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Abstract
In the current era, information dissemination is more convenient, the harm of rumors
is more serious than ever. At the beginning of 2020, COVID-19 is a biochemical
weapon made by a laboratory, which has caused a very bad impact on the world. It is
very important to control the spread of these untrue statements to reduce their impact
on people’s lives. In this paper, a new rumor spreading model with comprehensive
interventions (background detection, public education, official debunking, legal pun-
ishment) is proposed for qualitative and quantitative analysis. The basic reproduction
number with important biological significance is calculated, and the stability of equi-
libria is proved. Through the optimal control theory, the expression of optimal control
pairs is obtained. In the following numerical simulation, the optimal control under
11 control strategies are simulated. Through the data analysis of incremental cost-
effectiveness ratio and infection averted ratio of all control strategies, if we consider
the control problem from different perspectives, we will get different optimal control
strategies. Our results provide a flexible control strategy for the security management
department.
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1 Introduction

With the rapid development of modern network technology, the way of rumor spread-
ing has changed from word of mouth to more flexible and convenient Internet
transmission. The interactivity of social network makes everyone a receiver of rumors
and a disseminator of rumors [1]. Rumors spread all over theworld. Some rumors harm
personal reputation, cause mental distress and damage to health. Some rumors even
endanger the security and stability of the society and the reputation of the government
[2].

In early 2020, COVID-19 outbreak occurred, and there were many rumors. For
example, “the probability of new coronavirus infection among smokers is much lower
than that of non-smokers”, “The cause of COVID-19 is that the people of Wuhan
eat bats”, “COVID-19 is a biochemical weapon made by a laboratory”, which has
caused great harm to Wuhan people, caused panic to the society, and even damaged
the image of the country [3]. Social security and stability is the primary condition
for rapid development. Therefore, how to effectively control the spread of rumors has
become an important issue faced by many governments and scholars.

There are many similarities between the spread of rumors and the spread of infec-
tious diseases, so many scholars use the theory of infectious disease dynamics to
study the spread of rumors. According to the characteristics of rumor spreading, many
mathematical models of rumor spreading are considered, and their dynamic prop-
erties are analyzed. In 1965–1985, classical DK model [4] and MT model [5] are
presented. Then many scholars improved the model according to different factors
[6–15]. Kandhway and Kuri [6] used the MT rumor model to simulate the infor-
mation dissemination in a homogeneous mixed population. Through the analysis of
rumor spreading, Zhao et al. [7] revised the flow chart of rumor spreading process
and established an IRS mathematical model. Chen et al. [8] studies a new delayed
susceptible-exposed-infected-recovered (SEIR) rumor spreading model with satura-
tion incidence on heterogeneous networks. Huo et al. [9] considered the use of media
information as a measure of control to suppress the spread of rumors. Recently, Tian
and Ding [10] considered the influence of debunking behavior on rumor dynamics.
The authors believe that an ignorant person can become latent by receiving rumors or
counter-rumors. Driven by complicated psychology, he will become a rumor spreader,
a rumor debunker or a stifler. Then, the authors established an ILRDS rumor spread-
ing model to analyze the spread of rumors, analyzed the stability of the equilibria,
and studied the influence of different parameters on the rumor propagation process in
numerical simulation.

In recent decades, the optimal control theory is more and more used in the field
of biological mathematics, which provides a strong theoretical basis for solving the
problem of disease transmission [16–31]. Based on the reported tuberculosis data, a
mathematical control model of tuberculosis transmission dynamics in South Korea
was established [16]. Through the optimal control theory, the authors put forward the
optimal TB control strategy, estimated the TB budget of the government, and worked
out the optimal TB elimination plan. Lemos-Paião et al. [17] developed a model of
cholera transmission with isolation and treatment, proposed and analyzed the optimal
control problem of themodel, and carried out numerical simulation of the local cholera
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outbreak. The results show that when the optimal control strategy is applied, the
number of infected individuals will be significantly reduced. In order to control the
spread of dengue fever in Peshawar, Pakistan, Agusto and Khan [18] added insecticide
use and vaccination to control the spread of dengue fever in a deterministic model of
dengue virus transmission. The results showed that the same number of infections
were avoided regardless of how the cost was weighted. This is due to the reciprocal
relationship between the cost of pesticide use and the cost of vaccination. Li and Guo
[19] established an online game addiction model with positive and negative media
reports to analyze the influence of media in the spread of online game addiction. The
results of numerical simulation showed that the control of media coverage through the
optimal control conclusion can greatly alleviate the serious situation of game addiction.

The harm of rumor spread can affect individuals, society and country. Nowadays,
information dissemination is more convenient, it is particularly important to control
the spread of rumors. Our main contributions and innovations are as follows.

(i) The innovation of rumor spreading model. In the study of rumor spread, most of
the previous studies only considered the influence of a single control measure in
the rumor spreading model, ignoring the dynamic influence of multiple control
measures on rumor spread [8–10]. In order to simulate the rumor spread more
truly, it is necessary to consider the actual measures to control the rumor spread
in real life [32,33], as shown below. (1) In the background of the network, we
can intelligently screen and evaluate the news or posts with a certain amount of
dissemination on the network; (2)We can resist rumors by increasing the public’s
scientific literacy and popularizing common sense; (3) The government publishes
rumor refuting information through official channels for specific rumors; (4)
There are some relevant laws to punish those who maliciously create and spread
rumors.We develop a new rumor spreading model, which considers these control
measures in reality. This makes up for the deficiency of previous literatures.

(ii) Innovation in the proof of stability. The proof of the global asymptotic stability
of the equilibria is an important and difficult point in the study of the properties
of the dynamic model [7,10]. In this paper, we provide a new way to prove the
global asymptotic stability of equilibria, which is different from the proof in Ref.
[10]. This provides a new perspective for the study of the dynamics of rumor
propagation and enriches its research methods.

(iii) Innovation in numerical simulation. In the previous literatures on the control of
rumor propagation, some scholars observed and compared the results under this
static state by changing the parameter values [6,7,10]. Some scholars study the
dynamic optimal control of rumor spreading model with single control measure
[9,11]. In this paper, we not only study the dynamic optimal control problem of
multiple control measures, but also further study its cost-effectiveness analysis.
Through the quantitative comparative analysis, the results are more clear.

The next organizational structure of this paper is as follows: the description of
the model is shown in Sect. 2. The stability of the equilibria are proved in Sect. 3.
The optimal control problem is discussed in Sect. 4. The numerical simulation with
discussion is analyzed in Sect. 5. Finally the conclusion is shown in Sect. 6.
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2 Formulation of theModel

2.1 Model Description

In 2019, Tian and Ding [10] proposed a new rumor spreading model with debunking
behavior. In the model, the whole population is divided into five compartments, which
are named as: Ignorants (I), Latents (L), Rumor Spreaders (R), Debunkers (D) and
Stiflers (S). The ILRDS rumor spreading model was established as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d I (t)
dt = ε − μI R − k I D − ρ I ,

dL(t)
dt = μI R + k I D − (α + β + γ + ρ)L,

dR(t)
dt = αL − (δ + ξ + ρ)R,

dD(t)
dt = βL + ξ R − (θ + ρ)D,

dS(t)
dt = δR + θD + γ L − ρS,

(1)

where ε is the immigration rate;μ is the rumor-contacting rate; k denotes the debunker-
contacting rate; ρ denotes the emigration rate; α represents the rumor-spreading rate;
β represents the debunking rate; γ represents the silent rate; δ represents the rumor-
stifling rate; ξ denotes the reversal rate; θ denotes the debunking-stifling rate. N (t) =
I (t) + L(t) + R(t) + D(t) + S(t) denotes the whole population at time t .

In general, an infected person can only be exposed to a limited number of people
per unit of time, so we choose to use the standard incidence rate μ I R

N , which would
be more appropriate [34]. In the above model, we will further consider the influence
of the following four control means on rumor spread: u1 background detection; u2
public education; u3 official debunking; u4 legal punishment. Thus, the population
flow of each warehouse is shown in Fig. 1.

Then, we propose a controlled rumor spreading model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d I (t)
dt = ε − (1 − u1)μ

I R
N − k I D

N − ρ I ,

dL(t)
dt = (1 − u1)μ

I R
N + k I D

N − (1 − u4)αL − (β + γ + ρ + u2τ)L,

dR(t)
dt = (1 − u4)αL − (δ + ξ + ρ + u3ϕ)R,

dD(t)
dt = (β + u2τk1)L + (ξ + u3ϕ(1 − k2))R − (θ + ρ)D,

dS(t)
dt = (δ + u3ϕk2)R + θD + (γ + u2τ(1 − k1))L − ρS,

(2)

where

1. u1, namely, background detection represents the effect of preventing rumors spread
due to the intelligent detection of data by the network background.

2. u2, namely, public education denotes the effect of science education on preventing
rumors spreading. τ represents the efficiency of restraining rumor spreading, and
k1 is the proportion of people who turn into debunker due to this measure.
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Fig. 1 Transfer diagram of controlled model

3. u3, namely, official debunking denotes the effect of that the government publish
debunking news through the official channels to reduce the spread of rumors. ϕ

represents the efficiency of official debunking, and k2 is the proportion of people
who turn into stiflers due to this measure.

4. u4, namely, legal punishment represents the effect of that the government punishes
those who maliciously create and spread rumors through laws and regulations.

2.2 Positivity and Boundedness

Lemma 1 Let P(0) ≥ 0 denotes the initial information, P(t) = (I , L, R, D, S) are
the model variables, and the solutions of the model (2) will be non-negative for all
t > 0.

Proof Suppose λ(t) = (1− u1)μ
R
N + k D

N , then the first equation of model (2) yields

d I

dt
= ε − [λ(t) + ρ]I .

By the integrating factor method, the solution of the above equation is as follows.

I (t) = I (0) exp
(

− ρt −
∫ t

0
λ(u)du

)

+ exp
(

− ρt −
∫ t

0
λ(u)du

) ∫ t

0
ε
[
ρx +

∫ x

0
λ(z)dz

]
dx

> 0.

Similarly, we can get the rest of the variables to be positive. ��
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Lemma 2 The feasible region defined in the closed set  ⊂ R5+, is positive invariant
for the system (2) with non-negative initial conditions in R5+.

Proof We add all the equations of system (2) and get that

dN (t)

dt
= d I (t)

dt
+ dL(t)

dt
+ dR(t)

dt
+ dD(t)

dt
+ dS(t)

dt
= ε − ρN (t).

By solving the above equation, we can get:

N (t) = ε

ρ
+ N (0)e−ρt .

Therefore,

lim
t→+∞ N (t) = ε

ρ
.

So we can analyse the system (2) in the feasible region  that is defined by:

 =
{

(I , L, R, D, S) ∈ R5+ : 0 ≤ N (t) ≤ ε

ρ

}

.

Therefore,  is a positive invariant set, and we will discuss the dynamics of the model
(2) in  later. ��

3 Stability Analysis

3.1 Basic Reproduction Number

The basic reproductive number R0 represents “the average number of new infections
directly caused by infected cases in the whole infection period in the fully susceptible
population” [34]. It is an important concept in epidemiology. Its significance in this
paper is the average number of new rumor spreaders directly caused by a rumor
spreader in ignorants. By using the next generation matrix [35], we can obtain the
basic reproduction number R0. It’s easy to know that system (2) has a rumor-free
equilibrium E0 = (I 0, 0, 0, 0, 0), where I 0 = N 0 = ε

ρ
. Thus we choose the matrix

F and V as

F3×3 =
⎛

⎝
0 (1 − u1)μ k
0 0 0
0 0 0

⎞

⎠ ,

and

V3×3 =
⎛

⎝
(1 − u4)α + (β + γ + ρ + u2τ) 0 0

−(1 − u4)α δ + ξ + ρ + u3ϕ 0
−(β + u2τk2) −(ξ + u3ϕ(1 − k2)) θ + ρ

⎞

⎠ .
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For the convenience of calculation, we use some substitutions to make the equations
more concise. We can get the following system.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d I (t)
dt = ε − d1μ

I R
N − k I D

N − ρ I ,

dL(t)
dt = d1μ

I R
N + k I D

N − d2αL − d3L,

dR(t)
dt = d2αL − d4R,

dD(t)
dt = d5L + d6R − d7D,

dS(t)
dt = d9R + θD + d8L − ρS,

(3)

where the coefficients are d1 = 1 − u1, d2 = 1 − u4, d3 = β + γ + ρ + u2τ ,
d4 = δ + ξ + ρ + u3ϕ, d5 = β + u2τk1, d6 = ξ + u3ϕ(1 − k2), d7 = θ + ρ,
d8 = γ + u2τ(1 − k1), d9 = δ + u3ϕk2.

Through the spectral radius of FV−1, the expression of the basic reproduction
number is:

R0 = ρ(FV−1) = kd4d5 + αkd2d6 + αμd1d2d7
d4d7(d3 + αd2)

. (4)

3.2 Globally Asymptotically Stable (GAS) of Rumor-Free Equilibrium

In system (3), we know that it always has the rumor-free equilibrium E0 =
(I 0, L0, R0, D0, S0). Then we can get the follow theorem.

Theorem 1 For the system (3), the rumor-free equilibrium E0 = (I 0, L0, R0, D0, S0)
is globally asymptotically stable if 0 < R0 < 1.

Proof When R0 is less than 1, we get kd4d5 < d3d4d7+αd2d4d7. So we can construct
the following Lyapunov function:

G = αd2d7
αd2d7 + d3d7 − kd5

L + R + αkd2
αd2d7 + d3d7 − kd5

D

The derivative of G is:

dG

dt
= αd2d7

αd2d7 + d3d7 − kd5

[

d1μ
I R

N
+ k

I D

N
− d2αL − d3L

]

+ (d2αL − d4R)

+ αkd2
αd2d7 + d3d7 − kd5

(d5L + d6R − d7D)

≤ αd2d7
αd2d7 + d3d7 − kd5

[d1μR + kD − d2αL − d3L] + (d2αL − d4R)

+ αkd2
αd2d7 + d3d7 − kd5

(d5L + d6R − d7D)

= L

[ −αd2d7(d2α + d3)

αd2d7 + d3d7 − kd5
+ d2α + αd2kd5

αd2d7 + d3d7 − kd5

]
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+R

(
αd2d7d1μ

αd2d7 + d3d7 − kd5
− d4 + αkd2d6

αd2d7 + d3d7 − kd5

)

+D

(
αd2d7

αd2d7 + d3d7 − kd5
k − αkd2

αd2d7 + d3d7 − kd5
d7

)

= Rd4

(
αμd1d2d7 + αkd2d6

αd2d4d7 + d3d4d7 − kd4d5
− 1

)

Due to di ∈ [0, 1], (i = 1, 2, . . . , 9) and 0 < R0 < 1, the following inequality holds.

αμd1d2d7 < d4d7(d3 + αd2) − kd4d5 − αkd2d6.

Thus when 0 < R0 < 1, dG
dt is negative. Through the asymptotic stability theorem

[36], the rumor-free equilibrium E0 is globally asymptotically stable on . ��

3.3 Globally Asymptotically Stable of Rumor-Spreading Equilibrium

In this subsection, we first prove the existence of rumor-spreading equilibrium,
and then prove that rumor-spreading equilibrium is GAS. Let all equations of sys-
tem (3) be equal to 0, and the expression of rumor-spreading equilibrium E∗ =
(I ∗, L∗, R∗, D∗, S∗) is obtained as follows:

I ∗ = Nd4d7(d2α + d3)

μαd1d2d7 + k(d4d5 + d2d6α)
,

L∗ = ε − ρ I ∗

d2α + d3
,

R∗ = d2α

d4
L∗,

D∗ =
(
d5
d7

+ d6d2α

d7d4

)

L∗,

S∗ =
(
d8
ρ

+ d9d2α

ρd4
+ θd5

ρd7
+ θd6d2α

ρd7d4

)

L∗.

Theorem 2 For the system (3), the rumor-spreading equilibrium E∗ = (I ∗, L∗, R∗,
D∗, S∗) is globally asymptotically stable if R0 > 1.

Proof In order to make the later combination of variables more convenient, we do the
following transformation. By denoting

x = I

I ∗ , y = L

L∗ , z = R

R∗ , u = D

D∗ , w = S

S∗ ,

we have

dx

dt
= x

[
ε

I ∗

(
1

x
− 1

)

− d1μ
R∗

N
(z − 1) − k

D∗

N
(u − 1)

]

,
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dy

dt
= y

[

d1μ
I ∗R∗

L∗N

(
xz

y
− 1

)

+ k
I ∗D∗

L∗N

(
xu

y
− 1

)]

,

dz

dt
= z

[

d2α
L∗

R∗

(
y

z
− 1

)]

,

du

dt
= u

[

d5
L∗

D∗
( y

u
− 1

)
+ d6

R∗

D∗
( z

u
− 1

)]

,

dw

dt
= w

[

d8
L∗

S∗
( y

w
− 1

)
+ d9

R∗

S∗
( z

w
− 1

)
+ θ

D∗

S∗
( u

w
− 1

)]

. (5)

Therefore, we can see that the rumor-spreading equilibrium E∗ of system (3) is trans-
formed into Ē∗ = (1, 1, 1, 1, 1) of the new system (5).

Setting a Lyapunov function V as follows:

V = a1 I
∗(x − 1 − lnx) + a2L

∗(y − 1 − lny) + a3R
∗(z − 1 − lnz)

+a4D
∗(u − 1 − lnu) + a5S

∗(w − 1 − lnw),

where a1, a2, a3, a4 and a5 are undetermined positive coefficients. We obtain the
derivative of V as follows:

V ′ = a1 I
∗
(

1 − 1

x

)

x ′ + a2L
∗
(

1 − 1

y

)

y′ + a3R
∗
(

1 − 1

z

)

z′

+a4D
∗
(

1 − 1

u

)

u′ + a5S
∗
(

1 − 1

w

)

w′

= a1

(

2ε − d1μ
I ∗R∗

N
− k

I ∗D∗

N

)

+ a2

(

d1μ
I ∗R∗

N
+ k

I ∗D∗

N

)

+ a3d2αL
∗

+a4(d5L
∗ + d6R

∗) + a5(d8L
∗ + d9R

∗ + θD∗)

−
(

a1ε − a1μd1
I ∗R∗

N
− a1k

I ∗D∗

N

)

x

−a1ε
1

x
−

(

a2d1μ
I ∗R∗

N
+ a2k

I ∗D∗

N
− a4d5L

∗ − a5d8L
∗ − a3d2αL

∗
)

y

−a2k
I ∗D∗

N

xu

y

−a2d1μ
I ∗R∗

N

xz

y
−

(

−a1d1μ
I ∗R∗

N
+ a3d2αL

∗ − a4d6R
∗ − a5d9R

∗
)

z

−a3d2αL
∗ y
z

−
(

−a1k
I ∗D∗

N
+ a4d5L

∗ + a4d6R
∗ − a5θD

∗
)

u − a4d6R
∗ z
u

− a4d5L
∗ y
u

−(a5d8L
∗ + a5d9R

∗ + a5θD
∗)w − a5d8L

∗ y

w
− a5d9R

∗ z

w
− a5θD

∗ u
w

+
(

−a1μd1
I ∗R∗

N
+ a2d1μ

I ∗R∗

N

)

xz +
(

−a1k
I ∗D∗

N
+ a2k

I ∗D∗

N

)

xu.
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According to the characteristics of arithmetic geometric mean inequality, the above
variables are combined. Let’s assume that

F(x, y, z, u, w) =: b1
(

2 − x − 1

x

)

+ b2

(

3 − 1

x
− xu

y
− y

u

)

+b3

(

3 − 1

x
− xz

y
− y

z

)

+b4

(

4 − 1

x
− y

z
− z

u
− xu

y

)

. (6)

Variables that are not successfully combined will not appear in the final formula, so
we let the coefficients of these terms be 0.

a2d1μ
I ∗R∗

N
+ a2k

I ∗D∗

N
− a4d5L

∗ − a5d8L
∗ − a3d2αL

∗ = 0,

−a1d1μ
I ∗R∗

N
+ a3d2αL

∗ − a4d6R
∗ − a5d9R

∗ = 0,

−a1k
I ∗D∗

N
+ a4d5L

∗ + a4d6R
∗ − a5θD

∗ = 0,

a5d8L
∗ + a5d9R

∗ + a5θD
∗ = 0,

a5d8L
∗ = 0,

a5d9R
∗ = 0,

a5θD
∗ = 0,

−a1μd1
I ∗R∗

N
+ a2d1μ

I ∗R∗

N
= 0,

−a1k
I ∗D∗

N
+ a2k

I ∗D∗

N
= 0.

We can obtain that

a1 = a2 = 1, a3 = (d1d7μ + kd6)I ∗R∗

d2d7αL∗N
, a4 = k I ∗

d7N
, a5 = 0.

Substituting the above coefficients into V ′,

V ′ = 2ε + (d1d7μ + kd6)I ∗R∗

d7N
+ k

I ∗D∗

N
−

(

ε − μd1
I ∗R∗

N
− k

I ∗D∗

N

)

x − ε
1

x

−k
I ∗D∗

N

xu

y
− d1μ

I ∗R∗

N

xz

y
− (d1d7μ + kd6)I ∗R∗

d7N

y

z

−d6k I ∗R∗

d7N

z

u
− d5k I ∗L∗

d7N

y

u
. (7)
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Letting the coefficients of all variables of F(x, y, z, u, w) and that of V ′ be equal,
we can get the following equations.

b1 = ε − μd1
I ∗R∗

N
− k

I ∗D∗

N
,

b1 + b2 + b3 + b4 = ε,

b2 + b4 = k
I ∗D∗

N
,

b2 = d5k I ∗L∗

d7N
,

b3 = d1μ
I ∗R∗

N
,

b3 + b4 = (d1d7μ + kd6)I ∗R∗

d7N
,

b4 = d6k I ∗R∗

d7N
.

By solving the above equations, we can get the following conclusions.

b1 = ρ I ∗, b2 = d5k I ∗L∗

d7N
, b3 = d1μ

I ∗R∗

N
, b4 = d6k I ∗R∗

d7N
.

Finally, we only need to verify that the constant terms of V ′ and that of F(x, y, z, u, w)

are equal.

2b1 + 3b2 + 3b3 + 4b4 = 2ρ I ∗ + 3
d5k I ∗L∗

d7N
+ 3d1μ

I ∗R∗

N
+ 4

d6k I ∗R∗

d7N

= 2ε + (d1d7μ + kd6)I ∗R∗

d7N
+ k

I ∗D∗

N
.

Through the arithmetic geometric mean inequality, we can get the conclusion that

V ′ = F(x, y, z, u, w)

= b1

(

2 − x − 1

x

)

+ b2

(

3 − 1

x
− xu

y
− y

u

)

+ b3

(

3 − 1

x
− xz

y
− y

z

)

+b4

(

4 − 1

x
− y

z
− z

u
− xu

y

)

≤ 0.

Therefore, we can know that rumor-spreading equilibrium is globally asymptotically
stable through LaSalle’s Invariable Principle [36]. ��
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4 Optimal Control Problem

In this section, we’re to study the control problem of system (2) for a period of time.
We consider the influence of the following four control measures on rumor spread: u1
backgrounddetection;u2 public education;u3 official debunking;u4 legal punishment.
Our goal is to reduce the number of the latents and the rumor spreaders as much as
possible, while keeping the cost of its control strategy as low as possible. Therefore,
we design the following objective function to ensure that our goal can be achieved.

J (u1, u2, u3, u4) =
∫ t f

0

[

A1L + A2R + B1

2
u21 + B2

2
u22 + B3

2
u23 + B4

2
u24

]

dt,

(8)

where A1, A2 are the weight coefficients associated with the latents and the rumor
spreaders, B1, B2, B3, B4 are the weight coefficients of four control variables. So we
want to obtain the optimal control (u∗

1, u
∗
2, u

∗
3, u

∗
4) such that

J (u∗
1, u

∗
2, u

∗
3, u

∗
4) = min J (u1, u2, u3, u4), (u1, u2, u3, u4) ∈ U . (9)

where U is the admissible space of control variables given by

U = {(u1, u2, u3, u4)|ui (t) is Lebesgue measurable on [0, 1], i = 1, 2, 3, 4}.

The Pontryagin maximum principle [37] is used to solve the problem. It is easy to
know that the necessary conditions for the existence of optimal control are satisfied.
Next, we will solve the optimal control solution. The Hamiltonian function H subject
to the system (2) is

H = A1L + A2R + 1

2
(B1u

2
1 + B2u

2
2 + B3u

2
3 + B4u

2
4)

+λ1

[

ε − (1 − u1)μ
I R

N
− k

I D

N
− ρ I

]

+λ2

[

(1 − u1)μ
I R

N
+ k

I D

N
− (1 − u4)αL − (β + γ + ρ + u2τ)L

]

+λ3[(1 − u4)αL − (δ + ξ + ρ + u3ϕ)R]
+λ4[(β + u2τk1)L + (ξ + u3ϕ(1 − k2))R − (θ + ρ)D]
+λ5[(δ + u3ϕk2)R + θD + (γ + u2τ(1 − k1))L − ρS], (10)
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where λi (i = 1, 2, 3, 4, 5) are the adjoint variables.
The equation of the adjoint system corresponding to the state system (2) is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1(t) = − ∂H

∂ I = λ1
[
(1 − u1)μ

R
N + k D

N + ρ
] − λ2

[
(1 − u1)μ

R
N + k D

N

]
,

λ′
2(t) = − ∂H

∂L = −A1 + λ2[(1 − u4)α + (β + γ + ρ + u2τ)] − λ3(1 − u4)α

−λ4(β + u2k1τ) − λ5[γ + u2τ(1 − k1)],
λ′
3(t) = − ∂H

∂R = −A2 + (λ1 − λ2)(1 − u1)μ
I
N + λ3(δ + ξ + ρ + u3ϕ)

−λ4[ξ + u3ϕ(1 − k2)] − λ5(δ + u3ϕk2),

λ′
4(t) = − ∂H

∂D = λ1k
I
N − λ2k

I
N + λ4(θ + ρ) − λ5θ,

λ′
5(t) = − ∂H

∂S = λ5ρ.

The transversality conditions of the adjoint system are

λi (t f ) = 0, i = 1, 2, 3, 4, 5.

According to Pontryagin maximum principle, we can know that the optimal control
(u∗

1, u
∗
2, u

∗
3, u

∗
4) needs to satisfy the following conditions

∂H

∂ui
= 0, i = 1, 2, 3, 4.

So we have

∂H

∂u1
= B1u1 + λ1μ

I R

N
− λ2μ

I R

N
= 0,

∂H

∂u2
= B2u2 + λ4τk1L − λ2τ L + λ5τ(1 − k1)L = 0,

∂H

∂u3
= B3u3 − λ3ϕR + λ4ϕ(1 − k2)R + λ5ϕk2R = 0,

∂H

∂u4
= B4u4 + λ2αL − λ3αL = 0.

Thus, we get the expression of the optimal control (u∗
1, u

∗
2, u

∗
3, u

∗
4),

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u∗
1 = max

{
0,min

{
1, (λ2−λ1)μI R

B1N

}}
,

u∗
2 = max

{
0,min

{
1, τ L(λ2−λ4k1−λ5(1−k1))

B2

}}
,

u∗
3 = max

{
0,min

{
1, ϕR(λ3−λ4(1−k2)−λ5k2)

B3

}}
,

u∗
4 = max

{
0,min

{
1, αL(λ3−λ2)

B4

}}
.

(11)
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5 The Control Strategies and Cost-Effectiveness Analysis

5.1 Various Control Strategies

In this section, we use the forward backward sweep method to find the optimal control
under each strategy [38–44]. The specific algorithm process is as follows.

Step1 In the admissible space of control variables, a guess initial values are selected.
Combinedwith the initial conditions of the state system, the fourth-order Runge–Kutta
method is used to simulate the system from front to back in time, and the state solution
and control variable expressions are obtained.

Step 2 The new state solution and control expressions are substituted into the
adjoint system. Combined with the transversality conditions, according to the time
point from back to front, the expressions of the adjoint variables are obtained by using
the fourth-order Runge–Kutta method.

Step 3 The state variables and adjoint variables are used to update the control
variables. Then the new state variables and control variables are taken as the new
initial values, and the iteration continues.

Step 4The iterative process continues until the values of two adjacent states, adjoint
and control variables are close enough.

In order to explore and analyze the effectiveness of the control measures in system
(2), we set up different control schemes, the combination of double, triple and quadru-
ple control variables. The reason why we don’t consider a single control measure is
that people usually choose to take multiple measures in parallel to prevent rumors
spreading.

Scenario 1: Double control strategies
Strategy A: background detection + public education (u1, u2).
Strategy B: background detection + official debunking (u1, u3).
Strategy C: background detection + legal punishment (u1, u4).
Strategy D: public education + official debunking (u2, u3).
Strategy E: public education + legal punishment (u2, u4).
Strategy F: official debunking + legal punishment (u3, u4).

Scenario 2: Triple control strategies
Strategy G: background detection + public education + official debunking (u1,

u2, u3).
Strategy H: background detection + public education + legal punishment (u1,

u2, u4).
Strategy I: background detection + official debunking + legal punishment (u1,

u3, u4).
Strategy J: public education + official debunking + legal punishment (u2, u3,

u4).
Scenario 3: Quadruple control strategies
Strategy K: background detection + public education + official debunking +

legal punishment (u1, u2, u3, u4).
The research object of this paper is the long-term residents in mainland China.

According to some relevant survey data [45], the initial population of each warehouse
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Fig. 2 Simulation of the strategy A to F in scenario 1 for: a total number of rumor spreaders; b total number
of the latents

we selected is as follows: I (0) = 500, L(0) = 250, R(0) = 20, D(0) = 9, S(0) = 50
(units in million). Combined with some literatures [9,10] about rumor spreading, we
choose the value of parameters as follows: ρ = 0.08, μ = 0.5, k = 0.5, α = 0.35,
β = 0.1, θ = 0.15, δ = 0.05, γ = 0.23, ξ = 0.05, τ = 0.4, ϕ = 0.6, k1 = 0.2,
k2 = 0.5. The weight coefficients of objective function are A1 = 1, A2 = 2, B1 = 1,
B2 = 10, B3 = 10, B4 = 5. Due to the influence of many human factors in real life,
the efficiency of control measures is difficult to reach 100%, so we set the maximum
value of control variables (u1, u2, u3, u4) as 0.8 [46]. The final time t f is set to 100
days.

Under strategy A to F, the number of rumor spreaders and the latents are shown in
(a) and (b) of Fig. 2 respectively. Because we are more concerned about the number of
rumor spreaders and the latents than other warehouses, we only show the population
change chart of these twowarehouses under each strategy. As can be seen fromFig. 2a,
in strategy A to F the number of rumor spreaders almost reaches its peak in 3 days.
Among these strategies, the peak value of strategy A is the largest, about 74. This is
an unsatisfactory result. The peak value of strategy F is the smallest, about 22. In the
next 30 days or so, they dropped rapidly to about 5, and then slowly to the end.
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Fig. 3 Optimal control strategies in scenario 1

But the number of the latents in Fig. 2b is different from that of rumor spreaders in
Fig. 2a. We can see that the number of the latents in strategy A decreases the fastest,
while the number of the latents in strategy F decreases the slowest. This result seems
to be contrary to the result in Fig. 2a, which is mainly due to different strategies and
different objects.

Figure 3 shows the optimal control of strategy A to F in scenario 1. What they have
in common is that at the beginning of control, the control intensity of all non-zero
control variables should be kept at the maximum intensity. In the optimal control of
different strategies, the time point of gradual decline to 0 is different, as shown in
Fig. 3.

In scenario 2, the changes in the number of rumor spreaders and the latents of
strategy G to J are shown in (a) and (b) of Fig. 4, respectively. It is easy to see that
the number of rumor spreaders in strategy G reaches the peak after 2 days, and the
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Fig. 4 Simulation of the strategy G to J in scenario 2 for: a total number of rumor spreaders; b total number
of the latents

maximum is 48. And it’s the highest in strategy G to J. This shows that under the
combination of three control measures the control effect of rumor spreading may be
better than that of the two control measures. The optimal control under Strategies G
to J are shown in Fig. 5. At the beginning of the control, the maximum control force
should be maintained, and then gradually reduced to 0.

Figure 6 shows the change trend of the number of rumor spreaders and the latents
under the strategy of quadruple control measure and without control measure. It can
be seen from Fig. 6a that the number of rumor spreaders will rapidly increase to 110
in 5 days without using control measure. Then it gradually decreased to 78 in the next
30 days and remained stable. Figure 6 verifies the correctness of Theorem 2 in the
previous theory from the image. And from this we can see that if the rumors are not
effectively controlled, the result is very bad.

Under the quadruple control strategies, the number of rumor spreaders increased
in one day, but the increase was less. And it decreased rapidly in the next 7 days. As
can be seen from Fig. 6b, the number of the latents will also drop very fast under the
quadruple control strategies. This is a good result.



84 Page 18 of 24 T. Li, Y. Guo

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 (a) Strategy G 

time (days)

Th
e 

st
re

ng
th

 o
f c

on
tro

l

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 (b) Strategy H 

time (days)

Th
e 

st
re

ng
th

 o
f c

on
tro

l

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 (c) Strategy I 

time (days)

Th
e 

st
re

ng
th

 o
f c

on
tro

l

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 (d) Strategy J 

time (days)

Th
e 

st
re

ng
th

 o
f c

on
tro

l

u1≠0

u2≠0

u3≠0

u4=0

u1≠0

u2≠0

u3=0

u4≠0

u1≠0

u2=0

u3≠0

u4≠0

u1=0

u2≠0

u3≠0

u4≠0

Fig. 5 Optimal control strategies in scenario 2

From Fig. 7, we can see the change in the control strength of the quadruple control
measures. The four control measures should be maintained at a maximum control
intensity of 0.8 at the beginning and continue for 67 days, 12 days, 99 days and 28
days respectively. And then they gradually go down to zero. Among them, we have
noticed that control measure u3 needs to be maintained at the maximum intensity all
the time, while the remaining control measures do not need to be maintained at the
maximum intensity from the beginning to the end, so as to avoid a lot of waste in
human and financial resources.

From the above simulation results, some control strategies are better, but the dif-
ference among them is difficult to distinguish from the graphs. Therefore, we need to
further distinguish them from the cost-effectiveness analysis.

5.2 Cost-Effectiveness Analysis

Cost-effectiveness analysis is an effective method to evaluate different control mea-
sures in public health intervention. In general, incremental cost-effectiveness ratio
(ICER) [47] of strategy A relative to strategy B is selected as an important index for
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evaluation,

ICER = TC(B) − TC(A)

T A(B) − T A(A)
. (12)

The definition expression of the total averted cases (TA) is as follows

T A =
∫ t f

0
[L + R − (L̃ + R̃)]dt, (13)

where L, R denote the latents and the rumor spreaders of without control respectively,
L̃, R̃ denote the latents and the rumor spreaders of a control strategy respectively.
∫ t f
0 (L + R)dt is the total number of people infected (TI) in the whole process without
control. The definition expression of the total cost (TC) is as follows

TC =
∫ t f

0
[B1u1 I + B2u2L + B3u3R + B4u4L]dt, (14)

where Bi , (i = 1, 2, 3, 4) are the cost per person for each control measure ui , (i =
1, 2, 3, 4). We show the values of TA and TC under all control strategies (A to K) and
without control strategy in Table 1.

Table 1 shows the data (TI, IAR, TC, ICER) of each strategy. Compared with the
data in the last column, from the optimal incremental cost-effectiveness ratio (ICER)
analysis, strategy F is the optimal control strategy and ICER(F) = 0.546. It shows
that if the optimal control under the strategy is implemented, it only costs 0.546
for each less infected person. But at the same time, we note that strategy K is the
optimal control strategy if analyzed from the optimal infection averted ratio (IAR).
IAR(K) = 94.4465%, which indicates that 94.4465% of people can be reduced by
rumor attack if the measures are implemented according to the optimal control of
the strategy, but the ICER of this strategy is higher. We also need to pay attention to
strategy J, IAR(J)= 94.0264%, ICER(J)= 0.68595. In strategy J, the values of IAR
and ICER are satisfactory.

Therefore, we suggest that when the budget is sufficient, we can choose control
strategy K to achieve the optimal proportion of total averted infectious. If the budget
is limited and not enough, we can choose strategy F to achieve the optimal incremental
cost-effectiveness ratio. If we want to take IAR and ICER into account, we should
consider strategy J as the optimal control strategy.

6 Conclusion

In the era of rapid information dissemination, the harm of rumor spread is greater than
before, and the research on the control of rumor spread is more urgent. This paper
extended the rumor model by adding four control variables. The main findings were
as follows.
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(i) Through the analysis of rumor propagation, a newextended rumor spreadingmodel
with comprehensive interventions (u1 background detection, u2 public education,
u3 official debunking, u4 legal punishment) was obtained. The basic reproduction
number R0 was calculated by the next generationmatrix. Thenwe proved the glob-
ally asymptotically stable (GAS) of rumor-free equilibrium and rumor-spreading
equilibrium by using the Lyapunov function. It provides a framework and method
for proving GAS in stability analysis.

(ii) In the theoretical analysis of optimal control, we used Pontryagin maximum prin-
ciple to get the state system and adjoint system, and obtain the expression of the
optimal solution.

(iii) In the simulation, we divided the control variables into three scenarios, a total
of 11 control strategies. Then we used the forward backward sweep method to
simulate all the control strategies. Through the analysis of ICER and IAR data
of all control strategies, different optimal strategies should be determined from
different perspectives.

Through the above theoretical and numerical analysis, we can use some control
strategies to effectively curb the spread of rumors and reduce the harm to people
and society. These results can also be used as suggestions for safety management
departments.

Rumors usually have a certain timeliness.Over time,many rumors are automatically
dispelled. This is an important difference between the spread of rumors and the spread
of disease.Whenwe consider this factor, the lawof rumor propagationwill change, and
the corresponding model will also become different. This will also be an interesting
question. We leave it for future work.
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