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Abstract
We study a virus dynamics model with reaction-diffusion, logistic growth terms and
a general non-linear infection rate functional response. The model has a distributed
delay, including the case of state-selective delay. We construct a dynamical system in
a Hilbert space and prove the existence of a finite-dimensional global attractor.
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1 Introduction

We are interested in qualitative properties of mathematical models of viral infections.
Such models attract much attention during last years, especially after wide spread of
viral diseases, including COVID-19, HIV, hepatitis B and C. Many viruses continue
to be a major global public health issues.

WorldHealthOrganization (WHO) reports [41, p.3] “As of 20April 2022,more than
504.4million confirmed COVID-19 cases and over 6.2million related deaths had been
reported to WHO.” Moreover [41, p.2] “the long-term impact of infection on people’s
health is not yet fully understood.” “A recent systematic review reported a prevalence
of persistent symptoms in patients after mild COVID-19 infection ranged from 10% to
35% . Cognitive impairment, various neuropsychiatric symptoms, fatigue, headaches
and other complaints are among the conditions reported four or more weeks after the
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initial infection. A detailed understanding of these long-lasting symptoms has not yet
been achieved.”

According to WHO ’354 million people globally live with a hepatitis B or C infec-
tion’ (296 million with chronic hepatitis B and 58 million with chronic hepatitis C).1

More data (2017) are collected in [40].
In such a situation, any step toward understanding the qualitative (particularly,

long-time asymptotic) behaviour of viral infection models is important.
The classicalmodels [21, 22] contain ordinary differential equations (without delay)

for three variables: susceptible host cells T , infected host cells T ∗ and free virus
particles V . The intracellular delay is an important property of the biological problem,
so we start discussion with the delay problem (for a particular case of DeAngelis-
Beddington functional response f see e.g. [9, 15])

⎧
⎨

⎩

Ṫ (t) = λ − dT (t) − f (T (t), V (t)),
Ṫ ∗(t) = e−ωh f (T (t − h), V (t − h)) − δT ∗(t),
V̇ (t) = NδT ∗(t) − cV (t).

(1.1)

In (1.1), susceptible cells T are produced at a rateλ, die at rate dT , and become infected
at rate f (T , V ). Properties and examples of incidence function f are discussed below.
Infected cells T ∗ die at rate δT ∗, free virions V are produced by infected cells at rate
NδT ∗ and are removed at rate cV (t). In (1.1) h > 0 denotes the delay between the
time a virus particle contacts a target susceptible cell and the time the cell becomes
actively infected (start to produce new virions). It is clear that the constancy of the
discrete delay is an extra assumption which essentially simplifies the analysis, but has
no biological background.

Since the precise value of the discrete delay h may be difficult to find, viral models
with a distributed delay may provide another way to study the dynamics of a dis-
ease. For ODE cases and motivations see e.g. [12, 20, 37] and references therein. For
motivations for a state-selective delay see Introduction in [23].

For discussion of different viral infection models we refer to [12–15, 19, 28, 29,
31, 36, 37]. PDE models which take into account spatial mobility of cells and virus,
possibility of cell-to-cell transmission of the infection (see e.g. [3]) as well as natural
time delay effects are discussed inmany papers (see e.g. [18, 30, 38, 39] and references
therein).

Let � ⊂ R
3 be a connected bounded domain with a smooth boundary. Let

T (t, x), T ∗(t, x), V (t, x) represent the densities of uninfected cells, infected cells
and free virions at position x ∈ � at time t .

In this note we are interested in the following PDEs system with delay

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṫ (t, x) = rT (t, x)
(
1 − T (t,x)

TK

)
− dT (t, x) − f (T (t, x), V (t, x)) + d1�T (t, x),

Ṫ ∗(t, x) = e−ωh
∫ 0
−h f (T (t + θ), x), V (t + θ), x))ξ(θ, x, ut ) dθ − δT ∗(t, x)

+d2�T ∗(t, x),
V̇ (t, x) = NδT ∗(t, x) − cV (t, x) + d3�V (t, x), x ∈ �.

(1.2)

1 https://www.who.int/health-topics/hepatitis.

https://www.who.int/health-topics/hepatitis
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Here the dot over a function denotes the partial derivative with respect to time i.e,
Ṫ (t, x) = ∂T (t,x)

∂t , all the constants d, δ, N , c, r , N , ω including di , i = 1, 2, 3 (dif-
fusion coefficients) are positive. We consider a general functional response f (T , V )

satisfying natural assumptions presented below. In earlier models (with constant or
without delay) the study was started in case of bilinear f (T , V ) = const ·T V and then
extended to more general classes of non-linearities. For more details and discussion
see [18, 30].

As usual, for a delay systemwe denote ut = ut (θ) ≡ u(t+θ) for θ ∈ [−h, 0], h >

0. For general theory on delay equations see [8, 10, 16, 33, 42].
We need initial conditions for the delay problem (1.2):

u(θ, x) = ϕ(θ, x) ≡ (T (θ, x), T ∗(θ, x), V (θ, x)), θ ∈ [−h, 0] (1.3)

or shortly u0 = ϕ.
In the papers cited above, the main goal was to study asymptotic stability of sta-

tionary solutions. In case of a globally asymptotically stable stationary solution, the
long-time behaviour of the system looks very simple. We are interested in a more
general case when the existence of a global attractor (for the corresponding dynam-
ical system) may, in general, allow the co-existence of multiple stationary solutions,
periodic orbits, invariant manifolds. In case when the existence of a global attractor
is proved, the important question arises if the attractor is finite-dimensional (for gen-
eral facts on attractors see e.g. [4, 34]). The existence of a finite-dimensional global
attractor forms a theoretical basis for finite-dimensional approximations which reflect
all the asymptotic behaviour of the original system.

Our main mathematical tool in studying of the asymptotic behaviour of solutions
is the quasi-stability method developed by I.D.Chueshov (for more details and defi-
nitions see [6]). For applications of this metod to delay PDEs see [5] where a model
with discrete state-dependent delay is studied. For connections between PDEs with a
discrete state-dependent delay [25–27] and considered in the current paper PDEs with
a distributed state-selective delay see [23, 24].

To the best of our knowledge, the existence of a finite-dimensional global attractor
for a viral infection model has not been investigated before (except the simple case of
a globally asymptotically stable stationary solution). It is important to mention that
the problem under consideration is infinite-dimensional in both space coordinate (as
PDE [4, 34]) and time coordinate (as delay problem [8, 10, 16]).

2 Main Results

We combine two lines of investigations, one is in a Hilbert space, while the other is in
a Banach space.

2.1 Study in L2(Ä). Part 1

We start with the Hilbert space approach.
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Define the following linear operator

− A = diag

(

d1� − d

2
, d2� − δ

2
, d3� − c

2

)

in H ≡ [L2(�)]3 (2.1)

with domain D(A) ≡ D(d1�) × D(d2�) × D(d3�). Here we set D(di�) ≡ {v ∈
L2(�) : �v ∈ L2(�),

∂v(x)
∂n |∂� = 0}. We consider operator −� in L2(�) with the

Neumann boundary conditions. This type of conditions is more adequate to biological
nature of the problem.

OperatorA is a positive self-adjoint operator in [L2(�)]3. It is a positive self-adjoint
operator with discrete spectrum i.e. there exists an othonormal basis {ek}∞k=1 of H ,
where ek are eigenvectors ofA :Aek = λkek, 0 < λ1 ≤ λ2 ≤ ..., limk→∞ λk = +∞
(see e.g., [6, Definition 4.1.1] ). Hence we can define spaces Hα ≡ D(Aα), H0 = H .

Let Cα ≡ C([−h, 0]; Hα) ⊂ C0 = C ≡ C([−h, 0]; H) for α ∈ [0, 1).
We write, the system (1.2) in the following abstract form

d

dt
u(t) + Au(t) = F(ut ), t > 0. (2.2)

The non-linear mapping F : C ≡ C0 → H is defined by

F(ϕ)(x) =

⎛

⎜
⎜
⎝

r ϕ1(0, x)
(
1 − ϕ1(0,x)

TK

)
− d

2ϕ1(0, x) − f (ϕ1(0, x), ϕ3(0, x))

B(ϕ, x) − δ
2ϕ

2(0, x)

Nδϕ2(0, x) − c
2ϕ

3(0, x)

⎞

⎟
⎟
⎠ .

(2.3)

Here ϕ = (ϕ1, ϕ2, ϕ3) ∈ C and the nonlinear distributed delay term has the following
form

B(ϕ, x) ≡ e−ωh
∫ 0

−h
f (ϕ1(θ, x), ϕ3(θ, x))ξ(θ, x, ϕ) dθ, x ∈ �. (2.4)

We assume the following
(H1) Let f : R2 → R be continuous, ξ : C → L1(−h, 0; L∞(�)) be continuous

and bounded, i.e.

∫ 0

−h
||ξ(θ, ·, ϕ) − ξ(θ, ·, ψ)||L∞(�)dθ → 0, as ||ϕ − ψ ||C → 0,

∫ 0

−h
||ξ(θ, ·, ϕ)||L∞(�)dθ ≤ Mξ,1, ∀ϕ ∈ C .

Considering ||B(ϕ, ·)− B(ψ, ·)||L2(�) one can check that assumptions (H1) imply
continuity B : C → L2(�). It implies continuity B : Cα → L2(�) for α ∈ [0, 1).
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Hence, the form (2.3) and the above continuity of B give that F is a nonlinear
continuous mapping from Cα into H for all α ∈ [0, 1) and is bounded on bounded
sets in Cα .

We use the standard

Definition 2.1 We call a function u ∈ C([−h, T ]; Hα) a mild solution (Hα-mild) of
the problem (2.2), (1.3) if u0 = ϕ and

u(t) = e−t Au(0) +
∫ t

0
e−(t−τ)AF(uτ ) dτ, t ∈ [0, T ]. (2.5)

The local existence of a mild solution to (2.2), (1.3) is standard due to the continuity
of F , its boundedness on bounded sets and Schauder’s fixed point theorem (see [35]).

Now we assume the nonlinear term B has the form (2.4) and
(H2) f is Lipschitz, ξ is Lipschitz and bounded in the following norms

∫ 0

−h
||ξ(θ, ·, ϕ) − ξ(θ, ·, ψ)||L∞(�)dθ ≤ Lξ,1||ϕ − ψ ||C , (2.6)

∫ 0

−h
||ξ(θ, ·, ϕ)||L∞(�)dθ ≤ Mξ,1, ∀ϕ ∈ C . (2.7)

Theorem 2.2 Let f , ξ satisfy (H2). Then, for any initial ϕ ∈ Cα with α ∈ [0, 1)
there exist T = Tϕ > 0 and an unique mild solution to (2.2), (1.3) on [−h, T ].
The solution continuously depends on initial function ϕ i.e. for two mild solutions
||ui (t)||α ≤ R, i = 1, 2 one has

||u1(t) − u2(t)||α ≤ CT̂ ,R ||ϕ1 − ϕ2||Cα , t ∈ [0, T̂ ], T̂ ≡ min{Tϕ1; Tϕ2}.
(2.8)

Proof To prove Theorem 2.2 we need only to show that F : Cα → H is locally
Lipschitz. We start with the following

Lemma 2.3 Assume (H2) is satisfied. Then the nonlinear distributed delay term B
(2.4) is locally Lipschitz continuous

||B(ϕ, ·) − B(ψ, ·)||L2(�) ≤ LB(R)||ϕ − ψ ||C , ∀||ϕ||C , ||ψ ||C ≤ R (2.9)

with LB(R) = e−ωh L f
(
2Mξ,1 + Lξ,1 · R)

.

Proof of Lemma Consider the difference

B(ϕ, x) − B(ψ, x)

= e−ωh
∫ 0

−h

(
f (ϕ1(θ, x), ϕ3(θ, x)) − f (ψ1(θ, x), ψ3(θ, x))

)
ξ(θ, x, ϕ) dθ

+e−ωh
∫ 0

−h
f (ψ1(θ, x), ψ3(θ, x)) (ξ(θ, x, ϕ) − ξ(θ, x, ψ)) dθ.
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We have ||B(ϕ, ·) − B(ψ, ·)||L2(�)

≤ e−ωh
∫ 0

−h
||( f (ϕ1(θ, ·), ϕ3(θ, ·)) − f (ψ1(θ, ·), ψ3(θ, ·)))ξ(θ, ·, ϕ) ||L2(�) dθ

+e−ωh
∫ 0

−h
|| f (ψ1(θ, ·), ψ3(θ, ·)) (ξ(θ, ·, ϕ) − ξ(θ, ·, ψ)) ||L2(�) dθ ≡ I .

To estimate the L2(�)-norm in the first term we consider (notice the square of the
norm)

∫

�

| f (ϕ1(θ, x), ϕ3(θ, x)) − f (ψ1(θ, x), ψ3(θ, x))|2|ξ(θ, x, ϕ)|2 dx
≤ ||| f (ϕ1(θ, ·), ϕ3(θ, ·)) − f (ψ1(θ, ·), ψ3(θ, ·))|2||L1(�)|||ξ(θ, ·, ϕ)|2||L∞(�)

≤ 2L2
f ||ϕ − ψ ||2C · ||ξ(θ, ·, ϕ)||2L∞(�).

Here we used properties
∫

�
|a(x)b(x)| dx ≤ ||a||L1(�)||b||L∞(�), |||b|2||L∞(�) =

||b||2L∞(�) and the Lipschitz property of f . Similar properties for the second term
give

∫

�

| f (ψ1(θ, ·), ψ3(θ, ·)|2|ξ(θ, ·, ϕ) − ξ(θ, ·, ψ)|2 dx
≤ L2

f ||ψ ||2C · ||ξ(θ, ·, ϕ) − ξ(θ, ·, ψ)||2L∞(�).

These estimates and (H2) allow to continue

I ≤ e−ωh L f
(
2Mξ,1 + Lξ,1 · ||ψ ||C

) ||ϕ − ψ ||C ≤ LB(R)||ϕ − ψ ||C ,

∀||ϕ||C , ||ψ ||C ≤ R with LB(R) = e−ωh L f
(
2Mξ,1 + Lξ,1 · R)

. It completes the
proof of lemma.

Next, we notice that for α > 0 and v ∈ Hα one has ||v|| ≤ λ−α
1 ||v||α . Hence (2.9)

implies similar Lipschitz property in smaller space

||B(ϕ, ·) − B(ψ, ·)||L2(�) ≤ LB,α(R)||ϕ − ψ ||Cα , ∀||ϕ||Cα , ||ψ ||Cα ≤ R

(2.10)

with LB,α(R) = λ−α
1 e−ωh L f

(
2Mξ,1 + Lξ,1 · R)

. Finally, (2.10) and (2.3) give the
local Lipschitz property of F (since all the other terms are polynomials): for every
R > 0 there exists LF,α(R) such that

||F(ϕ) − F(ψ)||L2(�) ≤ LF,α(R)||ϕ − ψ ||Cα , ∀||ϕ||Cα , ||ψ ||Cα ≤ R. (2.11)

The rest of the proof is standard (see e.g. [35], [6, theorem 6.1.6]). We do not repeat
it here. 
�
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2.2 Study in C(Ä)

We use the basic functional framework described in [17] and applied in [30].
Define the following linear operator −A0 = diag (d1� − d

2 , d2� − δ
2 , d

3� − c
2 )

in C(�;R3) with D(A0) ≡ D(d1�) × D(d2�) × D(d3�). Here, for di �= 0 we set
D(di�) ≡ {v ∈ C2(�) : ∂v(x)

∂n |∂� = 0} and D(d j�) ≡ C(�) for d j = 0. We omit
the space coordinate x , for short, for unknown u(t) = (T (t), T ∗(t), V (t)) ∈ X ≡
[C(�)]3 ≡ C(�;R3). It is well-known that the closure −A = −AC (in X ) of the
operator −A0 generates a C0-semigroup e−At on X which is analytic and nonexpan-
sive [17, p.5]. We denote the space of continuous functions by CX ≡ C([−h, 0]; X)

equipped with the sup-norm ||ψ ||CX ≡ maxθ∈[−h,0] ||ψ(θ)||X .
We can use the abstract form (2.2) and nonlinearmap (2.3), changing linear operator

(A = AC instead of A, see (2.1)) and corresponding spaces.

Definition 2.4 We call a function u ∈ C([−h, T ]; X) a mild solution (C(�)-mild) of
the problem (2.2), (1.3) if u0 = ϕ and (2.5) holds with A = AC instead of A.

We notice that Definitions 2.1 and 2.4 give different notions of mild solutions
(belong to different spaces and use different semigroups e−tA on Hα and e−tAC on
X ).

Now we assume the nonlinear term B has the form (2.4) and (c.f. (H2))
(H3) f is Lipschitz, ξ ≥ 0 is Lipschitz and bounded in the following norms

∫ 0

−h
||ξ(θ, ·, ϕ) − ξ(θ, ·, ψ)||C(�)dθ ≤ Lξ,C ||ϕ − ψ ||CX , (2.12)

∫ 0

−h
||ξ(θ, ·, ϕ)||C(�)dθ ≤ Mξ,C , ∀ϕ ∈ CX . (2.13)

We need further assumptions on Lipschitz function f :

(Hf1+)

⎧
⎨

⎩

f (T , 0) = f (0, V ) = 0, and f (T , V ) > 0 for all T > 0, V > 0;
f is strictly increasing in both coordinates for all T > 0, V > 0;
there exists μ > 0 such that | f (T , V )| ≤ μ|T | for all T , V ∈ R.

(2.14)

Define the set

�log ≡
{

ϕ = (ϕ1, ϕ2, ϕ3) ∈ C = CX : 0 ≤ ϕ1(θ) ≤ M1 ≡ r

2d
TK ,

0 ≤ ϕ2(θ) ≤ M2 ≡ e−ωh μr

dδ
TK Mξ,C , 0 ≤ ϕ3(θ) ≤ M3 ≡ 2e−ωh Nμr

dc
TK Mξ,C

}

(2.15)

where θ ∈ [−h, 0], μ is defined in (H f1+) and all the inequalities hold pointwise
w.r.t. x ∈ �.

We have the following result
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Theorem 2.5 Let non-linear Lipschitz function f satisfy (H f1+) (see (2.14)), ξ satisfy
(H3). Then �log is invariant i.e. for any ϕ ∈ �log the unique C(�)-mild solution to
problem (2.2), (1.3) exists and satisfies ut ∈ �log for all t ≥ 0.

Proof We start with the local Lipschitz property of B : CX → X . Assumptions (H3)
give

||B(ϕ, ·) − B(ψ, ·)||C(�) ≤ LB,C (R)||ϕ − ψ ||CX , ∀||ϕ||CX , ||ψ ||CX ≤ R

(2.16)

with LB,C (R) = e−ωh L f
(
Mξ,C + Lξ,C · R)

.
One can check that F : CX → X is locally Lipschitz. The existence and uniqueness

of amild solution u ∈ C([−h, T ]; X) to the problem (2.2), (1.3) is standard. The proof
of the invariance part follows the invariance result of [17] with the use of the Lipschitz
property of nonlinearity F . The estimates (for the subtangential condition) are the
same as for the constant delay case, see e.g. [18, Theorem 2.2].

Consider ρ ≥ 0 and ϕ ∈ �log .

ϕ(0, x) + ρF(ϕ, x) =

⎛

⎜
⎜
⎜
⎝

ϕ1(0, x) + ρr ϕ1(0, x)
(
1 − ϕ1(0,x)

TK

)
− ρ d

2ϕ1(0, x)

−ρ f (ϕ1(0, x), ϕ3(0, x))
ϕ2(0, x) + ρB(ϕ, x) − ρ δ

2ϕ
2(0, x)

ϕ3(0, x) + ρNδϕ2(0, x) − ρ c
2ϕ

3(0, x)

⎞

⎟
⎟
⎟
⎠

We use notation F = (F1, F2, F3)T and estimate separately each of three
coordinates above.

(a) We notice that the logistic term (see the first equation in (1.2)) rT
(
1 − T

TK

)

has its maximum at point T = TK /2, so rT
(
1 − T

TK

)
≤ 1

4rTK for all T ∈ R.

Hence, for small enough ρ ≥ 0 and ϕ1(0, x) ∈ [0, M1] (see (2.15)) we have

ϕ1(0, x) + ρF1(ϕ, x) ≤ ϕ1(0, x) + ρ

(
1

4
rTK − d

2
ϕ1(0, x)

)

≤ M1.

(b) For the second coordinate we use (see (2.13) and (2.14))

B(ϕ, x) ≤ e−ωh
∫ 0

−h
μ|ϕ1(θ, x)|ξ(θ, x, ϕ)dθ ≤ e−ωhμ

r

2d
TK Mξ,C .

This estimate gives for small enough ρ ≥ 0 and ϕ2(0, x) ∈ [0, M2] (see (2.15)):

ϕ2(0, x) + ρF2(ϕ, x) ≤ ϕ2(0, x) + ρe−ωhμ
r

2d
TK Mξ,C − ρ

δ

2
ϕ2(0, x) ≤ M2.

(c) For small enough ρ ≥ 0 and ϕ3(0, x) ∈ [0, M3] (see (2.15)) one has

ϕ3(0, x) + ρF3(ϕ, x) ≤ ϕ3(0, x) + ρNδM2 − ρ
c

2
ϕ3(0, x) ≤ NδM2 2

c
= M3.
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Combining the estimates above, one can check that for small enough ρ ≥ 0 and
ϕ ∈ �log

⎛

⎝
0
0
0

⎞

⎠ ≤ ϕ(0, x) + ρF(ϕ, x) ≤
⎛

⎝
M1

M2

M3

⎞

⎠ ≡ M

or shortly ϕ(0, x) + ρF(ϕ, x) ∈ [0, M] ⊂ R
3 for all x ∈ �.

The above implies limρ→0+ dist{ϕ(0, ·) + ρF(ϕ, ·); [0, M]X } = 0, ∀ϕ ∈
�log ⊂ CX .

It gives the subtangential condition and allows to apply the invariance result of [17,
32].

The proof of Theorem 2.5 is complete. 
�

2.3 Study in L2(Ä). Part 2

In this section we continue our study of Hα-mild solutions and use results of Theo-
rem2.5 obtained forC(�)-mild solutions. The key point here is the Sobolev imbedding
theorem [1, p.85] which suggests values of α for which the imbedding Hα → C(�)

holds.
Let us remind the part we need of the Sobolev imbedding theorem [1, p.85].
Let � be a domain in R

n . Let j ≥ 0,m ≥ 1 be integers and let 1 ≤ p < ∞.
Suppose � satisfies the strong loc.Lipschitz condition. If mp > n > (m − 1)p, then
W j+m,p(�) → C j,λ(�) for 0 < λ ≤ m − n

p .
In our case, n = 3, p = 2. We have (see condition mp > n > (m − 1)p) that

m ∈ ( 32 ,
5
2 ). We are interested in m < 2, so consider m ∈ ( 32 , 2).

In case A = −�, the condition m ∈ ( 32 , 2) corresponds to α ∈ ( 34 , 1).
We notice the importance of the restriction α ∈ ( 34 , 1) which guaranties u(t) ∈

X = [C(�)]3.
Combining this property with the uniqueness results for both Hα-mild solutions

and C(�)-mild solutions (both for the same initial function ϕ) one has the following
key property: for any initial ϕ ∈ Cα, α ∈ ( 34 , 1) the Hα-mild solution is C(�)-mild
solution.

Our goal is to construct a dynamical system in phase space �
log
α ≡ Cα ∩�log, α ∈

( 34 , 1). On this space we define evolution operator Stϕ = ut , t ≥ 0, where u is the
unique mild solution of problem (2.2), (1.3).

Now we need the following space

Yβ ≡ {v ∈ Cα : |v|Yβ < ∞},

where β ∈ (α, 1) and

|v|Yβ ≡ max
θ∈[−h,0] ||A

βv(θ)|| + max
θ1,θ2∈[−h,0],θ1 �=θ2

||Aα(v(θ1) − v(θ2))||
|θ1 − θ2|β−α

. (2.17)
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We remind the following result (formulated for an abstract equation of the form
(2.2)).

Proposition 2.6 [6, p. 293]LetAbea linear positive self-adjoint operatorwith discrete
spectrum on H. Let F : Cα → H be a locally Lipschitz mapping i.e. for every
R > 0 (2.11) holds. Assume that the problem (2.2), (1.3) generates a dynamical
system (Cα, St ). Let D be a forward invariant bounded set in Cα .

Then

(1) For every t > h the set St D is bounded in Yβ for arbitrary β ∈ (α, 1). Moreover,
for every δ > 0 there exists Rδ such that

St D ⊂ Bβ = {u ∈ Yβ : |u|Yβ ≤ Rδ} for all t ≥ δ + h. (2.18)

In particular, this means that the dynamical system (Cα, St ) is conditionally
compact and thus asymptotically smooth.

(2) The mapping St is Lipschitz from D into Yβ . Moreover, for every h < a < b <

+∞ there exists a constant MD(a, b) such that

|Stϕ − Stψ |Yβ ≤ MD(a, b)||ϕ − ψ ||Cα , t ∈ [a, b], ϕ, ψ ∈ D. (2.19)

In particular, this means that the dynamical system (Cα, St ) is quasi-stable at any
time t ∈ [a, b].

We remind (see, e.g., [4, 34])

Definition 2.7 A global attractor of the dynamical system (Cα, St ) is defined as a
bounded closed setU ⊂ Cα which is invariant (StU = U for all t > 0) and uniformly
attracts all bounded sets

lim
t→+∞ sup{distCα (St y,U ) : y ∈ B} = 0 for any bounded set B in Cα .

Our main result is the following

Theorem 2.8 Let α ∈ ( 34 , 1), non-linear Lipschitz function f satisfy (H f1+) (see

(2.14)), ξ satisfy (H2), (H3). Then the pair (St ;�
log
α ) constitutes a dynamical

system constructed by problem (2.2), (1.3). This dynamical system possesses a
finite-dimensional global attractor.

Proof The well-posedness of the problem (2.2), (1.3) (the existence, uniqueness and
continuous dependence on initial function ϕ ∈ Cα) is given by Theorem 2.2.

First we remind an important estimate (and its derivation) which is a part of the
property (2.18). For more details, see [6, p.294]. Let D be a forward invariant bounded
set in Cα (for this part α ≥ 0). Consider β ∈ (α, 1) and a mild solution u(t) = Stϕ,
see (2.5). We use property ||Aαe−tA|| ≤ (

α
et

)α
, t > 0, α ≥ 0 (with the rule 00 = 1)

to get

||u(t)||β ≤
(

β − α

e(t − s)

)β−α

||u(s)||α +
∫ t

s

(
β

e(t − τ)

)β

||F(uτ )|| dτ
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for all t > s ≥ 0. Since Stϕ ∈ D for all t ≥ 0 one has ||u(t)||α ≤ CD,∀t ≥ 0. So

||u(t)||β ≤
(

β − α

e(t − s)

)β−α

CD + KD(F)

(
β

e

)β |t − s|1−β

1 − β

for all t > s ≥ 0, where KD(F) = sup{||F(v)|| : v ∈ D}. If we choose s = t − δ,
then

St D ⊂ {u ∈ Cβ : ||u||β ≤ R∗
δ }, for all t ≥ δ + h, (2.20)

where

R∗
δ ≡

(
β − α

eδ

)β−α

CD + KD(F)

(
β

e

)β
δ1−β

1 − β
.

This estimate is a part of the property (2.18), see (2.17).
Since parameter α is a smoothness parameter of the space Cα and phase space

�
log
α , we change notations in (2.20) to adopt it for the proof of the dissipativeness

(the existence of a bounded absorbing set). More precisely, we consider a solution
||u(t)||γ ≤ CD,∀t ≥ 0. Here γ ≥ 0 instead of α. Now we estimate ||u(t)||α, α ∈
(γ, 1) instead of ||u(t)||β . The estimate, similar to (2.20) gives

St D ⊂ {u ∈ Cα : ||u||α ≤ R̂∗
δ }, for all t ≥ δ + h, (2.21)

where

R̂∗
δ ≡

(
α − γ

eδ

)α−γ

CD + KD(F)
(α

e

)α δ1−α

1 − α
.

Notice that for any v ∈ [C(�)]3 ⊂ [L2(�)]3 one has ||v||0 = ||v||[L2(�)]3 ≤
||v||[C(�)]3 · |�| with |�| ≡ ∫

�
1dx .

We apply the above property (2.21) for γ = 0 and D = �
log
α ⊂ �log (bounded in

CX ). Hence for γ = 0 the property ||u(t)||0 ≤ CD,∀t ≥ 0 holds. As a result, (2.21)
implies (a)mild solutions are global (defined for all t ≥ −h) and (b) the dissipativeness
of the dynamical system (St ;�

log
α ) for each α ∈ ( 34 , 1).

Now by Proposition 2.6 [6, p.293] our dynamical system (St ;�
log
α ) is quasi-stable.

We can apply [6, Theorem 6.1.12] to the dynamical system (St ;�
log
α ) to get the

main result - the existence of a finite-dimensional global attractor.
It completes the proof of Theorem 2.8. 
�
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2.4 Examples of the Distributed Delay Term

Consider the nonlinear delay term B of the form (2.4). We present a simple example
of function ξ : [−h, 0] × � × C → R (c.f. [23, 24])

ξ(θ, x, ϕ) = e−σ(−η(ϕ)−θ)2g(x), σ > 0,

where

(i) η : C → [0, h] is Lipschitz continuous and g ∈ L∞(�) to satisfy (H2) and
(ii) η : CX → [0, h] is Lipschitz continuous and g ∈ C(�) to satisfy (H3).

For motivations for such a state-selective delay see e.g. [23]. The profile func-
tion e−σ(c−θ)2 was chosen for simplicity to show that the delay term of the form
∫ 0
−h e

−σ(c−θ)2φ(θ)dθ has themaximal historical impact in a neighbourhoodof the time

moment c (the maximum of function e−σ(c−θ)2 at point θ = c). In our example this
maximum point can be state-selective [23] (state-dependent) c = −η(ϕ) ∈ [−h, 0].

We mention some well-known examples of non-linear functions f used for viral
infectionmodels. The first one is the DeAngelis-Bendington [2, 7] functional response
f (T , V ) = kT V

1+k1T+k2V
, with k, k1 ≥ 0, k2 > 0. We also mention that the functional

response includes as a special case (k1 = 0) the saturated incidence rate f (T , V ) =
kT V
1+k2V

. Another example of the nonlinearity is the Crowley-Martin incidence rate

f (T , V ) = kT V
(1+k1T )(1+k2V )

, with k ≥ 0, k1, k2 > 0 and more general the Hattaf-

Yousfi functional response of the form kT V
k0+k1T+k2V+k3T V

[11]. For more general class
of functions f see, e.g. [11, 18, 29]. We notice that, in contrast to [11, 18], we do not
assume here the differentiability of f .

We also mention that our assumptions on f are naturally less restrictive comparing
to the ones in the mentioned above works where asymptotic stability of stationary
solutions are discussed.

Conclusion

In this paper we study a virus dynamics model with reaction-diffusion, logistic growth
terms and a general non-linear infection rate functional response. The model has a
distributed delay, including the case of state-selective delay which is a distributed
‘analog’ to a discrete state-dependent delay.

Our main mathematical tool in studying of the asymptotic behaviour of solutions is
the quasi-stability method developed by I.D.Chueshov [6]. We construct a dynamical
system in a Hilbert space and prove the existence of a finite-dimensional global attrac-
tor. To prove the natural for a virus dynamics model dissipativness of the dynamical
system we conduct a parallel study in a Banach space.
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