficients of proportionality
found in Eq. (14) in Step 2 and the vectorsmT

i are the row vectors ofM = V−λI
with λ the eigenvalue corresponding to the eigenmatrix B.

4. The solution of the QDE can be obtained by solving first the linear equation (6)
as

y(t) = eMty0 + yp(t) (16)

where y0 = x0/(xT0 Bx0) is the initial condition with x0 = x(t = 0) and yp(t) =(
eMt − I

)
M−1w if M is invertible. If M is not invertible, the function yp(t) has

linear time-dependence in the nullspace ofM. Using the inverse B transformation,
the solution of the QDE is obtained as

x(t) = eMtx0 + (
xT0 Bx0

)
yp(t)

e−λt + 2yp(t)TBeMtx0 + (
xT0 Bx0

) (
yp(t)TByp(t)

) . (17)

Before presenting examples, let us make a remark on the region where the B-
transformation is undefined, i.e., where xTBx = 0. This region can be any quadratic
hypersurface depending on the specific structure of the B matrix. The region also
involves the nullspace of B, i.e., the points where Bx = 0. In Sect. 4, the hypersurface



37 Page 6 of 13 Á. Bácsi, A. T. Kocsis

contains two straight lines while in Sect. 5, it consists of two cone-shaped surfaces.
This raises the question how the system behaves if the initial condition x0 is an element
of the region, i.e. xT0 Bx0 = 0.

First, one can prove that if the initial condition of theQDE is on the hypersurface, the
dynamics is constrained to the hypersurface for the whole time-evolution. To justify
this, we define b(t) = x(t)TBx(t) whose dynamics is derived from the quadratic
equations (3) as ḃ = b

(
λ − 2wTBx

)
. If the initial condition is on the hypersurface,

i.e., b(0) = 0, then the differential equation solves to b(t) = 0.
Second, it can also be shown that inside the hypersurface, the quadratic differential

equation is analytically solvable and the solution is obtained simply by takingxT0 Bx0 =
0 in Eq. (17) which reads as

x(t) = eMtx0
e−λt + 2yp(t)TBeMtx0

. (18)

Note that (18) does not obviously solve the quadratic differential equation because
it was derived from Eq. (17) which was computed through the B transformation.
However, by substituting (18) directly into (3) and taking advantage of xT0 Bx0 = 0
and the properties of B, one can prove that the QDE is solved indeed by (18). Hence,
if a QDE is exactly solvable by a B-transformation, the integrability is preserved also
in the region where the generalized inversion is undefined.

4 Example, Two-Dimensional Quadratic System

In this section, we consider the quadratic equations of

ẋ1 = −x21 + 4x1x2 − x1 + 2x2

ẋ2 = x21 + 2x22 + x1 (19)

from which we read out

A1 =
[−1 2

2 0

]
A2 =

[
1 0
0 2

]
vT1 = [−1 2

]
vT2 = [

1 0
]
.

(20)

The first step is to obtain the eigenmatrices of V. The right-handside eigenvectors of
VT are given by

r1 =
[

2
−2

]
r2 =

[
1
2

]
(21)

with the eigenvalues of s1 = −2 and s2 = 1. The potential B matrices are given by

P11 = r1 ◦ rT1 =
[

4 −4
−4 4

]
λ11 = −4
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P22 = r2 ◦ rT2 =
[
1 2
2 4

]
λ22 = 2

P12 = 1

2

(
r1 ◦ rT2 + r2 ◦ rT1

)
=

[
2 1
1 −4

]
λ12 = −1

which are non-degenerate eigenmatrices.
The second step is to check the proportionality condition of Eq. (14) and determine

the coefficients wi .

Proportionality check, Eq. (14) Ã11 = [0] Ã22 = [1]

B = P11 B̃1 = [4] → w1 = 0 B̃2 = [4] → w2 = 1
4

B = P22 B̃1 = [4] → w1 = 0 B̃2 = [1] → w2 = 1
B = P12 B̃1 = [−4] → w1 = 0 B̃2 = [2] → w2 = 1

2

The table shows that all eigenmatrices obey the proportionality condition (14).
Note that for a two-dimensional QDE, the proportionality check always simplifies to
comparison of 1 × 1 matrices, which is in most cases trivially fulfilled. For higher
dimensions, however, (14) might mean a much stricter condition. For an example, see
Sect. 5.

In the example, we continue with the third step by checking Eq. (15) for each i . In
the table below, rhs stands for the right-handside of Eq. (15) evaluated with B and w.

aii check, Eq. (15) a11 =
−1
2 a22 =

0
2

B = P11 rhs = 2
−1 × rhs = 0

−1 ×

B = P22 rhs =
−4
−4 × rhs =

0
−4 ×

B = P12 rhs =
−1
2 rhs =

0
2

The investigation shows that a11 and a22 are reproduced only by P12.
The result of the algorithm is that the QDE can be transformed to an LDE by

B = P12. The linear system is obtained as

M = V − λ12I =
[
0 2
1 1

]
w =

[
0
1/2

]
ẏ1 = 2y2
ẏ2 = y1 + y2 + 1

2
(22)

which can be solved analytically for arbitrary initial conditions.
The analytical solution of the quadratic system can be given based on Eq. (17). The

phase portrait is shown in Fig. 1. The two dashed lines comprise the region where the
B transformation is undefined, i.e., where xTBx = (xT r1) · (xT r2) = 0.



37 Page 8 of 13 Á. Bácsi, A. T. Kocsis

−1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

Fig. 1 Phase portrait of the quadratic system, Eq. (19). The green dots indicate the fix points of the system.
The dashed lines comprise the region where the B transformation is undefined (Color figure online)

5 Three-Dimensional Example

In this section, the algorithm is demonstrated in an example with three variables x1(t),
x2(t) and x3(t). The quadratic differential equations are given by

ẋ1 = x21 + 7x22 − 4x1x2 +5x1

ẋ2 = −2x22 + x1x2 + 2x1x3 − 7x2x3 +2x2

ẋ3 = −x22 − 7x23 − 4x2x3 −x3

(23)

from which we can read out

A1 =
⎡

⎣
1 −2 0

−2 7 0
0 0 0

⎤

⎦ A2 =
⎡

⎣
0 1

2 1
1
2 −2 − 7

2
1 − 7

2 0

⎤

⎦ A3 =
⎡

⎣
0 0 0
0 −1 −2
0 −2 −7

⎤

⎦

(24)

and

V =
⎡

⎣
5 0 0
0 2 0
0 0 −1

⎤

⎦ . (25)

The eigenvectors ofVT are simply obtained as ri = ei with the eigenvalues of s1 = 5,
s2 = 2 and s3 = −1. Hence, the eigenmatrices of V matrices are as follows:
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P11 =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ λ11 = 10

P22 =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ λ22 = 4

P33 =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ λ33 = −2

P12 =
⎡

⎣
0 1

2 0
1
2 0 0
0 0 0

⎤

⎦ λ12 = 7

P13 =
⎡

⎣
0 0 1

2
0 0 0
1
2 0 0

⎤

⎦ λ13 = 4

P23 =
⎡

⎣
0 0 0
0 0 1

2
0 1

2 0

⎤

⎦ λ23 = 1

Note that the eigenmatrices P22 and P13 are degenerate. Therefore, their linear com-
bination

P4 = P22 + bP13 =
⎡

⎣
0 0 b

2
0 1 0
b
2 0 0

⎤

⎦ (26)

is also a potential B matrix with an arbitrary value of b.
We continue the algorithm with Step 2, the proportionality check.

Prop. check,
Eq. (14) Ã1

1 =
7 0
0 0 Ã2

2 =
0 1
1 0 Ã3

3 =
0 0
0 −1

B = P11 B̃1 = 0 0
0 0 × – –

B = P33 B̃1 =
0 0
0 1 × – –

B = P12 B̃1 =
0 0
0 0 × – –

B = P23 B̃1 = 0 1
2

1
2 0 × – –

B = P4
B̃1 = 1 0

0 0
→ w1 = 7

B̃2 = 0 b
2

b
2 0

→ w2 = 2
b

B̃3 = 0 0
0 1

→ w3 = −1



37 Page 10 of 13 Á. Bácsi, A. T. Kocsis

Note that only P4 obeys the proportionality check but no restriction on b has been
obtained. Hence, in Step 3, we only investigate P4.

aii check,
Eq. (15) ã11 =

⎡
⎣

1
−2
0

⎤
⎦ ã22 =

⎡
⎣

1
2−2

− 7
2

⎤
⎦ ã33 =

⎡
⎣

0
−2
−7

⎤
⎦

B = P4

rhs =

⎡
⎣

b
− 2

b
0

⎤
⎦

if b = 1

rhs =

⎡
⎣

b
2− 2
b

− 7b
2

⎤
⎦

if b = 1

rhs =

⎡
⎣

0
− 2

b−7b

⎤
⎦

if b = 1

It has been found that the quadratic system transformed to a linear system with the
matrix

B =
⎡

⎣
0 0 1

2
0 1 0
1
2 0 0

⎤

⎦ (27)

and the resulting linear differential equations are given as

ẏ1 = y1 + 7

ẏ2 = −2y2 + 2

ẏ3 = −5y3 − 1 (28)

which are exactly solvable for arbitrary initial conditions. The analytical solution can
be given based on Eq. (17).

Note that the B transformation is undefined in the region where xTBx = x1x3 +
x22 = 0. This quadratic equation determines two cone-shaped surfaces touching each
other at the origin as shown in Fig. 2.

6 Example with Complex Eigenvalues

In this example, we demonstrate that the eigenvalues, eigenvectors and eigenmatrices
might have complex entries. We study the quadratic system

ẋ1 = −5x21 + 8x1x2 + 5x22 − 3x1 − x2

ẋ2 = −4x21 − 10x1x2 + 4x22 + x1 − 3x2 (29)

which can be treated using the same method as introduced in Sect. 4. The peculiarity
of the present example lies in that the matrix

VT =
[−3 1

−1 −3

]
(30)
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Fig. 2 The hypersurface determined by xTBx = 0 consists of two cone-shaped surfaces

has complex eigenvalues. The right-handside eigenvectors of VT are given by

r1 =
[
1
i

]
r2 =

[
1
−i

]
(31)

with the eigenvalues of s1 = −3 + i and s2 = −3 − i . The potential B matrices are
given by

P11 = r1 ◦ rT1 =
[
1 i
i −1

]
λ11 = −6 + 2i

P22 = r2 ◦ rT2 =
[

1 −i
−i −1

]
λ22 = −6 − 2i

P12 = 1

2

(
r1 ◦ rT2 + r2 ◦ rT1

)
=

[
1 0
0 1

]
λ12 = −6

which are again non-degenerate eigenmatrices. By performing the same procedure as
in Sect. 4, we find that all potential matrices survive the proportionality check with
well-defined wi values but only B = P12 obeys the aii check of Eq. (15) with w1 = 5
and w2 = −4.

The linear system is obtained as

ẏ1 = 3y1 − y2 + 5

ẏ2 = y1 + 3y2 − 4 (32)
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which is exactly solvable to arbitrary initial conditions. Note that due to the complex
eigenvalues of V, the linear system also has complex eigenvalues describing solution
paths circumventing the fixpoint.

7 Conclusion

We studied the system of quadratic differential equations of the form of Eq. (3).
Although these differential equation systems cannot be solved in general, we have
presented a procedure bymeans ofwhich a subclass of quadratic systems can be solved
analytically. The solution is realized through the B-transformation of y = x/(xTBx)
which is a multi-dimensional generalization of the inversion y = x−1.

In Sect. 3, we have described the algorithm which allows one to decide whether a
quadratic system can be transformed with a B-transformation to a linear differential
equation system. If so, the algorithm also yields the linear system which is exactly
solvable. In the case of quadratic systems which are not solvable through generalized
inversion, such differential equations could be found for example in systems with
chaotic features, themethodwould fail either in Step 2 or in Step 3 of the algorithm.The
great advantage of ourmethod is that it can be used to systemswith arbitrary number of
variables. The algorithm can be used as a first step in analytical calculations handling
quadratic systems. Furthermore, the presented method and its inverse allow one to
generate exactly solvable QDEs which then could be used to benchmark numerical
techniques dealing with nonlinear differential equations.
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